Регрессионная статистика. Регрессионный анализ

Помощь 22.08.2019
Помощь
  • Tutorial

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин - Машинного Обучения и Больших Данных . Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии . Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале - уметь отличить сигнал от шума.



Для этой цели мы будем использовать язык программирования и среду разработки R , который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Введение в регрессионный анализ

Если имеется корреляционная зависимость между переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения называется регрессией y по x .


Основу регрессионного анализа составляет метод наименьших квадратов (МНК) , в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей минимальна.



Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.


Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений вокруг регрессии является дисперсия.


  • k - число коэффициентов в системе уравнений регрессии.

Чаще всего используется модель линейной регрессии, а все нелинейные зависимости приводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

Линейная регрессия

Уравнения линейной регрессии можно записать в виде



В матричном виде это выгладит


  • y - зависимая переменная;
  • x - независимая переменная;
  • β - коэффициенты, которые необходимо найти с помощью МНК;
  • ε - погрешность, необъяснимая ошибка и отклонение от линейной зависимости;


Случайная величина может быть интерпретирована как сумма из двух слагаемых:



Еще одно ключевое понятие - коэффициент корреляции R 2 .


Ограничения линейной регрессии

Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.



Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.


Неоднородность дисперсии


При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.



Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.


Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.




В этой формуле - коэффициент взаимной детерминации между и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.


Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова , согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

Как преодолеть эти ограничения

Нарушения одной или нескольких ограничений еще не приговор.

  1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
  2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
  3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии , и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией . Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

Линейная регрессия плюсов на Хабре

Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.


Загружает данные из tsv файла.


> hist <- read.table("~/habr_hist.txt", header=TRUE) > hist
points reads comm faves fb bytes 31 11937 29 19 13 10265 93 34122 71 98 74 14995 32 12153 12 147 17 22476 30 16867 35 30 22 9571 27 13851 21 52 46 18824 12 16571 44 149 35 9972 18 9651 16 86 49 11370 59 29610 82 29 333 10131 26 8605 25 65 11 13050 20 11266 14 48 8 9884 ...
  • points - Рейтинг статьи
  • reads - Число просмотров.
  • comm - Число комментариев.
  • faves - Добавлено в закладки.
  • fb - Поделились в социальных сетях (fb + vk).
  • bytes - Длина в байтах.

Проверка мультиколлинеарности.


> cor(hist) points reads comm faves fb bytes points 1.0000000 0.5641858 0.61489369 0.24104452 0.61696653 0.19502379 reads 0.5641858 1.0000000 0.54785197 0.57451189 0.57092464 0.24359202 comm 0.6148937 0.5478520 1.00000000 -0.01511207 0.51551030 0.08829029 faves 0.2410445 0.5745119 -0.01511207 1.00000000 0.23659894 0.14583018 fb 0.6169665 0.5709246 0.51551030 0.23659894 1.00000000 0.06782256 bytes 0.1950238 0.2435920 0.08829029 0.14583018 0.06782256 1.00000000

Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях . Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная - нет надобности исключать ни одну из независимых переменных.


Теперь собственно сама модель, используем функцию lm .


regmodel <- lm(points ~., data = hist) summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -26.920 -9.517 -0.559 7.276 52.851 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.029e+01 7.198e+00 1.430 0.1608 reads 8.832e-05 3.158e-04 0.280 0.7812 comm 1.356e-01 5.218e-02 2.598 0.0131 * faves 2.740e-02 3.492e-02 0.785 0.4374 fb 1.162e-01 4.691e-02 2.476 0.0177 * bytes 3.960e-04 4.219e-04 0.939 0.3537 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.65 on 39 degrees of freedom Multiple R-squared: 0.5384, Adjusted R-squared: 0.4792 F-statistic: 9.099 on 5 and 39 DF, p-value: 8.476e-06

В первой строке мы задаем параметры линейной регрессии. Строка points ~. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points ~ reads , набор переменных - points ~ reads + comm .


Перейдем теперь к расшифровке полученных результатов.




Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.


> hist$fb = hist$fb^(4/7) > hist$comm = hist$comm^(2/3)

Проверим значения параметров линейной регрессии.


