Радиорелейные линии связи (ррлс). Основные принципы радиорелейной связи

Viber OUT 24.08.2019
Viber OUT

Разделение (уплотнение) каналов.

Виды радиосвязи

Лекция 4. Радиорелейные и тропосферные линии связи.

Радиосвязь по длинам волн разделяют на радиосвязь c применением ретрансляторов :

Радиорелейная связь,

Спутниковая связь,

Сотовая связь;

без применения ретрансляторов :

СДВ-связь,

ДВ-связь,

СВ-связь,

КВ-связь земной (поверхностной) волной,

КВ-связь ионосферной (пространственной) волной,

УКВ-связь,

Тропосферная связь.

Канал связи может быть:

симплексный - то есть допускающей передачу данных только в одном направлении(радиотрансляция, телевидение);

полудуплексный - поочерёдно ;

дуплексным - то есть допускающей передачу данных в обоих направлениях одновременно(телефон).

Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны.

- частотное разделение каналов (ЧРК, FDM) - разделение каналов по частоте, каждому каналу выделяется определённый диапазон частот;

- временное разделение каналов (ВРК, TDM) - разделение каналов во времени, каждому каналу выделяется квант времени;

- кодовое разделение каналов (КРК, CDMA) - разделение каналов по кодам, каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала;

- спектральное разделение каналов (СРК, WDM) - разделение каналов по длине волны.

Возможно комбинировать методы: ЧРК+ВРК.

Радиорелейная связь - радиосвязь по линии (радиорелейная линия, РРЛ), образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций. Наземная радиорелейная связь осуществляется обычно на деци - и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).

РРЛ стали важной составной частью сетей электросвязи – ведомственных, корпоративных, региональных, национальных и даже международных, поскольку имеют ряд достоинств:

Возможность быстрой установки оборудования при небольших капитальных затратах;

Экономически выгодная, а иногда и единственная, возможность организации многоканальной связи на участках местности со сложным рельефом;

Возможность применения для аварийного восстановления связи в случае бедствий, при спасательных операциях;

Эффективность развертывания разветвленных цифровых сетей в больших городах и индустриальных зонах, где прокладка новых кабелей слишком дорога или невозможна;

Высокое качество передачи информации по РРЛ, практически не уступающие ВОЛС и другим кабельным линиям.



РРЛ связи позволяют передавать телевизионные программы и одновременно сотни и тысячи телефонных сообщений. Для таких потоков информации требуются полосы частот до нескольких десятков, а иногда и сотен мегагерц и соответственно несущие не менее нескольких гигагерц. Радиосигналы на этих частотах эффективно передаются лишь в пределах прямой видимости . Поэтому для связи на большие расстояния в земных условиях приходится использовать ретрансляцию радиосигналов. На радиорелейных линиях прямой видимости в основном применяют активную ретрансляцию , в процессе которой сигналы усиливаются.

Протяженность пролетов R между соседними станциями зависит от профиля рельефа местности и высот установки антенн. Обычно ее выбирают близкой к расстоянию прямой видимости R 0 , км. Для гладкой сферической поверхности Земли и без учета атмосферной рефракции:

где h 1 и h 2 – высоты подвеса передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности R 0 = 40…70 км, а h 1 и h 2 составляют 50…80 м.

В зависимости от используемого механизма распространения радиоволн различают:

- радиорелейную линию прямой видимости РРЛ (за счет земной радиоволны);

- тропосферную радиорелейную линию ТРЛ (за счет тропосферной радиоволны).

Земной называют радиоволну, распространяющуюся вблизи земной поверхности. Земные радиоволны короче 100 см хорошо распространяются только в пределах прямой видимости. Поэтому радиорелейную линию связи на большие расстояния строят в виде цепочки приемо-передающих радиорелейных станций (РРС ), в которой соседние РРС размещают на расстоянии, обеспечивающем радиосвязь прямой видимости (радиорелейной линией прямой видимости (РРЛ )).

Тропосферная радиоволна распространяется между точками земной поверхности по траектории, лежащей целиком в тропосфере. (Тропосфера (др.-греч. Τροπή - «поворот», «изменение» и σφαῖρα - «шар») - нижний слой атмосферы, высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе - 16-18 км. В тропосфере сосредоточено более 80% всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются и атмосферные фронты, развиваются циклоны и антициклоны, а также другие процессы, определяющие погоду и климат. При подъёме через каждые 100 м температура в тропосфере понижается в среднем на 0,65° и достигает 220 К (-53° C) в верхней части).

Энергия тропосферной радиоволны короче 100 см рассеивается на неоднородностях тропосферы. При этом часть передаваемой энергии попадает на приемную антенну РРС, расположенной за пределами прямой видимости на расстоянии 250...350 км . Цепочка таких РРС образует тропосферную радиорелейную линию (ТРЛ).

По назначению радиорелейные системы связи делятся на три категории:

- местные линии связи от 0,39ГГц до 40,5ГГц,

- внутризоновые линии от 1,85ГГц до 15,35ГГц,

- магистральные линии от 3,4ГГц до 11,7ГГц.

