Расширение для браузера на заказ. Как создавать и публиковать приложения и расширения Chrome. Проверка орфографии на английском

Viber OUT 28.02.2019
Viber OUT

Кероси́н (англ. kerosene от греч. κηρός - воск) - смеси углеводородов (от C 12 до C 15), выкипающие в интервале температур 150-250 °C, прозрачная, слегка маслянистая на ощупь, горючая жидкость, получаемая путём прямой перегонки или ректификации нефти.

Свойства и состав

Плотность 0,78-0,85 г/см³ (при 20 °C), вязкость 1,2-4,5 мм²/с (при 20 °C), температура вспышки 28-72 °C, теплота сгорания около 43 МДж/кг.

В зависимости от химического состава и способа переработки нефти, из которой получен керосин, в его состав входят:

    предельные алифатические углеводороды (C n H 2n+2) - 20-60 %

    нафтеновые углеводороды (С n H 2n) - 20-50 %

    бициклические ароматические 5-25 %

    непредельные углеводороды - до 2 %

    примеси сернистых, азотистых или кислородных соединений.

Типичный состав углеводородов в топливах (в %)

Циклоалканы

Из таблицы видно, что в наибольших количествах в топливах содержатся алканы и циклоалканы. Количество аренов составляет 10 – 20%. как продукты прямой перегонки эти топлива практически не имеют в своем составе олеыиновых углеводородов. С точки зрения требований, предъявляемых к топливам данной категории, классы углеводов далеко не равнозначные. Рассмотрим их влияние на некоторые из эксплуатационных свойств топлив

Для определения в керосинах каждого из четырёх основных классов углеводородов применяют методы: сульфирование, определение анилиновых точек и йодных чисел

Теплота сгорания. Чем больше в топливе доля водорода, тем выше теплота сгорания. В этом отношении углеводородный состав прямогонных керосиновых фракций, из которых вырабатываются авиационные керосины, оказывается наиболее благоприятным. Более насыщенные водородом (алканы и циклоалканы) в них составляют до 80%.

Показатель теплоты сгорания топлива для реактивных двигателей имеет особо важное значение. Чем он выше, тем больше дальность полета самолетана одной заправке, т. е. тем большую работу он может выполнить. Но теплоту сгорания следует рассматривать исходя из двух условий: самолет имеет ограниченный объем топливных баков или для него ограничена масса топлива, которым он может быть заправлен, хотя объем баков имеет запас. В первом случае для дальности полета лучшем является топливо с высокими значениями плотности и объемной теплоты сгорания, которыми обладают фракции циклоалкановой основы. Во втором случае лучшим будет топливо с меньшей плотностью, но с большей весовой теплотой сгорания. Такие свойства характерны для алкановых углеводородов.

Содержание ареновых углеводородов. Арены, входящие в состав авиационных керосинов (алкилбензолы, нафталин и его гомологи) плохо горят. Теплота их сгорания на 11 – 12% ниже, чем у остальных углеводородов. Они способствуют образованию нагара на деталях двигателей, кристаллизуются при низких температурах и забивают топливные фильтры. Поэтому присутствие в данных топливах этого класса углеводородов нежелательно.

Показатели «высота некоптящего пламени» характеризует нагарообразующую способность топлива, которая является следствием плохого сгорания аренов. Нагар отлагается на форсунках и приводит к нарушению геометрии факела распыла и пламени сгорания топлива. А это опасно, так как возможен прогар стенок камеры сгорания и лопаток турбины.

Для определения высоты некоптящего пламени керосина существует несколько фитильных приборов. Простейший из них показаны на рисунке.

1 – резервуар; 2 - втулка для резервуара; 3 - камера; 4 - направляющая фитиля: 5 - шкала; 6 - вытяжная труб

Сущность анализа с помощью любого из этих приборов заключается в сжигании пробы топлива с постепенным увеличением длины пламени путем поднятия фитиля до появления фитиля до появления дыма. Затем пламя уменьшают до его исчезновения и в этот момент фиксируют высоту пламени по шкале замера. При содержании аренов а авиационных керосинах в пределах 10 – 22% она не должна быть менее 16 – 25 мм.

Температура начала кристаллизации и вязкости. Необходимость регламентации этого свойства объясняется эксплуатацией самолетов на больших высотах при минус 60°С и ниже. В Этих условиях есть опасность остановки двигателя из-за забивания топливных фильтров и топливопроводов кристаллами линейных алканов и растворимой воды. Вязкость обеспечивает смазывающие и распыливающие свойства топлива. Особенности влияния углеводородного состава на оба эти свойства аналогичны тем, которые рассматривались применительно к дизельным топливам.