> regmodel <- lm(points ~., data = hist) > summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -22.972 -11.362 -0.603 7.977 49.549 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.823e+00 7.305e+00 0.387 0.70123 reads -6.278e-05 3.227e-04 -0.195 0.84674 comm 1.010e+00 3.436e-01 2.938 0.00552 ** faves 2.753e-02 3.421e-02 0.805 0.42585 fb 1.601e+00 5.575e-01 2.872 0.00657 ** bytes 2.688e-04 4.108e-04 0.654 0.51677 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.21 on 39 degrees of freedom Multiple R-squared: 0.5624, Adjusted R-squared: 0.5062 F-statistic: 10.02 on 5 and 39 DF, p-value: 3.186e-06

Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми, F-статистика выросла, так же как и скорректированный коэффициент детерминации.


Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.


> dwtest(hist$points ~., data = hist) Durbin-Watson test data: hist$points ~ . DW = 1.585, p-value = 0.07078 alternative hypothesis: true autocorrelation is greater than 0

И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.


> bptest(hist$points ~., data = hist) studentized Breusch-Pagan test data: hist$points ~ . BP = 6.5315, df = 5, p-value = 0.2579

В заключение

Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.


Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

Использованные материалы

  1. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  2. William H. Green Econometric Analysis

Теги: Добавить метки

Оценка качества уравнения регрессии при помощи коэффициентов детерминации. Проверка нулевой гипотезы о значимости уравнения и показателей тесноты связи с помощью F-критерия Фишера.

Стандартные ошибки коэффициентов.

Уравнение регрессии имеет вид:

Y =3378,41 -494,59X 1 -35,00X 2 +75,74X 3 -15,81X 4 +80,10X 5 +59,84X 6 +
(1304,48) (226,77) (10,31) (277,57) (287,54) (35,31) (150,93)
+127,98X 7 -78,10X 8 -437,57X 9 +451,26X 10 -299,91X 11 -14,93X 12 -369,65X 13 (9)
(22,35) (31,19) (97,68) (331,79) (127,84) 86,06 (105,08)

Для заполнения таблицы «Регрессионная статистика» (Таблица 9) находим:

1. Множественный R – r-коэффициент корреляции между у и ŷ.

Для этого следует воспользоваться функцией КОРРЕЛ, введя массивы у и ŷ.

Полученное в результате число 0,99 близко к 1, что показывает очень сильную связь между опытными данными и расчетными.

2. Для расчета R-квадрат находим:

Объясняемая ошибка 17455259,48,

Необъясняемая ошибка .

Следовательно, R-квадрат равен .

Соответственно 97% опытных данных объяснимы полученным уравнением регрессии.

3. Нормированный R-квадрат находим по формуле

Этот показатель служит для сравнения разных моделей регрессии при изменении состава объясняющих переменных.

4. Стандартная ошибка – квадратный корень из выборочной остаточной дисперсии:

В результате получаем следующую таблицу.

Таблица 9.

Заполнение таблицы «Дисперсионный анализ»

Большая часть данных уже получена выше. (Объясняемая и необъясняемая ошибка).

Рассчитаем t wx:val="Cambria Math"/>13 = 1342712,27"> .



Оценку статистической значимости уравнения регрессии в целом проведем с помощью F -критерия Фишера. Уравнение множественной регрессии значимо (иначе – гипотеза H 0 о равенстве нулю параметров регрессионной модели, т.е. отвергается), если

, (10)

где - табличное значение F-критерия Фишера.

Фактическое значение F - критерия по формуле составит:

Для расчета табличного значения критерия Фишера используется функция FРАСПОБР (Рисунок 4).

Степень свободы 1: p=13

Степень свободы 2: n-p-1 = 20-13-1=6

Рисунок 4. Использование функции FРАСПОБР в Excel.

F табл = 3,976 < 16,88, следовательно, модель адекватна опытным данным.

Значимость F рассчитывается с помощью функции FРАСП. Эта функция возвращает F-распределение вероятности (распределение Фишера) и позволяет определить, имеют ли два множества данных различные степени разброса результатов.

Рисунок 5. Использование функции FРАСП в Excel.

Значимость F = 0,001.

y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении x =x i наблюдается n i значений y i 1 …y in 1 величины y , то зависимость средних арифметических =(y i 1 +…+y in 1)/n i от x =x i и является регрессией в статистическом понимании этого термина .

Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

Итак, допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения суть линейная аппроксимация истинного уравнения регрессии.