(По диапазону рабочих частот РРЛ подразделяют на линии дециметрового диапазона и сантиметрового диапазонов. В этих диапазонах, решением ГКРЧ от апреля 1996 года для новых РРЛ определены диапазоны 8 (7.9-8.4); 11 (10.7-11.7); 13 (12.75-13.25); 15 (14.4-15.35); 18 (17.7-19.7); 23 (21.2-23.6); 38 (36.0-40.50) ГГц. Однако в России еще длительное время будут использоваться ранее построенные линии в диапазонах 1.5-2.1; 3.4-3.9; 5.6-6.4 ГГц. Новые РРС используются также в диапазоне 2.3-2.5 ГГц. Прорабатывается возможность использования диапазонов 2.5-2.7 и 7.25-7.55 ГГц.

Данное деление связано с влиянием среды распространения на обеспечение надёжности радиорелейной связи. До частоты 12ГГц атмосферные явления оказывают слабое влияние на качество радиосвязи, на частотах выше 15ГГц это влияние становится заметным, а выше 40ГГц определяющим (потери в атомах кислорода и в молекулах воды).

Практически полная непрозрачность атмосферы для радиоволн наблюдается на частоте 118.74 ГГц (резонансное поглощение в атомах кислорода), а на частотах больше 60 ГГц погонное затухание превышает 15 дБ/км. Ослабление в водяных парах атмосферы зависит от их концентрации и весьма велико во влажном теплом климате.

Отрицательно на радиосвязь влияют гидрометеоры , к которым относятся капли дождя, снег, град, туман. Влияние гидрометеоров заметно уже при частотах больше 6 ГГц, а в неблагоприятных экологических условиях (при наличии в атмосферных осадках металлизированной пыли, смога, кислот или щелочей) и на значительно более низких частотах.

Чем ниже диапазон, тем большую дальность связи можно обеспечить при тех же энергетических характеристиках оборудования, но переход на высокие диапазоны позволяет повысить пропускную способность систем.

Антенны соседних станций располагают в пределах прямой видимости (за исключением тропосферных станций). Для увеличения длины интервала между станциями антенны устанавливают как можно выше - на мачтах (башнях) высотой 10-100 м (радиус видимости - 40-50 км ) и на высоких зданиях. Станции могут быть как стационарными, так и подвижными (на автомобилях).

В зависимости от способа , принятого для формирования сигнала, различают:

Аналоговые РРЛ(ТРЛ);

Цифровые РРЛ(ТРЛ).

АналоговыеРРЛ связи в зависимости от метода модуляции несущей:

РРЛ с частотным разделением каналов (ЧРК) и частотной модуляцией (ЧМ) гармонической несущей,

РРЛ с временным разделением каналов (ВРК) и аналоговой модуляцией импульсов, которые затем модулируют несущую частоту.

В зависимости от числа организуемых каналов (N):

Малоканальные - N =24;

Со средней пропускной способностью - N=60...300;

С большой пропускной способностью - N=600...1920.

Цифровые радиорелейные линии (ЦРРЛ), импульсы (отсчеты сообщения) квантуются по уровням и кодируются.

Цифровые РРЛ классифицируют по способу модуляции несущей:

В зависимости от скорости передачи двоичных символов В:

С малой - В <10 Мбит/с,

Средней - В=10…100 Мбит/с,

Высокой- В>100 Мбит/с пропускной способностью.

Высокоскоростные РРС создаются практически только на основе SDH-технологии и имеют скорость передачи в одном стволе 155.52 Мбит/с (STM-1 ) и 622.08 Мбит/с в одном стволе (STM-4 ). Применяются для построения магистральных и зоновых линий, в качестве радиовставок в ВОЛС на участках со сложным рельефом, для сопряжения ВОЛС (STM-4 или STM-16) с сопутствующими локальными цифровыми сетями, а также для резервирования ВОЛС.

(Синхронная Цифровая Иерархия (англ. SDH - Synchronous Digital Hierarchy) - это технология транспортных телекоммуникационных сетей. Стандарты СЦИ определяют характеристики цифровых сигналов, включая структуру фреймов (циклов), метод мультиплексирования, иерархию цифровых скоростей и кодовые шаблоны интерфейсов.

Стандартизация интерфейсов определяет возможность соединения различного оборудования от разных производителей. Система SDH обеспечивает стандартные уровни информационных структур, то есть набор стандартных скоростей. Базовый уровень скорости - STM-1 155,52 Mбит/с. Цифровые скорости более высоких уровней определяются умножением скорости потока STM-1, соответственно, на 4, 16, 64 и т. д.: 622 Мбит/с (STM-4),2,5 Гбит/с (STM-16), 10 Гбит/с (STM-64) и 40 Гбит/с (STM-256)).

Принципиальным отличием радиорелейной станции от иных радиостанций является дуплексный режим работы, то есть приём и передача происходят одновременно (на разных несущих частотах).