Йодное число. Этот показатель контролируют в целях предотвращения смешения авиационных керосинов с химически не стабильными фракциями продуктов термического или каталитического крекинга

Содержание фактических смол, общей серы и кислотность относятся к числу эксплуатационных свойств топлива. Они характеризуют осмоленность и коррозионную активность топлива в момент их определения. Их зависимость от состава углеводородов и примесей минеральных кислот, а также методы определения этих свойств нам известны из лекций по бензинам и дизельным топливам.

Получение

Получается путём перегонки или ректификации нефти, а также вторичной переработкой нефти. При необходимости подвергается гидроочистке.

Ректификация

Ректификация (от лат. rectus - прямой и facio - делаю) - это процесс разделения бинарных или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификацию можно проводить периодически или непрерывно. Ректификацию проводят в башенных колонных аппаратах, снабженных контактными устройствами (тарелками или насадкой) ректификационных колоннах.

Ректификация- разделение жидких смесей на практически чистые компоненты, отличающиеся температурами кипения, путем многократных испарения жидкости и конденсации паров. В этом основное отличие ректификации от дистилляции, при которой в результате однократного цикла частичное испарение – конденсация достигается лишь предварительное (грубое) разделение жидких смесей.

СТАДИИ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА. Сырые нефть и газ должны пройти серию стадий в процессе их очистки и переработки, прежде чем они превратятся в окончательные продукты, применяемые в промышленности и быту. После подъема под действием давления газа или воды в полевой (промысловый) сепаратор природный газ и легкий природный бензин удаляются, а жидкая нефть сохраняется. Серия насосных станций подает нефть по трубопроводам в хранилища нефтеперерабатывающих предприятий. Там, путем термической обработки в ректификационных колоннах, происходит разделение на бензин, керосин, различные типы газойля, масляные дистилляты и тяжелые остатки, а затем их индивидуальная очистка.

Дистилляция

Дистилляция (лат. distillatio - стекание каплями) - перегонка, испарение жидкости с последующим охлаждением и конденсацией паров.

Простая дистилляция - частичное испарение кипящей жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость - кубовым остатком.

Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части - фракции. Основана на различии в составах многокомпонентной жидкости и образующегося из неё пара. Осуществляется путём частичного испарения легколетучих компонентов исходной смеси и последующей их конденсации. Первые (низкотемпературные) фракции полученного конденсата обогащены низкокипящими компонентами, остаток жидкой смеси - высококипящими.

Устройство простейшего перегонного аппарата.

1 Нагревательный элемент 2 Перегонный куб 3 Отводная трубка или насадка Вюрца 4 Термометр 5 Холодильник 6 Подвод охлаждающей жидкости 7 Отвод охлаждающей жидкости 8 Приёмная колба 9 Отвод газа (в том числе с понижением давления) 10 Аллонж 11 Температура нагревателя 12 Скорость перемешивания 13 Нагреватель 14 Водяная (масляная, песочная и т. п.) баня 15 Мешалка или гранулы 16 Охлаждающая ванна

Гидроочистка нефтепродуктов

Гидроочистка - процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки. Гидроочистке подвергаются следующие фракции нефти:

    1. Бензиновые фракции (прямогонные и каталитического крекинга);

    2. Керосиновые фракции;

    3. Дизельное топливо;

    4. Вакуумный газойль;

5. Моторные масла

Гидроочистка керосиновых фракций

    Гидроочистка керосиновых фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закокcовывают форсунки двигателей.

Качество топлива до и после гидроочистки:

Применение керосина

Керосин применяют как реактивное топливо, горючий компонент жидкого ракетного топлива, горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов, в аппаратах для резки металлов, как растворитель (например для нанесения пестицидов), сырьё для нефтеперерабатывающей промышленности. Керосин может использоваться как заменитель зимнего и арктического дизтоплива для дизельных двигателей. Для многотопливных двигателей (на основе дизеля) возможно применение чистого керосина. Допускается добавление до 20 % керосина в летнее дизельное топливо для снижения температуры застывания, при этом не ухудшаются эксплуатационные характеристики. Применяется так же для промывки механизмов, для удаления ржавчины.

Основные виды керосина

    ТС - авиационный керосин ;

    КТ - керосин технический ;

    КО - керосин осветительный.

