Реостат и методы его включения. Проволочный реостат

Для Андроид 20.05.2019
Для Андроид

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R . Если изменять сопротивление проводника R , тогда будет меняться сила тока.

Сопротивление зависит от длины L , от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов

Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:

  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:

  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы - реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах - на рисунке б).


В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

Стрелками указано как протекает электрический ток через реостат

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а ).

[Значения 6Ω и 3 А означают что данный реостат способен изменять свое сопротивление с 0 до 6 Ом, и ток с силой больше чем 3 Ампера пропускать по нему не стоит. ]

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).


На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления R л лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание! Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее - она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор - реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)?

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Давайте попробуем разобраться как такое может происходить, что маленькая лампочка не перегорает благодаря лампочке в 60 Вт и доказать расчетным методом, что для нормального накала обеих лампочек необходимо одна и та же сила тока.

На помощь в решении этого вопроса нам придет физика, а конкретно ее раздел электричество (изучается в 8 классе).

Реостатом именуется аппарат, состоящий из набора резисторов и устройства, при помощи которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и неизменный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным либо водяным) остыванием . Воздушное остывание может применяться для всех конструкций реостатов. Масляное и водяное остывание употребляется для железных реостатов, резисторы могут или погружаться в жидкость, или обтекаться ею. При всем этом следует подразумевать, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Железные реостаты с воздушным остыванием получили наибольшее распространение. Их легче всего приспособить к разным условиям работы как в отношении электронных и термических черт, так и в отношении разных конструктивных характеристик. Реостаты могут производиться с непрерывным либо со ступенчатым конфигурацией сопротивления.

Тумблер ступеней в реостатах производится плоским. В плоском тумблере подвижный контакт скользит по недвижным контактам, перемещаясь при всем этом в одной плоскости. Недвижные контакты производятся в виде болтов с плоскими цилиндрическими либо полусферическими головками, пластинок либо шин, располагаемых по дуге окружности в один либо два ряда. Подвижный скользящий контакт, именуемый обычно щеткой, может производиться мостикового либо рычажного типа, самоустанавливающимся либо несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду нередкого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высочайшая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Плюсами плоского тумблера ступеней реостата являются относительная простота конструкции, сравнимо маленькие габариты при большенном числе ступеней, низкая цена, возможность установки на плите тумблера контакторов и реле для отключения и защиты управляемых цепей. Недочеты - сравнимо малая мощность переключения и маленькая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность внедрения для сложных схем соединения.

Железные реостаты с масляным остыванием обеспечивают повышение теплоемкости и неизменной времени нагрева за счет большой теплоемкости и неплохой теплопроводимости масла. Это позволяет при краткосрочных режимах резко наращивать нагрузку на резисторы, а как следует, уменьшить расход резистивного материала и габариты реостата. Погружаемые в масло элементы обязаны иметь как можно огромную поверхность, чтоб обеспечить неплохую теплопотерю. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия среды в хим и других производствах. Погружать в масло можно только резисторы либо резисторы и контакты.

Отключающая способность контактов в масле увеличивается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле растет, но сразу улучшаются условия остывания. Не считая того, за счет смазки можно допустить огромные контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для долгих и повторно-кратковременных режимов работы реостаты с масляным остыванием неприменимы ввиду малой теплопотери с поверхности бака и большой неизменной времени остывания. Они используются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редчайших запусках.

Наличие масла делает и ряд недочетов: загрязнение помещения, увеличение пожарной угрозы.

Пример реостата с фактически непрерывным конфигурацией сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню либо кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый с помощью изолированного стержня 8, на конец которого надевается изолированная ручка (на рисунке ручка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластинки 7 - для наружного присоединения.

Реостаты могут врубаться в схему как переменный резистор (рис. 1, а) либо как потенциометр (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а как следует, и тока либо напряжения в цепи и находят обширное применение в лабораторных критериях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения при помощи реостата мотора неизменного тока маленький мощности.

Перед включением мотора нужно убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Потом включают рубильник и рычаг реостата переводят на 1-ый промежный контакт. При всем этом движок возбуждается, а в цепи якоря возникает пусковой ток, величина которого ограничена всеми 4-мя секциями сопротивления Rп. По мере роста частоты вращения якоря пусковой ток миниатюризируется и рычаг реостата переводят на 2-ой, 3-ий контакт и т. д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на краткосрочный режим работы, а потому рычаг реостата нельзя продолжительно задерживать на промежных контактах : в данном случае сопротивления реостата перенагреваются и могут перегореть.

До того как отключить движок от сети, нужно ручку реостата перевести в последнее левое положение. При всем этом движок отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В неприятном случае могут показаться огромные перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход движков неизменного тока регулировочный реостат в цепи обмотки возбуждения следует стопроцентно вывести для роста потока возбуждения.