Протяженность наземной линии радиорелейной связи - до 10000 км, ёмкость - до нескольких тысяч каналов тональной частоты в аналоговых линиях связи, и до 622 мегабит в цифровых линиях связи. В общем случае, протяжённость и ёмкость (скорость передачи данных) находятся в обратно пропорциональной зависимости друг от друга: как правило, чем больше расстояние, тем ниже скорость.

В Российской Федерации для вновь вводимых магистральных радиорелейных линий связи определены скорости передачи, равные 155 Мбит/с (поток STM-1 синхронной цифровой иерархии, SDH) или 140 Мбит/с (поток Е4 плезиохронной цифровой иерархии, PDH, передаваемый в составе сигнала STM-1).

В СССР начало развитию радиорелейной промышленности было положено в середине 50-х годов . Причина - дешевизна радиорелейной связи по сравнению с кабельными линиями, особенно в условиях огромных пространств с неразвитой инфраструктурой и сложной геологической структурой местности. Первая магистральная радиорелейная система Р-600 создана в 1958 году. В 1970 году появился комплекс унифицированных радиорелейных систем «КУРС» . Все это позволило в 60-70-е годы развить сеть связи страны, обеспечить качественную телефонию и наладить передачу программ центрального телевидения. К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяжённость которой составляла около 10 тыс. км , емкостью каждого ствола равной 14400 каналов тональной частоты. Суммарная протяженность РРЛ в СССР превысила к середине 70-х годов 100 тыс. км .

Радиорелейные линии (РРЛ) представляют собой цепочку приемо-передающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

В зависимости от используемого вида распространения радиоволн РРЛ можно разделить на две группы: прямой видимости и тропосферные .

РРЛ прямой видимости являются одним из основных назем-ных средств передачи сигналов телефонной связи , программ звукового и ТВ вещания, цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и ТВ составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГРц.

Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи. Расстояние между соседними станциями (протяженность пролета) R зависит от рельефа местности и высоты подъема антенн. Обычно его выбирают близким или равным расстоянию прямой видимости R o . Для сферической поверхности Земли с учетом атмосферной рефракции

где h 1 и h 2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности 40 - 70 км при высоте антенных мачт 60-100м.

Рис. 11.1. Условное изображение РРЛ.

Комплекс приемопередающей аппаратуры РРЛ для передачи информации на одной несущей частоте (или на двух несущих частотах при организации дуплексных связей) образует широкополосный канал, называемый стволом (радиостволом). Оборудование, предназначенное для передачи телефонных сообщений и включающее в себя кроме радиоствола модемы и аппаратуру объединения и разъединения каналов, называют телефонным стволом.

Соответствующий комплекс аппаратуры для передачи полных ТВ сигналов (вместе с сигналами звукового сопровождения, а часто и звукового вещания) называют ТВ стволом. Большинство современных РРЛ являются многоствольными. При этом, кроме рабочих стволов, могут быть один или два резервных ствола, а иногда и отдельный ствол служебной связи. С увеличением числа стволов возрастает соответственно и объем оборудования (число передатчиков и приемников) на станциях РРЛ.

Часть РРЛ (один из возможных вариантов) условно изображена на рис. 11.1, где непосредственно отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС).

На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных ТВ аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы, передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.


С помощью УРС разветвляются и объединяются потоки информации, передаваемые по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, ТВ и других сигналов, посредством которых расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

Рис. 11.2. Структурная схема одноствольного ретранслятора РРЛ.

1 , 10 - антенны; 2,6 - фидерные тракты; 3,7 - приемо-передатчики; 4,9 - приемники;
5,8 - передатчики.

На ОРС или УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300-500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной УРС (ОРС), а другая часть ПРС обслуживается другой УРС (ОРС).

ПРС выполняют функции активных ретрансляторов без выделения передаваемых сигналов электросвязи и введения новых и, как правило, работают без постоянного обслуживающего персонала. Структурная схема ретранслятора ПРС приведена на рис. 11.2. При активной ретрансляции сигналов на ПРС используют две антенны, расположенные на одной и той же мачте. В этих условиях трудно предотвратить попадание части мощности усиленного сигнала, излучаемого передающей антенной, на вход приемной антенны. Если не принять специальных мер, то указанная связь выхода и входа усилителя ретранслятора может привести к его само-возбуждению, при котором он перестает выполнять свои функции.



Рис. 11.3. Схемы распределения частот в РРЛ.

Эффективным способом устранения опасности самовозбуждения является разнесение по частоте сигналов на входе и выходе ретранслятора. При этом на ретрансляторе приходится устанавливать приемники и передатчики, работающие на разных частотах. Если на РРЛ предусматривается одновременная связь в прямом и обратном направлениях, то число приемников и передатчиков удваивается, и такой ствол называется дуплексным (см. рис. 11.2). В этом случае каждая антенна на станциях используется как для передачи, так и для приема высокочастотных сигналов на каждом направлении связи.