Авиационный керосин

АВИАКЕРОСИН - смеси парафиновых (20-60%), нафтеновых (20-60%), ароматич. (18,5-22,0%) и непредельных (0,3-1,0%) углеводородов. используемые как топливо для самолетов и вертолетов с газотурбинными двигателями. авиакеросин получают в основном при прямой перегонке нефти (часто с последующим гидроочисткой или гидрированием). В качестве авиакеросин обычно применяют дистилляты, содержащие лигроиновые, керосиновые или газойлевые фракции, ограниченно - смеси широкого фракционного состава (пределы выкипания 60-230 °С), включающие бензиновые дистилляты.

Характеристики авиационных керосинов

ЭНЕРГИЯ ТОПЛИВА

В природе существует много горючих веществ, которые при сгорании выделяют тепло.

Однако, топливом можно считать лишь те горючие вещества, у которые обладают большой удельной теплотой сгорания, низкой температурой воспламенения. отсутствием вредных продуктов сгорания, широко распространены в природе, просты в добыче и транспортировке.

Чем больше выделяется тепла при сгорании топлива, тем лучше.

Разные виды топлива одинаковой массы при полном сгорании выделяют разное количество теплоты. Сравнить количества теплоты, выделившиеся при сгорании разных видов топлива можно,
используя физическую величину - удельную теплоту сгорания.
Удельная тплота сгорания показывает, какое количество теплоты выделится при полном сгорании
1 кг данного топлива.
Единица измерения удельной теплоты сгорания в системе СИ:
[ q ] = 1 Дж/кг
Расчетная формула для количества теплоты, выделившейся при полном сгорании топлива:

где Q - количество выделившейся теплоты (Дж),
q - удельная теплота сгорания (Дж/кг),
m - масса сгоревшего топлива (кг).

ЗНАЕШЬ ЛИ ТЫ?

Растения ежегодно производят 300 000 000 000 т кислорода. А при старте одной лишь ракеты сжигается в качестве топлива от 100 т до 1000 т жидкого кислорода.

Можно ли получить холод при сжигании угля?

Получение из угля не жара, а холода каждодневно осуществляется на заводах так называемого
«сухого льда». Уголь сжигается в котлах, а образующейся дым очищается и содержащийся в нем углекислый газ улавливается щелочным раствором. Затем щелочной раствор нагревают и из него выделяется углекислый газ. Углекислый газ при последующем охлаждении и сжатии переводится в жидкое состояние под давлением 70 атм. Эта жидкая углекислота в толстостенных баллонах доставляется на заводы шипучих напитков. Она так холодна, чтобы может заморозить грунт, как делалось при сооружении метро.
Для многих целей в промышленности и в медицине требуется углекислота в твердом виде – «сухой лед», который и получают при дальнейшем охлаждении углекислоты.

Самое горячее пламя получается при сгорании субнитрида углерода (C4N2), дающего при 1 атм. температуру 5261 K.

ПЛАМЯ СВЕЧИ

В пламени любого источника света имеется очень накаленная полоса, а в других частях теплота почти незаметна. Зажгите свечу и наблюдайте за фитилем. В пламени свечи легко различить отдельные полосы. Внизу вы увидите коричневую точку l, где свет почти не воспринимаем для глаза, а несколько выше синеватую часть m.

В синюю часть пламени кислород не проникает, и газы здесь не горят, оставаясь невоспламеняемыми. Это резервуар, питающий часть n, в которой газы подвергаются полному сгоранию. Вид этой полосы ярко красный. Часть n окружает полоса r, плохо видимая , но самая горячая из всех. Здесь происходит процесс полного сжигания углерода.

Примеры

Рассмотрим пример. 10 граммов этилового спирта сгорело в спиртовке за 10 минут. Найдите мощность спиртовки.

Решение. Найдём количество теплоты, выделившееся при сгорании спирта:

Q = q*m; Q = 27 000 000 Дж/кг * 10 г = 27 000 000 Дж/кг * 0,01 кг = 270 000 Дж.

Найдём мощность спиртовки:

N = Q / t = 270 000 Дж / 10 мин = 270 000 Дж / 600 с = 450 Вт.

Рассмотрим более сложный пример. Алюминиевую кастрюлю массой m1, заполненную водой массой m2, нагрели с помощью примуса от температуры t1 до температуры t2 (00С < t1 < t2

Решение.