В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

Линейная регрессия (пропедевтика)

Представим зависимость y от x в виде линейной модели первого порядка:

Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели, а - значения ошибок аппроксимации.

Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

здесь средние значения определяются как обычно: , и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t =b /s b . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем b 1 - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 , то прямая проходит через начало координат и оценка углового коэффициента равна

,

а её стандартной ошибки

Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

Теперь можно вычислить 100(1−α/2)-процентный доверительный интервал для значения уравнения регрессии в точке x :

,

где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

Здесь m - кратность измерения y при данном x . И 100(1−α/2)-процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

.

На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

Литература

Ссылки

  • (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Регрессия (математика)" в других словарях:

    В Викисловаре есть статья «регрессия» Регрессия (лат. regressio «обратное движение, возвращение») многознач … Википедия

    О функции, см.: Интерполянт. Интерполяция, интерполирование в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Многим из тех, кто сталкивается с научными и… … Википедия

    У этого термина существуют и другие значения, см. среднее значение. В математике и статистике среднее арифметическое одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех наблюденных значений деленную на их… … Википедия

    Не следует путать с японскими свечами. График 1. Результаты эксперимента Майкельсона Морли … Википедия

    Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия

    РЕГРЕССИОННЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ - REGRESSION AND CORRELATION ANALYSISР.а. представляет собой вычисления на основе статистической информации с целью математической оценки усредненной связи между зависимой переменной и некоторой независимой переменной или переменными. Простая… … Энциклопедия банковского дела и финансов

    Логотип Тип Программы математического моделирования Разработчик … Википедия

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Предполагается, что - независимые переменные (предикторы, объясняющие переменные) влияют на значения - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным , требуется построить функцию , которая приближенно описывала бы изменение при изменении :

.

Предполагается, что множество допустимых функций, из которого подбирается , является параметрическим:

,

где - неизвестный параметр (вообще говоря, многомерный). При построении будем считать, что

, (1)

где первое слагаемое - закономерное изменение от , а второе - - случайная составляющая с нулевым средним; является условным математическим ожиданием при условии известного и называется регрессией по .

Пусть n раз измерены значения факторов и соответствующие значения переменной y ; предполагается, что

(2)

(второй индекс у x относится к номеру фактора, а первый – к номеру наблюдения); предполагается также, что

(3)

т.е. - некоррелированные случайные величины. Соотношения (2) удобно записывать в матричной форме:

, (4)

где - вектор-столбец значений зависимой переменной, t - символ транспонирования, - вектор-столбец (размерности k ) неизвестных коэффициентов регрессии, - вектор случайных отклонений,

-матрица ; в i -й строке находятся значения независимых переменных в i -м наблюдении первая переменная – константа, равная 1.

в начало

Оценка коэффициентов регрессии

Построим оценку для вектора так, чтобы вектор оценок зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора заданных значений:

.

Решением является (если ранг матрицы равен k+1 ) оценка

(5)

Нетрудно проверить, что она несмещенная.

в начало

Проверка адекватности построенной регрессионной модели

Между значением , значением из регрессионной модели и значением тривиальной оценкой выборочного среднего существует следующее соотношение:

,

где .

По сути, член в левой части определяет общую ошибку относительно среднего. Первый член в правой части () определяет ошибку, связанную с регрессионной моделью, а второй () ошибку, связанную со случайными отклонениями и необъясненной построенной моделью.

Поделив обе части на полную вариацию игреков , получим коэффициент детерминации:

(6)

Коэффициент показывает качество подгонки регрессионной модели к наблюдаемым значениям . Если , то регрессия на не улучшает качества предсказания по сравнению с тривиальным предсказанием .

Другой крайний случай означает точную подгонку: все , т.е. все точки наблюдений лежат на регрессионной плоскости.

Однако, значение возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный коэффициент детерминации

(7)

Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки является величина , оценка для которой

(8)

где - диагональный элемент матрицы Z . Если ошибки распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

(9)

распределена по закону Стьюдента с степенями свободы, и поэтому неравенство

, (10)

где - квантиль уровня этого распределения, задает доверительный интервал для с уровнем доверия .

Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициентов, при константе используется статистика

, (11)

распределенная, если верна, по закону Фишера с k и степенями свободы. отклоняется, если

(12)

где - квантиль уровня .