Одновременная работа нескольких радиосредств на станциях и на РРЛ в целом возможна лишь при устранении взаимовлияния между ними. С этой целью создаются частотные планы, т.е. планы распределения частот передачи, приема и гетеродинов на РРЛ.

Исследования показали, что в предельном случае для двусторонней связи по РРЛ (дуплексный режим) можно использовать лишь две рабочие частоты ƒ 1 и ƒ 2 . Пример РРЛ с таким двухчастотным планом условно изображен на рис. 11.3, а. Чем меньше на линии используется рабочих частот, тем сложнее устранить взаимовлияние сигналов, совпадающих по частоте, но предназначенных разным приемникам. Во избежание подобных ситуаций на РРЛ стараются использовать антенны с узкой диаграммой направленности, с возможно меньшим уровнем боковых и задних лепестков; применяют для разных направлений связи волны с различным типом поляризации; располагают отдельные станции так, чтобы трасса представляла собой некоторую ломаную линию.

Применение указанных мер не вызывает сложностей, если связь осуществляется в диапазоне сантиметровых волн. Реальные антенные устройства, работающие на менее высоких частотах, обладают меньшим направленным действием. Поэтому на РРЛ дециметрового диапазона приходится разносить частоты приема на каждой станции. В этом случае для прямого и обратного направлений связи выбирают различные пары частот ƒ 1 , ƒ 2 и ƒ 3 , ƒ 4 (четырехчастотный план) (см. рис. 11.3, б), и необходимая для системы связи полоса частот возрастет вдвое. Четырехчастотный план не требует указанных выше мер защиты, однако он неэкономичен с точки зрения использования полосы частот. Число радиостволов, которое может быть образовано в выделенном диапазоне частот, при четырехчастотном плане вдвое меньше, чем при двухчастотном.

Для радиорелейной связи в основном используются сантиметровые волны, поэтому двухчастотный план получил наибольшее распространение.

Развитие антенн, как и все развитие радиотехники, прошло большой и сложный путь от первой антенны А. С. Попова в виде длинного провода, подвешенного над землей, до сложных сооружений, какими являются современные радиолокационные и радиорелейные ан­тенны. Над конструированием и исследованием их в на­стоящее время работают целые коллективы ученых и инженеров.

Создание широкополосных систем в радиотехнике» будь то антенны, усилители и т. д., сопряжено всегда со значительными трудностями. Каждый, у кого дома имеется телевизор, знает, что для высококачественного приема, например, третьего телевизионного канала не­обходима другая антенна с другими размерами по срав­нению с антенной для первого канала. И очень трудно создать телевизионные антенны, одинаково эффектив­ные для приема всех телевизионных программ. На сан­тиметровых и дециметровых волнах, однако, эти труд­ности удалось преодолеть. На радиорелейных линиях применяются очень широкополосные антенны, работаю­щие одинаково хорошо в полосе частот, занимаемой несколькими высокочастотными стволами. С другой сто­роны, эти антенны обладают большой направленностью.

Посмотрим, каким путем можно получить острона­правленную антенну, какие трудности приходится для этого преодолевать.

Прежде всего отметим один из основных принципов антенной техники, заключающийся в том, что свойства антенны при излучении радиоволн, т. е. направленность, широкополосность и другие, остаются неизменными при использовании этой же антенны для приема радиоволн. Основываясь на этом принципе, мы в дальнейшем будем говорить только о передающих антеннах, считая, что приемные антенны одинаковы по конструкции и поэтому столь же эффективно работают. На практике в радио­релейных линиях передающие и приемные антенны всегда одинаковы.

Обычная антенна радиовещательной или телевизион­ной станции излучает радиоволны равномерно во все стороны. Это значит, что мощность - передатчика поровну распределяется по всем направлениям и в каком-либо одном направлении распространяется только небольшая часть излученной энергии.

Пусть на приемной стороне мы принимаем сигналы передающей станции. Если передатчик излучает радио­волны через ненаправленную антенну, то на приемной стороне мы примем сигнал определенной величины. Сме­ним теперь антенну передатчика на направленную и «нацелим» направление максимального излучения на приемную антенну. На приемной стороне произойдет резкое увеличение принимаемого сигнала, хотя мощность передатчика осталась неизменной. Получается, что ан­тенна как бы усиливает сигнал.

На радиорелейных линиях применяются острона* правленные антенны, имеющие усиление (по мощности) порядка тысячи и даже десятка тысяч и ширину ра­диолуча около 1-2 градусов. Последнее означает, что антенна почти ничего не излучает во всех на­правлениях, отличающихся от главного более чем на 0,5-1 градус.

Таким образом, благодаря «усилению» антенн мощ­ность передатчиков может быть снижена в несколько тысяч раз по сравнению с мощностью, которая потребо­валась бы, если бы антенны были ненаправленными. С другой стороны, благодаря направленности антенн резко снижаются помехи одной радиорелейной линии

На другую, даже если они близко друг от друга распо­ложены и работают на одних и тех же частотах.