Найдём количество теплоты, полученное алюминием:

Q1 = c1 * m1 * (t1 t2);

найдём количество теплоты, полученное водой:

Q2 = c2 * m2 * (t1 t2);

найдём количество теплоты, полученное кастрюлей с водой:

найдём количество теплоты, отданное сгоревшим бензином:

Q4 = Q3 / k * 100 = (Q1 + Q2) / k * 100 =

(c1 * m1 * (t1 t2) + c2 * m2 * (t1 t2)) / k * 100;

найдём массу сгоревшего бензина:

m = Q4 / q = (c1 * m1 * (t1 t2) + c2 * m2 * (t1 t2)) / k * 100 / q

Ответ: масса сгоревшего бензина равна

(c1 * m1 * (t1 t2) + c2 * m2 * (t1 t2)) / k * 100 / q.

Реши самостоятельно:

Начальный уровень

1. Удельная теплота сгорания бензина 44 МДж/кг. Выберите правильное утверждение.

А. Приполном сгорании1м3 бензина выделится 44 МДж энергии.

Б. При полном сгорании 44 кг бензина выделится 1 МДж энергии.

В. При полном сгорании1кг бензина выделится 44 МДж энергии.

2. В топке было сожжено одинаковое количество каменного угля и сухих дров. Выберите правильное утверждение.

А. При сгорании каменного угля выделилось большее количество теплоты.

Б. При сгорании сухих дров выделилось большее количество теплоты.

В. При сгорании угля и дров выделилось одинаковое количество теплоты.

3. При сжигании каменного угля выделилось 54 МДж теплоты. Выберите правильное утверждение.

А. Было сожжено 1 кг угля.

Б. Было сожжено 2 кг угля.

В. Было сожжено 4 кг угля.

4. При сжигании 1 кг топлива выделилось 26 МДж теплоты. Выберите правильное утверждение.

А. Сжигали керосин.

Б. Сжигали спирт.

В. Сжигали древесный уголь.

5. Сожгли 2 кг каменного угля. Выберите правильное утверждение.

А. Чтобы выделилось такое же количество теплоты, необходимо сжечь 1,5 кг спирта.

Б. Чтобы выделилось такое же количество теплоты, необходимо сжечь 2 кг бензина.

В. Чтобы выделилось такое же количество теплоты, необходимо сжечь 4,5 кг сухих дров

6. В печи было сожжено 2 кг сухих дров. Выберите правильное утверждение.

А. Выделилось 6 МДж теплоты.

Б. Выделилось 12 МДж теплоты.

В. Выделилось 24 МДж теплоты.

Средний уровень

1. Сколько сухих дров нужно сжечь, чтобы получить 60 МДж теплоты?

2. Какое количество теплоты выделится при полном сгорании 100 г спирта?

3. При полном сгорании 0,5 кг топлива выделяется 22 МДж теплоты. Какова удельная теплота сгорания топлива? Что это за топливо?

4. Какая масса каменного угля была сожжена в печи, если при этом выделилось 60 МДж теплоты?

5. Сколько теплоты выделится при полном сгорании сухих сосновых дров объемом 3 м 3 ?

6. Сколько энергии выделится при полном сгорании керосина объемом 5 л?

Достаточный уровень

1. а) Почему порох невыгодно использовать как топливо, а бензином нельзя заменить порох в артиллерийских орудиях?

б) Сколько спирта надо сжечь, чтобы изменить температуру воды массой 2 кг от 14 °С до 50 °С, если вся теплота, выделенная спиртом, пойдет на нагревание воды?

2. а) Почему мы сильно дуем на пламя спички, свечи и т. п., когда хотим его погасить?

б) На сколько градусов Цельсия нагреются 3 кг воды, если вся теплота, выделившаяся при полном сгорании 10 г спирта, пошла на ее нагревание?

3. а) Почему рачительный хозяин предпочитает покупать березовые дрова, а не сосновые? Цена дров одинаковая.

б) Сколько дров необходимо сжечь для того, чтобы нагреть 50 л воды в железном котле массой 10 кг от 15 °С до 65 °С? Потерями тепла пренебречь.

4. а) Почему разбросанные угли костра гаснут быстро, а сложенные в кучу долго сохраняются в раскаленном виде?

б) Сколько воды, взятой при температуре 14 °С, можно нагреть до 50 °С, сжигая спирт массой 30 г и считая, что вся выделяемая при горении спирта энергия идет на нагревание воды?

5. а) Удельная теплота сгорания каменного угля примерно в два раза больше, чем удельная теплота сгорания торфа. Что это значит?

б) Сколько воды можно нагреть от 10 °С до 60 °С, если на ее нагревание пошла половина энергии, полученной в результате сгорания 40 кг каменного угля?