в начало

Описание данных и постановка задачи

Исходный файл с данными tube_dataset.sta содержит 10 переменных и 33 наблюдения. См. рис. 1.


Рис. 1. Исходная таблица данных из файла tube_dataset.sta

В названии наблюдений указан временной интервал: квартал и год (до и после точки соответственно). Каждое наблюдение содержит данные за соответствующий временной интервал. 10 переменная «Квартал» дублирует номер квартала в имени наблюдения. Список переменных приведен ниже.


Цель: Построить регрессионную модель для переменной №9 «Потребление труб».

Этапы решения:

1) Сначала проведем разведочный анализ имеющихся данных на предмет выбросов и незначимых данных (построение линейных графиков и диаграмм рассеяния).

2) Проверим наличие возможных зависимостей между наблюдениями и между переменными (построение корреляционных матриц).

3) Если наблюдения будут образовывать группы, то для каждой группы построим регрессионную модель для переменной «Потребление труб» (множественная регрессия).

Перенумеруем переменные по порядку в таблице. Зависимой переменной (отклик) будем называть переменную «Потребление труб». Независимыми (предикторами) назовем все остальные переменные.

в начало

Решение задачи по шагам

Шаг 1. Диаграммы рассеяния (см. рис. 2.) явных выбросов не выявили. В то же время, на многих графиках явно просматривается линейная зависимость. Также есть пропущенные данные по «Потреблению труб» в 4 кварталах 2000 года.


Рис. 2. Диаграмма рассеяния зависимой переменной (№9) и кол-ва скважин (№8)

Цифра после символа Е в отметках по оси Х обозначает степень числа 10, которое определяет порядок значений переменной №8 (Количество скважин действующих). В данном случае речь идет о значении порядка 100.000 скважин (10 в 5 степени).

На диаграмме рассеяния на рис. 3 (см. ниже) отчетливо видно 2 облака точек, причем каждое из них имеет явную линейную зависимость.

Понятно, что переменная №1, скорее всего, войдет в регрессионную модель, т.к. нашей задачей является выявление именно линейной зависимости между предикторами и откликом.


Рис. 3. Диаграмма рассеяния зависимой переменной (№9) и Инвестиций в нефтяную промышленность (№1)

Шаг 2. Построим линейные графики всех переменных в зависимости от времени. Из графиков видно, что данные по многим переменным сильно разнятся в зависимости от номера квартала, но рост из года в год сохраняется.

Полученный результат подтверждает предположения, полученные на основе рис. 3.


Рис. 4. Линейный график 1-й переменной в зависимости от времени

В частности, на рис. 4 построен линейный график для первой переменной.

Шаг 3. Согласно результатам рис. 3 и рис. 4, разобьем наблюдения на 2 группы, по переменной №10 «Квартал». В первую группу войдут данные по 1 и 4 кварталу, а во вторую – данные по 2 и 3.

Чтобы разбить наблюдения согласно кварталам на 2 таблицы, воспользуемся пунктом Данные/Подмножество/Случайный выбор . Здесь в качестве наблюдений нам надо указать условия на значения переменной КВАРТАЛ. Cм. рис. 5.

Согласно заданным условиям наблюдения будут скопированы в новую таблицу. В строчке снизу можно указать конкретные номера наблюдений, однако в нашем случае это займет много времени.

Рис. 5. Выбор подмножества наблюдений из таблицы

В качестве заданного условия зададим:

V10 = 1 OR V10 = 4

V10 – это 10 переменная в таблице (V0 – это столбец с наблюдениями). По сути, мы проверяем каждое наблюдение в таблице, относится оно к 1-ому или 4-ому кварталу или нет. Если мы хотим, выбрать другое подмножество наблюдений, то можно либо сменить условие на:

V10 = 2 OR V10 = 3

либо перенести первое условие в исключающие правила.

Нажав ОК , мы сначала получим таблицу с данными только по 1 и 4 кварталу, а затем и таблицу с данными по 2 и 3 кварталу. Сохраним их под именами 1_4.sta и 2_3.sta через вкладку Файл/Сохранить как.

Далее будем работать уже с двумя таблицами и полученные результаты регрессионного анализа для обеих таблиц можно будет сравнить.