«Усиление» направленной антенны объясняется тем, что она не распределяет излучаемую передатчиком энер­гию одинаково по всем направлениям, а направляет ее в одном направлении, т. е. как бы собирает энергию передатчика со всех направлений в одно. Слово «усиле­ние» взято в кавычки потому, что в антенне не проис­ходит превращения энергии постороннего источника в энергию радиосигнала, как это имеет место в пе­редатчике и приемнике, ^ где энергия источников питания превращается в радиолампах в высокоча - стотную энергию и где только за счет энергии источников питания про­исходит усиление полез­ного сигнала.

Наиболее распростра­ненными на радиорелей­ных линиях являются па­раболические и линзовые антенны.

Рис. 17 поясняет прин­цип работы параболиче­ской антенны. Внешний вид ее дан на рис. 14.

Она имеет облучатель или специальной конструкции, или в виде открытого конца волновода, который направ­ляет излучаемую им энергию на металлический отража­тель параболической формы (чаще всего в виде пара­болоида вращения). Облучатель, излучающий расхо­дящийся пучок радиоволн (лучи АБ и АБ" на рис. 17) г располагается на фокусе параболоида, т. е. в опреде­ленной точке А на его оси вращения. Еслй бы облуча­тель был очень малым или, как говорят, точечным, то отраженные от параболоида лучи были бы параллель­ными и направленными в сторону приемной антенны (на рис. 17 луч БВ параллелен лучу Б"В"), т. е. почти
вся излучаемая передатчиком энергия радиоволн рас­пространялась бы в нужном нам направлении.

Но так как облучатель имеет конечные размеры и находится не строго в фокусе, то отраженные от пара­болоида лучи не совсем параллельны: они несколько расходятся.

Многочисленные исследования остронаправленных антенн, и в частности параболических, показали, что, чем больше диаметр параболической поверхности по сравнению с длиной волны, тем уже излучаемый ею пу­чок радиоволн, тем выше ее направленность.

Параболоиды радиорелейных станций на сантиметро­вых волнах имеют диаметр 3-4 метра и обладают уси­лением по мощности от тысячи до десяти тысяч. На метровых волнах направленность антенн меньше, а уси­ление составляет всего лишь 50-*-500, так как мы не можем увеличивать размеры антенн пропорционально увеличению длины волны при переходе от сантиметро­вых волн к метровым. Иначе нам пришлось бы иметь параболические зеркала размером в десятки метров. Для их установки понадобились бы очень громоздкие и дорогие антенные опоры.

В основе устройства линзовых антенн лежит принцип преломления радиоволн на границе двух сред, т. е. из­менение направления луча при переходе из одной среды в другую.

Если линза для световых волн, т. е. оптическая лин­за, представляет собой стеклянное или какое-либо дру­гое прозрачное для света тело определенной выпуклой или вогнутой формы (очки, объектив фотоаппарата и т. д.), то линза для радиоволн обычно имеет совсем иной вид. Например, она может представлять собой набор параллельных друг другу металлических пласти­нок особой формы (рис. 18), разделенных воздушными промежутками. Форму пластин выбирают так, чтобы падающий на линзу из волновода расходящийся пучок радиоволн, пройдя линзу, стал параллельным. И здесь чем больше размеры выходного отверстия линзы по сравнению с длиной волны, тем выше направленность антенны.

Рупор перед линзой служит для того, чтобы вся высокочастотная энергия, выходящая из волновода, по­пала на линзу.

Иногда на радиорелейных линиях применяют чисто рупорные антенны. Конструктивно они проще и намного легче рупорно-линзовых, однако при тех же размерах отверстия первые имеют несколько меньшее усиление. Кроме того, длину рупора здесь приходится брать в 1,5-

2 раза больше, чем в случае применения линз.

Кроме направленности, к антеннам радиорелейных линий предъявляется требование отсутствия взаимных влияний между приемными и передающими антеннами, находящимися на одной промежуточной станции.

Оказывается, описанные выше антенны излучают не всю энергию в главном направлении. Ничтожная часть

Доходом разрез ошонны Вид бь/яодноео отЗерс/яия

Ее, измеряемая сотыми и тысячными долями процента от полной мощности передатчика, излучается в сторону и даже в обратном направлении, т. е. в направлении приемных антенн этой же станции. В результате пере­датчики радиорелейной станции могут создавать недо­пустимые помехи и искажения основного, принимаемого с соседней станции сигнала. Вот почему передатчики и приемники каждой ретрансляционной станции работают на разных волнах. С другой «стороны, конструкторы ан­тенн разрабатывают новые антенны с повышенной за­щищенностью от бокового излучения и с большей на­правленностью. К таким антеннам относится, например, изображенная на рис. 19 рупорно-параболическая антен­на, принятая у нас в Союзе для магистральных радио­релейных линий.

А/юстинылинзы

На рис. 20 показано устройство другой антенной си­стемы ретрансляционной станции, используемой на «местных» радиолиниях. Благодаря остроумному приме­нению плоских отражателей сооружение этой станции обходится значительно дешевле, чем станций, изобра­женных на рис. 12 и рис. 16.