6. а) Почему теплота сгорания сырых дров меньше, чем у сухих той же породы?

б) На сколько изменится температура воды объемом 100 л, если считать, что вся теплота, выделяемая при сжигании древесного угля массой 0,5 кг, пойдет на нагревание воды?

Высокий уровень

1. Сколько воды можно нагреть кипятильником от 10 °С до 100 °С, сжигая в нем 0,6 кг березовых дров, если для нагревания воды пошло 25%теплоты, выделившейся при сжигании дров?

2. Сколько дров понадобится сжечь, чтобы истопить кирпичную печь? КПД печи равен 25 %, масса печи 1,5 т, в процессе протапливания температурапечи изменяется от 10 °С до 70 °С.

3. На спиртовке нагрели 175 г воды от 15 до 75 °С. Начальная масса спиртовки со спиртом была равна 163 г, а по окончании нагревания -157 г. Найдите КПД нагревательной установки.

4. В медном сосуде массой 0,5 кг нагреваются 2 л воды, взятой при температуре 10 °С. До какой температуры можно нагреть воду за счет сжигания 50 г спирта (КПД считать равным 50%)?

5. На примусе с КПД 40% необходимо вскипятить 4 л воды, начальная температура которой 20 °С, в алюминиевой кастрюле массой 2 кг. Определите расход керосина на нагревание воды и кастрюли.

6. Каково отношение масс спирта и бензина в смеси, если удельная теплота сгорания этой смеси 40 МДж/кг?

В третьей части «Незаметных сложностей ракетной техники» я бы хотел рассказать о ещё не охваченных в первой и второй частях проблемах, которые требуют решения. Эта статья посвящена развитию темы различных ограничений, которые приводят к инженерно неоптимальным решениям.

Виды жидкого топлива

После начальных экспериментов, когда ракеты летали на этиловом спирте, азотной кислоте, скипидаре и прочих веселых веществах, самыми распространенными стали три пары ракетного топлива: кислород/керосин, кислород/водород, несимметричный диметилгидразин/азотный тетраксид. Естественно, у каждого вида топлива есть свои плюсы и минусы, которые мы сейчас и рассмотрим. Однако, сначала мне хочется дать определение удельного импульса, которое так и не прозвучало всё это время:
Удельный импульс - это мера эффективности ракетного топлива. Согласно одному из определений, это количество секунд, в течение которых двигатель может развивать тягу 1 Ньютон, истратив 1 кг топлива. Удельный импульс измеряется в секундах или в метрах в секунду. УИ 1 с = 9,8066 м/с

Кислород/керосин . УИ 358 c в пустоте, усредненная плотность (плотность смеси в соотношении для работы двигателя) 1,036 г/см^3. Самое популярное топливо, самое простое в работе и самое освоенное. Главных недостатков два - не самый высокий УИ, и то, что кислород хранится в баках в жидком виде. На ракеты-носители иногда даже не ставят теплоизоляцию, и при старте с неё красиво падает намёрзший из воздуха лёд. Но для разгонных блоков теплоизоляция нужна и требует дополнительной массы. Также жидкий кислород нельзя хранить месяцами для коррекций орбиты. Есть любопытный физический хак - переохлажденный кислород, т.е. кислород при температуре ниже температуры кипения. Он чуть плотнее, поэтому в такой же бак его поместится больше, и он не так активно закипает при заправке. На этой паре летает очень много современных ракет-носителей - «Союз», «Зенит», «Атлас», «Фалькон».
Кислород/водород . УИ 455 с в пустоте, усредненная плотность 0.3155 г/см^3. Наибольший УИ, но есть серьезные недостатки. Жидкий водород доставляет гораздо больше проблем, чем кислород. Во-первых, из-за низкой плотности пары кислород/водород бак будет в 2-3 раза выше баков других топливных пар при том же диаметре. Во-вторых, бак надо делать с теплоизоляцией, потому что иначе жидкий водород будет активно испаряться. Даже с теплоизоляцией надо дренировать бак и подпитывать его жидким водородом практически до момента старта. Дренаж испарившегося водорода нужно отводить, потому что его смесь с воздухом взрывоопасна. Разгонный блок с этими компонентами должен отработать в течение нескольких минут, долгоживущие модификации блоков, которые жили часами, были изготовлены в единичных экземплярах и оказались сильно дороже. На этой паре летали шаттлы и «Энергия», летают «Дельта» американцев, «Ариан-5» европейцев и «H-II» японцев.
НДМГ/АТ . УИ 344 с в пустоте, усредненная плотность 1,185 г/см^3. УИ чуть ниже кислорода/керосина, очень высокая плотность, кипит при плюсовой температуре, самовоспламеняется при смешении компонентов, вроде бы мечта, а не топливо. Одна беда, НДМГ - жуткий яд. Высший класс токсичности по NFPA 704, мутаген, тератоген, канцероген. АТ тоже не подарок, но на класс опасности ниже, ядовит примерно как хлор, и растения после него хорошо растут - азотистое удобрение. К небольшим недостаткам этой топливной пары можно отнести коррозию материалов (но с этим можно бороться) и более высокую стоимость, чем у пары кислород/керосин. На ней летают «Протон», «Великий поход» китайцев и GSLV индусов. Летали «Титаны» американцев и «Ариан» европейцев, но в ракетах-носителях он постепенно будет сходить на нет. Опасность разлива сотен тонн компонентов при аварии и необходимость дезактивации участка падения отработанной ступени делает бесперспективным использование этой пары в ракетах-носителях. Но она используется в разгонных блоках и двигательных установках спутников, потому что может долго и без проблем храниться в полёте.