Шаг 4. Построим матрицу корреляций для каждой из групп, чтобы проверить предположение относительно линейной зависимости и учесть возможные сильные корреляции между переменными при построении регрессионной модели. Так как есть пропущенные данные, корреляционная матрица была построена с опцией попарного удаления пропущенных данных. См. рис. 6.


Рис. 6. Матрица корреляций для первых 9-ти переменных по данным 1 и 4 кварталов

Из корреляционной матрицы в частности понятно, некоторые переменные очень сильно коррелируют друг с другом.

Стоит отметить, что достоверность больших значений корреляции возможна только при отсутствии выбросов в исходной таблице. Поэтому диаграммы рассеяния для зависимой переменной и всех остальных переменных обязательно должны учитываться при корреляционном анализе.

Например, переменная №1 и №2 (Инвестиции в нефтяную и газовую промышленность соответственно). См. рис.7 (или, например, рис. 8).


Рис. 7. Диаграмма рассеяния для переменной №1 и №2

Рис. 8. Диаграмма рассеяния для переменной №1 и №7

Данная зависимость легко объяснима. Также ясен и высокий коэффициент корреляции между объемами добычи нефти и газа.

Высокий коэффициент корреляции между переменными (мультиколлиниарность) нужно учитывать при построении регрессионной модели. Здесь могут возникнуть большие ошибки при вычислении коэффициентов регрессии (плохообусловленная матрица при вычислении оценки через МНК).

Приведем наиболее распространенные способы устранения мультиколлиниарности :

1) Гребневая регрессия.

Данная опция задается при построении множественной регрессии. Число - малое положительное число. Оценка МНК в таком случае равна:

,

где Y – вектор со значениями зависимой переменной, X – матрица, содержащая по столбцам значения предикторов, а – единичная матрица порядка n+1. (n – количество предикторов в модели).

Плохообусловленность матрицы при гребневой регрессии значительно уменьшается.

2) Исключение одной из объясняющих переменных.

В этом случае из анализа исключается одна объясняющая переменная имеющая высокий парный коэффициент корреляции (r>0.8) с другим предиктором.

3) Использование пошаговых процедур с включением/исключением предикторов .

Обычно, в таких случаях, используют либо гребневую регрессию (она задается в качестве опции при построении множественной), либо, на основе значений корреляции, исключают объясняющие переменные, имеющие высокий парный коэффициент корреляции (r > 0.8), либо пошаговую регрессию с включением/исключением переменных.

Шаг 5. Теперь построим регрессионную модель при помощи выпадающей вкладки меню (Анализ/Множественная регрессия ). В качестве зависимой переменной укажем «Потребление труб», в качестве независимых – все остальные. См. рис. 9.


Рис. 9. Построение множественной регрессии для таблицы 1_4.sta

Множественную регрессию можно проводить пошагово. В этом случае в модель будут пошагово включаться (или исключаться) переменные, которые вносят наибольший (наименьший) вклад в регрессию на данном шаге.

Также данная опция позволяет остановиться на шаге, когда коэффициент детерминации еще не наибольший, однако уже все переменные модели являются значимыми. См. рис. 10.


Рис. 10. Построение множественной регрессии для таблицы 1_4.sta

Особо стоит отметить, что пошаговая регрессия с включением, в случае, когда количество переменных больше количества наблюдений, является единственным способом построения регрессионной модели.

Установка нулевого значения свободного члена регрессионной модели используется в случае, если сама идея модели подразумевает нулевое значение отклика, когда все предикторы окажутся равными 0. Чаще всего подобные ситуации встречаются в экономических задачах.

В нашем случае свободный член мы включим в модель.


Рис. 11. Построение множественной регрессии для таблицы 1_4.sta

В качестве параметров модели выберем Пошаговую с исключением (Fвкл = 11, Fвыкл = 10), с гребневой регрессией (лямбда = 0.1). И для каждой группы построим регрессионную модель. См. рис.11.

Результаты в виде Итоговой таблицы регрессии (см. также рис. 14) представлены на рис.12 и рис.13. Они получены на последнем шаге регрессии.

Шаг 6. Проверка адекватности модели

Обратим внимание, что, несмотря на значимость всех переменных в регрессионной модели (p-уровень < 0.05 – подсвечены красным цветом), коэффициент детерминации R2 существенно меньше у первой группы наблюдений.

Коэффициент детерминации показывает, по сути, какая доля дисперсии отклика объясняется влиянием предикторов в построенной модели. Чем ближе R2 к 1, тем лучше модель.