Принцип работы такой антенной системы заключа­ется в следующем: антенны с большим усилением уста­навливаются очень близко от приемо-передатчика на кры­ше одноэтажного здания ретрансляционной станции, чем

Достигается малая длина волноводов или кабелей, а еле* довательно, и малая величина потерь в них. Излучение передающей антенны направлено вертикально вверх. На легких стальных мачтах на требуемой высоте укреп­ляются перфорированные (т. е. с отверстиями для умень­шения ветровой нагрузки) металлические листы, на­клоненные под углом 45 градусов к горизонту. Верти­кально направленный радиолуч, как свет от зеркала, от­ражается от листов в сторону следующей ретрансля­ционной станции. Подобным же образом устроена и приемная антенна.

Заметим также, что довольно часто на промежуточ­ных станциях радиорелейных линий вместо четырех антенн применяются только две. Передача и прием од­ного направления производится на одну антенну. Это
возможно только на сравнительно малоканальных ли­ниях, где число высокочастотных стволов не превышает трех. Чтобы излучаемый сигнал не влиял на принимае­мый, их полосы частот отстоят друг от друга примерно

На 100 мегагерц (вспомните систему уплотнения каналов на частоте). В этом случае при помощи фильтров пере­даваемую и принимаемую полосы частот можно доста­точно хорошо разделить.

ВВЕДЕНИЕ

Одним из основных видов средств связи являются радиорелейные линии прямой видимости, которые используются для передачи сигналов многоканальных телефонных сообщений, радиовещания и телевидения, телеграфных и фототелеграфных сигналов, передача газетных полос. Все виды сообщений передаются по РРЛ на большие расстояния с высоким качеством и большой надежностью.

В условиях большой дальности передачи информации с высокой скоростью применения, РРЛ является одним из важнейших направлений развития систем связи

Сейчас в России производят радиорелейное оборудование, имеющее высокую надежность, малые габариты, низкое потребление энергии и невысокую стоимостью. В них использована современная элементная база, учтены потребительские требования по эксплуатации и обслуживанию, они обеспечиваются современными системами телеуправления . При этом отечественные РРС лучше приспособлены к эксплуатации в наших климатических условиях: от субтропиков до Крайнего Севера.

Объектом рассмотрения в работе является РРС.

Предмет исследования - принципы и основные технологии современных РРС.

Целью работы является - анализ современных систем РРЛ связи, подходов к увеличению скорости передачи информации.

Решаемые задачи:

Рассмотреть:

· особенности и общие принципы построения радиорелейных линий связи прямой видимости;

· классификацию радиорелейных линий;

· виды модуляции, применяемые в радиорелейных системах передачи;

· аппаратуру радиорелейных линий прямой видимости;

· приемопередающую аппаратуру радиосвязи;

· тропосферные радиорелейные линии;

Привести методы расчета:

· профиля канала связи;

· вычисления затухания в радиочастотном канале;

· дублирование антенн, частот и путей распространения радиоволн;

Работа состоит из введения, двух глав, заключения и списка литературы.

ОБЩАЯ ХАРАКТЕРИСТИКА РАДИОРЕЛЕЙНОЙ СВЯЗИ

Общие характеристики систем радиорелейной связи

А. Общие сведения

Радиорелейная связь - это вид дуплексной радиосвязи на ультракоротких волнах с многократным переприемом сигналов. Термин «relay» означает восстановление (смену бегунов в эстафете, смену лошадей и т.д.). Применительно к радиорелейной связи этот термин означает восстановление сигналов на каждой промежуточной станции, замену слабого сигнала сильным.

Радиорелейные станции делятся на два типа - радиорелейные станции прямой видимости и радиорелейные станции тропосферного рассеяния.

В первом случае трасса выбирается так, чтобы между антеннами соседних станций имелась прямая видимость, и связь осуществляется за счет радиоволн, распространяющихся вдоль поверхности земли.

Во втором случае радиоволны достигают точки приема за счет рассеяния на неоднородностях тропосферы.

Радиорелейная связь обеспечивает :

· многоканальность, высокую пропускную способность;

· большую дальность связи;

· дуплексность каналов и трактов;

· строгую нормированность качественных показателей и электрических характеристик каналов и трактов, низкий уровень в них шумов и помех.

Характерными особенностями радиорелейной связи является :

· применение метода радиосвязи на УКВ земной волной, дальность которой резко ограничена;

· использование принципа ретрансляции сигналов для обеспечения требуемой дальности связи;

· применение, как правило, остронаправленных антенн.

Радиорелейные средства связи применяются для развертывания (cтроительства) полевых и стационарных многоканальных линий между узлами связи. Они используются, как правило, самостоятельно для строительства радиорелейных линий, а также для наращивания линий радио - и проводной связи, для дистанционного управления радиостанциями средней и большой мощности.

Радиорелейные средства позволяют осуществлять дуплексную, многоканальную телефонную, телеграфную, факсимильную и видеотелефонную связи при высоком их качестве и малой зависимости от времени года и суток, от атмосферных и местных электрических помех.