Геометрические размеры ступени, транспортировка

С точки зрения геометрии, максимальный объем при фиксированной площади достигается для шара. И аэродинамическое сопротивление и полная поверхность цилиндра пропорциональны квадрату радиуса, поэтому ракеты должны были бы быть достаточно невысокими и широкими. Однако, в реальности, ракеты очень тонкие и высокие. Дело в том, что увеличение диаметра увеличивает сложность изготовления и транспортировки ступени. У меня была гипотеза, что мера сложности работы со ступенью обратно пропорциональна квадрату радиуса. Я собрал данные о пусках ракет за последние двадцать лет (много пусков даст статистическую базу, а не очень большой временной диапазон не приведет к ошибке из-за изменения технологий) и построил график количества пусков в зависимости от наибольшего диаметра ступени (самого широкого бака). Что интересно, гипотеза подтвердилась:


Ещё можно вспомнить байку о том, как ширина двух древнеримских лошадей привела к ограничению полезной нагрузки «Спейс Шаттла». Это, конечно, байка, и даже отдел стандартизации NASA потрудился её опровергнуть , но общий принцип верен - задача транспортировки ставит большие проблемы для разработки ракет-носителей.
Кто как может
США повезло не только с широтой. Их космодром находится на берегу моря, и не составляет проблем привезти ступени на корабле или барже:


Слева баржа для транспортировки внешнего топливного бака «Спейс-Шаттла», по центру перевозка от причала в здание вертикальной сборки, справа транспорт «Дельта Маринер» перевозит ступени РН «Дельта-IV» и «Атлас- V»

Поэтому американцы могли возить ступени «Сатурна-V» диаметром 10,1 м и внешние топливные баки шаттлов восьмиметрового диаметра.
У европейцев космодром Куру тоже находится у самого берега, что опять позволяет использовать большие ступени - 5,4 м у «Ариан-5»:

Ну а у нас ситуация гораздо сложнее. Первую ступень Н-1 диаметром 17 метров сваривали уже на Байконуре, центральный блок «Энергии» возили на самолёте. Диаметр «Протона» фактически 4,1 м, боковые баки первой ступени присоединяются уже при сборке ракеты на Байконуре. И, по слухам в Интернете, при транспортировке блоков ракеты приходится перекрывать встречное движение по железной дороге. Вот он - тайный враг отечественной космонавтики - железнодорожный габарит:

Уже на вагонах «Ангары» с диаметром 2,9 м ясно виден индекс негабаритности - по ширине он почти предельный (5 из 6):

Железнодорожный транспорт для нас пока остается единственно доступным. Возить на самолёте дорого, да и ограничение размера присутствует. Новые специальные самолёты будут стоить сильно дороже. Собирать на месте очень дорого - надо новый завод строить. По рекам транспортировать тоже не получается - будут нужны специальные баржи для рек и корабли для движения по Северному морскому пути. Учитывая, что сейчас в «Роскосмосе» есть некоторое шевеление по поводу разработки сверхтяжелой ракеты, становится очень любопытно, какие геометрические параметры там выберут, и как её будут транспортировать?