F-статистика Фишера используется для проверки гипотезы о нулевых значениях коэффициентов регрессии (т.е. об отсутствии какой бы то ни было линейной связи между и совокупностью факторов, , кроме коэффициента ). Гипотеза отклоняется при малом уровне значимости.

В нашем случае (см. рис. 12) значение F-статистики = 13,249 при уровне значимости p < 0,00092, т.е. гипотеза об отсутствии линейной связи отклоняется.


Рис. 12. Результаты регрессионного анализа данных по 1 и 4 кварталу


Рис. 13. Результаты регрессионного анализа данных по 2 и 3 кварталу

Шаг 7. Теперь проведем анализ остатков полученной модели. Результаты, полученные при анализе остатков, являются важным дополнением к значению коэффициента детерминации при проверке адекватности построенной модели.

Для простоты будем рассматривать лишь группу, разбитую на кварталы с номерами 2 и 3, т.к. вторая группа исследуется аналогично.

В окне, представленном на рис. 14, на вкладке Остатки/предсказанные/наблюдаемые значения нажмем на кнопку Анализ остатков , и далее нажмем на кнопку Остатки и предсказанные . (См. рис. 15)

Кнопка Анализ остатков будет активна, только если регрессия получена на последнем шаге. Чаще оказывается важным получить регрессионную модель, в которой значимы все предикторы, чем продолжить построение модели (увеличивая коэффициент детерминации) и получить незначимые предикторы.

В этом случае, когда регрессия не останавливается на последнем шаге, можно искусственно задать количество шагов в регрессии.


Рис. 14. Окно с результатами множественной регрессии для данных по 2 и 3-му кварталам


Рис. 15. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 квартала

Прокомментируем результаты, представленные на рис. 15. Важным является столбец с Остатками (разница первых 2-х столбцов). Большие остатки по многим наблюдениям и наличие наблюдения с маленьким остатком может указывать на последнее как на выброс.

Другими словами анализ остатков нужен для того, чтобы отклонения от предположений, угрожающие обоснованности результатов анализа, могли быть легко обнаружены.


Рис. 16. Остатки и предсказанные значения регрессионной модели по данным 2 и 3 кварталов + 2 границы 0.95 доверительного интервала

В конце приведем график, иллюстрирующий данные, полученные из таблицы на рис. 16. Здесь добавлены 2 переменные: UCB и LCB – 0.95 верх. и нижн. дов. интервал.

UBC = V2+1.96*V6

LBC = V2-1.96*V6

И удалены четыре последних наблюдения.

Построим линейный график с переменными (Графики/2М Графики/Линейные графики для переменных )

1) Наблюдаемое значение (V1)

2) Предсказанное значение (V2)

3) UCB (V9)

4) LCB (V10)

Результат представлен на рис. 17. Теперь видно, что построенная регрессионная модель довольно неплохо отражает реальное потребление труб, особенно на результатах недавнего прошлого.

Это означает, что в ближайшем будущем реальные значения могут быть приближены модельными.

Отметим один важный момент. В прогнозировании при помощи регрессионных моделей всегда важен базовый временной интервал. В рассматриваемой задаче были выбраны кварталы.

Соответственно, при построении прогноза предсказываемые значения будут также получаться по кварталам. Если нужно получить прогноз на год, то придется прогнозировать на 4 квартала и в конце накопится большая ошибка.

Подобную проблему можно решить аналогично, вначале лишь агрегируя данные от кварталов к годам (например, усреднением). Для данной задачи подход не очень корректен, так как останется всего лишь 8 наблюдений, по которым будет строиться регрессионная модель. См. рис.18.


Рис. 17. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по 2 и 3 кварталам)


Рис. 18. Наблюдаемые и предсказанные значения вместе с 0.95 верх. и ниж. довер. интервалами (данные по годам)

Чаще всего такой подход применяется при агрегировании данных по месяцам, при исходных данных по дням.

Следует помнить, что все методы регрессионного анализа позволяют обнаружить только числовые зависимости, а не лежащие в их основе причинные связи. Поэтому ответ на вопрос о значимости переменных в полученной модели остается за экспертом в данной области, который, в частности, способен учесть влияние факторов, возможно, не вошедших в данную таблицу.



Рекомендуем почитать

Наверх