Каналы связи, образованные радиорелейными средствами связи используются, как правило, в комплексе с аппаратурой автоматического засекречивания .

Связь между двумя удаленными пунктами образуется путем использования ряда приемо-передающих радиорелейных станций, отстоящих друг от друга на расстоянии прямой геометрической видимости между их антеннами.

Б. Краткое историческое обозрение

Развитие многоканальной радиорелейной связи относится к началу 40-х годов, когда появляются первые 12-канальные радиолинии, использующие тот же, что и для кабельных линий, способ частотного разделения каналов и ту же каналообразующую аппаратуру, а также частотную модуляцию сигнала.

В начале 50-х годов появилось сразу несколько типов отечественной аппаратуры РРЛ («Стрела», Р-60/120, Р-600). В дальнейшем на сети связи страны появились радиорелейные системы прямой видимости РРСП «Рассвет», «Восход», КУРС (комплекс унифицированных радиорелейных систем), «Электроника-связь» и др. Общая протяженность РРЛ, эксплуатируемых в народном хозяйстве СССР, составляет более 100 тысяч км .

Освоение природных богатств Дальнего Востока и Сибири потребовало резкого увеличения протяженности ретрансляционных участков РРЛ для обеспечения связью труднодоступных и отдаленных районов нашей страны. Для создания линий связи, удовлетворяющих этим требованиям, был использован открытый в начале 50-х годов эффект дальнего тропосферного распространения ДТР дециметровых и сантиметровых радиоволн. Используя ДТР, удалось создать новый тип тропосферных радиорелейных систем передачи ТРСП с расстояниями между соседними станциями 150 ... 300, а в отдельных случаях и 600 ... 800 км. К 1965 г. в мире эксплуатировалось уже более 100 тысяч км. Тропосферных линий. В Советском Союзе было создано несколько типов ТРСП «Горизонт-М», ТР-120/ДТР-12 и др.

Развитие космической техники, пионерами создания которой являлись такие советские ученые, как академики С. П. Королев и М. В. Келдыш, позволило создать спутниковые системы передачи ССП. В 1965 г. вступила в строй первая советская спутниковая система, использующая ИСЗ «Молния-1» и предназначенная для передачи сигналов многоканальной телефонии и телевидения. В последующие годы были созданы ССП, использующие ИСЗ «Молния-2», «Молния-3», «Экран», «Радуга», «Горизонт» и др. .

Спутниковые системы передачи позволяют (совместно с РРСП) обеспечить более 90% населения нашей страны одной телевизионной программой и около 75% двумя и более.

Построение системы передачи зависит от многих факторов, таких как вид сообщения, критерии качества передачи сигнала, стоимости и т. д. Обычно при проектировании системы передачи информации предполагается заданным вид сообщения, а также корреспондирующие пункты. Уже на первом этапе проектирования должен быть сделан выбор наиболее подходящей системы, удовлетворяющей требованиям к пропускной способности, качеству передачи и дальности связи и учитывающей соображения социально-экономического характера.

Основным критерием выбора системы передачи является экономическая эффективность, определяемая капитальными затратами и эксплуатационными расходами. При окончательном выборе учитывают и такие показатели, как надежность передачи информации по каналам, продолжительность действия и скорость внедрения системы, повышение производительности труда, расход электроэнергии (особенно при отсутствии централизованного энергоснабжения) и т. д.

Создание систем, предназначенных для связи ЭВМ друг с другом, породило новые, более жесткие требования к качеству передачи и увеличило без того быстро растущий объем передаваемой информации. Требования уменьшить потери достоверности до 10 ... 10 и увеличить скорость передачи информации до сотен мегабит в секунду уже сегодня не является чрезмерным.

В. Основные задачи при разработке РРС

Передача в одном стволе радиорелейной или спутниковой линии связи тысяч, а в ближайшем будущем десятков тысяч, высококачественных ТЧ сигналов потребовала уменьшить все возможные виды искажений до фантастически малых значений. Например, коэффициент нелинейных искажений в модемах и групповых трактах таких линий исчисляется тысячными долями процента, а неравномерность группового времени запаздывания в полосе 30 ... 40 МГц - единицами и даже долями наносекунды. Такое повышение требований может быть удовлетворено только совместным совершенствованием технических средств передачи информации и теоретических исследований.

К задачам, требующим теоретических исследований, относятся :

· экономически и технически целесообразное распределение трудностей, возникающих при выполнении столь высоких требований между оконечным канальным оборудованием (сложными кодирующими устройствами) и оборудованием тракта передачи (приемопередающими антеннами, аппаратурой и т. д.);

· нахождение таких методов передачи и кодирования, которые в условиях воздействия аддитивных и мультипликативных помех приближали бы скорость передачи информации и ее точность к соотношениям, следующим из известной теоремы Шеннона (при сохранении разумной сложности оборудования).

Совершенствование технических средств передачи информации идет в основном двумя путями.