Компоновка

Времена, когда денег в космос вливали много, и можно было строить такой инженерно-красивый «Сатурн-V», увы прошли. Теперь во всем мире мода на «летающие заборы» из универсальных модулей, которые должны быть удобными и дешевыми:


Слева направо: «Дельта-IV», «Атлас-V», «Фалкон-9», «Ангара»

Стартовые сооружения

Меня очень занимал вопрос, чем была вызвана такая странная компоновка у «Ангары» версии 1995 года?

Не нужно думать, что эту схему делали дилетанты или «враги народа». Представьте, что на дворе первая половина девяностых. На Байконуре раздрай, Казахстан, ставший независимым, может устроить проблемы с использованием космодрома. «Протон» надо чем-то заменять. Но денег у государства ни на что нет, и масштабные проекты однозначно не получатся. А на космодроме «Плесецк» есть почти достроенный старт для РН «Зенит». «Зенит» выводит на орбиту почти четырнадцать тонн. Если сделать новую ракету в размерности «Зенита», привесив дополнительные баки, то полезную нагрузку можно увеличить. Так и появилась эта странная конструкция.
Этот же фактор уже готового стартового сооружения пророчит хорошее будущее «Союзу-2.1в» . Старты для обычных «Союзов» есть на Байконуре, Плесецке, Куру (но туда вряд ли пустят - конкуренция «Веге»), строится старт на «Восточном».
Кстати, идею параллельного расположения баков реализовали ещё в «Протоне». На первой ступени стоит один бак окислителя диаметром 4,1 м. и шесть баков горючего, на которых стоят двигатели. Получилось даже изящно - на дно бака окислителя выведены коммуникации, что сделало ненужной отдельную кабель-мачту. А первая ступень стала заметно короче, что полезно для уменьшения изгибающих нагрузок и упрощает работу с ракетой в целом. Что любопытно, эту идею и сейчас не хотят забывать - вот, например, картинка неких эскизов из доклада от ноября 2013 года:


вторая слева ракета - параллельно расположенные баки на первой ступени, третья слева - боковые и центральный баки для разных компонентов

Деньги

Это ограничение фактически разлито по всем остальным, потому что любое инженерное решение имеет свою цену. Для наглядности - некрасивые ракеты на КДПВ в большинстве своем стали такими некрасивыми из-за того, что использовались уже готовые блоки разных диаметров, и увеличение диаметра спутников привело к необходимости создания надкалиберных обтекателей.


Первая слева ракета - «Тор - Эйбл». На уже существующую баллистическую ракету «Тор» поставили ступень «Эйбл», которую сделали для ракеты «Авангард».
Вторая - «Таурус». Под ступени ракеты «Пегас» воздушного старта поставили ступень с МБР «MX»
Третья - «Ариан-4». К сожалению, прямых предков я не нашёл, откуда она такая некрасивая появилась - неясно.
Четвертая - «Ариан-6». Переход на новые твердотопливные блоки, а верхняя ступень остается с «Ариан-5», поэтому она большего диаметра.
Пятая - «Ангара» версии 1995 года. О ней я уже говорил.

P.S. Из четырех последних статей две были написаны фактически по вашим заявкам. У меня есть список интересных тем, по которым можно сделать статьи, и он ещё далеко не исчерпан, но мне хочется узнать - есть ли какие-то темы, на которые вы хотели бы прочитать научно-популярную статью о космонавтике? Предлагайте свои пожелания в комментариях, если они меня заинтересуют, то я их поставлю в свою очередь статей.

Теги:

  • космонавтика
  • НСРТ
Добавить метки

774. Удельная теплота сгорания каменного угля равна 27 МДж/кг. Что это означает?
Это означает, что при полном сгорании каменного угля массой 1 кг выделяется 27 МДж.

775. Сколько тепла при сгорании дают 10 кг древесного угля?

776. Сколько выделится тепла при полном сгорании 10 кг сухих березовых дров?

777. Сколько тепла дают 20 кг торфа при полном сгорании?

778. Какое количество теплоты выделится при сгорании керосина массой 300 г?

779. Заряд пороха в патроне пулемета имеет массу 3,2 г. Теплота сгорания пороха 3,8 МДж/кг. Сколько выделяется тепла при каждом выстреле?

780. Сколько теплоты выделится при полном сгорании 4 л керосина?

781. Сколько теплоты выделится при полном сгорании нефти массой 3,5 т?

782. Какую массу угля надо сжечь, чтобы выделилось 40800 кДж тепла?

783. При полном сгорании нефти выделилось 132 кДж тепла. Какая масса нефти сгорела?

784. Какая масса древесного угля может заменить 60 т нефти?