Для запуска движков с поочередным возбуждением используют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко 2-ух зажимов - Л и Я.

Реостаты со ступенчатым конфигурацией сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из недвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к недвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от частей сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, также всех других управляемых реостатом цепей. Привод реостата может быть ручной (с помощью ручки) и двигательный.

Рис. 3. Схема включения пускорегулирующего реостата: Rпк — резистор, шунтирующий катушку контактора в отключенном положении реостата, Rогр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя неизменного тока, С1, С2 — поочередная обмотка возбуждения электродвигателя неизменного тока.

Рис. 4. Схема включения регулировочного реостата возбуждения: Rпр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя неизменного тока.

Реостаты по типу приведенных на рис. 2 и 3 отыскали обширное распространение. Их конструкции владеют, но, некими недочетами, а именно огромным числом крепежных деталей и монтажных проводов, в особенности в реостатах возбуждения, которые имеют огромное число ступеней.

Схема включения маслонаполненного реостата серии РМ , созданный для запуска асинхронных движков с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 - 3 запуска попорядку.

Реостат состоит из интегрированных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали частей и крепятся к крышке бака. Переключающее устройство - барабанного типа, представляет собой ось с закрепленными на ней секторами цилиндрической поверхности, соединенными по определенной электронной схеме. На недвижной рейке укреплены соединенные с резисторными элементами недвижные контакты. При повороте оси барабана (маховиком либо двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те либо другие недвижные контакты и тем меняют значение сопротивления в цепи ротора.

Резистором называют элемент электрической цепи в виде законченного изделия, основное назначение которого оказывать сопротивление электрическому току с целью регулирования тока и напряжения. Существуют резисторы с постоянным и переменным сопротивлением. Резистор, значение переменного сопротивления которого изменяется с помощью механического перемещения движка, называется реостатом. Резисторы и реостаты широко применяются в схемах управления электрическими силовыми установками и в электронных устройствах.

Резистивные элементы для силовых цепей изготавливаются из металла (нихрома, константана, чугуна и др.) в виде проволочных или ленточных спиралей, навитых на керамический каркас, или штампованных пластин; в виде угольных столбиков из тонких шайб; используются также жидкостные реостаты.

По назначению мощные резисторы и реостаты делятся на следующие основные группы:

1) нагрузочные – применяются для поглощения части электроэнергии цепи и превращения ее в тепловую энергию, а также для регулирования нагрузки источников электроэнергии при их испытаниях; включаются последовательно в цепь нагрузки;

    пусковые – предназначены для пуска электродвигателей и ограничения их пускового тока; включаются последовательно в силовую цепь двигателя;

    пускорегулирующие – кроме пуска электродвигателей выполняют функцию регулирования частоты вращения; включаются аналогично пусковым;

    регулировочные и установочные – предназначены для регулирования тока в обмотках возбуждения электрических машин, а также для его установки на заданное значение; включаются последовательно в цепь возбуждения;

    добавочные – предназначены для снижения напряжения в электрических установках, последовательно с которыми они включаются, и др.

Для мощных резисторов задается значение сопротивления (обычно при 20°С) и допустимый продолжительный ток, а для реостатов, кроме того, могут быть указаны количество ступеней регулирования, сопротивления и токи ступеней и другие данные.

Резистивные элементы для электронных устройств изготавливаются из металла, углеродистых и полупроводниковых материалов в виде спиралей, лент, пластин или пленок на диэлектрическом основании. Для защиты от внешних воздействий и для изоляции между витками резисторы покрывают стеклоэмалью. Маломощные резисторы характеризуются значением сопротивления (от 1 Ом до 10 Том; один тераом равен 10 12 Ом) и рассеиваемой мощностью (от 0,01 до 150 Вт).

Ток, сопротивление, напряжение и мощность резисторов взаимосвязаны соотношениями согласно законам Ома и Джоуля-Ленца.

На электрических схемах резисторы изображаются прямоугольником с размерами 10 х 4 мм и обозначаются буквой R согласно ГОСТ 2.728-74 и ГОСТ 2.710-81 (рис.1.2).

Рис.1.2. Условные графические изображения и буквенное обозначение резисторов: а - постоянный резистор; б - общее обозначение переменного резистора; в и г - варианты включения переменного резистора

В электромеханике и автоматике также используются маломощные полупроводниковые резисторы в качестве датчиков при измерении неэлектрических величин, например: фоторезисторы (их сопротивление зависит от освещённости), магниторезисторы (сопротивление зависит от напряжённости магнитного поля), терморезисторы (термисторы - их сопротивление уменьшается с повышением температуры и позисторы – с положительным температурным коэффициентом).

В данной работе студенты могут ознакомиться с мощными и маломощными резисторами и реостатами.

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт - подводящий к реостату провод, зеленый - скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо - увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка - то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат - достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?


Рекомендуем почитать

Наверх