785. Какая масса древесного угля при сгорании дает столько же энергии, сколько выделяется при сгорании четырех литров бензина?

786. Во сколько раз меньше тепла дают при полном сгорании сухие березовые дрова, чем бензин такой же массы?

787. Начальная температура двух литров воды 20 °С. До какой температуры можно было бы нагреть эту воду при сжигании 10 г спирта? (Считать, что теплота сгорания спирта целиком пошла на нагревание воды.)

788. Воду массой 0,3 кг нагрели на спиртовке от 20 °С до 80 °С и сожгли при этом 7 г спирта. Определите КПД спиртовки.

789. При нагревании 4 л воды на 55 °С в примусе сгорело 50 г керосина. Каков КПД примуса?

790. Сталь массой 2 кг нагревается на 1000 °С кузнечным горном. Каков КПД кузнечного горна, если для этого расходуется 0,6 кг кокса?

791. Сколько нужно сжечь керосина в керосинке, чтобы довести от 15 °С до кипения 3 кг воды, если КПД керосинки 30%?

792. КПД вагранки (шахтной печи) 60%. Сколько надо древесного угля, чтобы нагреть 10000 кг чугуна от 20 °С до 1100 °С?

793. Для сгорания в топке одного килограмма древесного угля требуется 30 кг воздуха. Воздух поступает в топку при температуре 20 °С и уходит в дымоход при температуре 400 °С. Какая часть энергии топлива уносится воздухом в трубу? (Теплоемкость воздуха принять равной 1000 Дж/кг °С при постоянном давлении.)

Всем известно, что в нашей жизни огромную роль играет использование топлива. Топливо применяют практически в любой отрасли современной промышленности. Особенно часто применяется топливо, полученное из нефти: бензин, керосин, соляр и другие. Также применяют горючие газы (метан и другие).

Откуда берется энергия у топлива

Известно, что молекулы состоят из атомов . Для того, чтобы разделить какую либо молекулу (например, молекулу воды) на составляющие её атомы, требуется затратить энергию (на преодоление сил притяжения атомов). Опыты показывают, что при соединении атомов в молекулу (это и происходит при сжигании топлива) энергия, напротив, выделяется.

Как известно, существует ещё и ядерное топливо, но мы не будем здесь говорить о нём.

При сгорании топлива выделяется энергия. Чаще всего это тепловая энергия . Опыты показывают, что количество выделившейся энергии прямо пропорционально количеству сгоревшего топлива.

Удельная теплота сгорания

Для расчёта этой энергии используют физическую величину, называемую удельная теплота сгорания топлива. Удельная теплота сгорания топлива показывает, какая энергия выделяется при сгорании единичной массы топлива.

Её обозначают латинской буквой q. В системе СИ единица измерения этой величины Дж/кг. Отметим, что каждое топливо имеет собственную удельную теплоту сгорания. Эта величина измерена практически для всех видов топлива и при решении задач определяется по таблицам.

Например, удельная теплота сгорания бензина 46 000 000 Дж/кг, керосина такая же, этилового спирта 27 000 000 Дж/кг. Нетрудно понять, что энергия, выделившаяся при сгорании топлива, равна произведению массы этого топлива и удельной теплоты сгорания топлива:

Рассмотрим примеры

Рассмотрим пример. 10 граммов этилового спирта сгорело в спиртовке за 10 минут. Найдите мощность спиртовки.

Решение. Найдём количество теплоты, выделившееся при сгорании спирта:

Q = q*m; Q = 27 000 000 Дж/кг * 10 г = 27 000 000 Дж/кг * 0,01 кг = 270 000 Дж.

Найдём мощность спиртовки:

N = Q / t = 270 000 Дж / 10 мин = 270 000 Дж / 600 с = 450 Вт.

Рассмотрим более сложный пример. Алюминиевую кастрюлю массой m1, заполненную водой массой m2, нагрели с помощью примуса от температуры t1 до температуры t2 (00С < t1 < t2

Решение.

Найдём количество теплоты, полученное алюминием:

Q1 = c1 * m1 * (t1 t2);

найдём количество теплоты, полученное водой:

Q2 = c2 * m2 * (t1 t2);

найдём количество теплоты, полученное кастрюлей с водой:

найдём количество теплоты, отданное сгоревшим бензином:

Q4 = Q3 / k * 100 = (Q1 + Q2) / k * 100 =

(c1 * m1 * (t1 t2) + c2 * m2 * (t1 t2)) / k * 100;



Рекомендуем почитать

Наверх