Во-первых, это исследования и разработка новых каналов передачи информации, основанных на новых физических принципах: использование эффекта дальнего тропосферного распространения, освоение новых диапазонов волн, включая оптический, разработка и волоконно-оптических световодов, разработка и внедрение спутников Земли - носителей ретрансляционного оборудования.

Во-вторых, совершенствование аппаратуры, обеспечивающей передачу и обработку информации: использование новых изделий электронной промышленности - интегральных схем, транзисторов, способных функционировать на все более высоких частотах, в частности, использующих новые физические процессы; создание на базе микропроцессоров оконечного оборудования для приема и обработки дискретной информации, которое путем динамического программирования ЭВМ может обеспечить, например, изменение скорости или даже способа передачи в соответствии с изменением условий в канале связи .

На современном этапе развития сеть связи нельзя рассматривать только как совокупность отдельных устройств (оконечного оборудования, модемов, радиоканала). Нужен новый, более общий подход, позволяющий синтезировать наиболее экономичные и надежные сети с учетом реальных возможностей усложнения этих устройств. Следует ожидать усложнения оконечного оборудования, позволяющего выполнять операции кодирования и автоматического управления передачи информации. При создании интегрально-цифровой сети связи следует ожидать еще большего изменения соотношения их стоимости. В ближайшее десятилетие ожидается постепенный переход к передаче информации в цифровом виде, однако по крайней мере 10 ... 15 лет аналоговые системы останутся основными при передаче сигналов телевидения и телефонии .

Радиорелейная линия (РРЛ) состоит из оконечных и промежуточных радиорелейных станций (РРС), размещенными на местности с некоторыми интервалами, протяженность которых определяется условиями распространения УКВ вдоль земной поверхности и обычно не превышает 50 км. Для улучшения условий прохождения УКВ на интервалах и увеличения их длины РРС, как правило, развертывают на вершинах и скатах высот местности так, чтобы на интервалах между антеннами обеспечивалась «прямая видимость», а точнее «радиовидимость», под которой понимается отсутствие экранирования рельефом местности или массивами местных предметов (лес, строения) траекторий радиоволн, распространяющихся между антеннами РРС данного интервала в условиях нормальной рефракции радиоволн.

Для увеличения протяженности интервалов на равнинной и малопересеченной местности, а также для обеспечения возможности организации радиорелейной связи в условиях лесистой местности применяют сравнительно высокие (до 20-30 м) антенные опоры (мачты). В условиях равнинной местности предельная дальность прямой видимости определяется приближенной формулой :

Rkm = 3.57(+); (1)

где h1 и h2 - высоты антенных опор.

Нормальная рефракция радиоволн искривляет их траекторию в сторону поверхности земли (выпуклостью вверх), благодаря чему радиовидимость возрастает. Предельная дальность радиовидимость при нормальной рефракции радиоволн определяется выражением :

Rkm = 4,12(+); (2)

При высоте антенных опор до 20-30 м дальность связи составляет 35-40 км.

Необходимость применения для радиорелейной связи УКВ обусловлена рядом причин и прежде всего широкополостностью радиосигналов РРС. Эта причина, а также дуплексность связи, удваивающая требуемый расход полосы частот, приводят к необходимости использовать диапазоны частот, обладающие большой частотной емкостью, к каковым относится диапазон УКВ.

Широкополосность радиосигналов РРС в свою очередь обусловленна двумя причинами: применяемыми методами модуляции и требованием многоканальности, т.е. большой пропускной способностью РРС. Дело в том, что для радиорелейной связи пригодны не всякие методы модуляции, а только частотная модуляция (ЧМ) и импульсные методы модуляции (ИМ), из которых наиболее часто используется фазоимпульсная модуляция (ФИМ), реже кодо-импульсная модуляция (КИМ) и дельта-модуляция .

Пригодность ЧМ и ИМ для радиорелейной связи объясняется тем, что при этих видах модуляции уровень полезного сигнала на выходе радиоприемных устройств, а следовательно, и в каналах, не зависит от уровня радиосигнала на входе соответствующего радиоприемного устройства. Благодаря этому в условиях замирания радиосигналов на интервалах РРЛ остаточное затухание каналов и трактов РРЛ сохраняется постоянным, т.е. выполняется важное требование, предъявляемое к любым каналам дальней связи и, в частности, к каналам РРЛ. При таких видах модуляции, как, например, амплитудная (АМ) и однополосная (ОПМ), эти требования выполняться не будут, причем вследствие значительной глубины и «быстроты» замираний радиосигналов на интервале РРЛ необходимую стабильность остаточного затухания обеспечивать оказывается затруднительным, даже при использовании сложных систем АРУ в радиоприемных устройствах .

Однако, как известно ЧМ и ИМ характеризуются большой широкополосностью радиосигналов, требующей соответственно большего расхода полосы частот.

Фактор многоканальности (высокой пропускной способности) РРЛ в свою очередь так же требует соответствующего увеличения расхода полосы частот, занимаемой радиосигналами РРС при ЧМ и ИМ. Взятые в совокупности эти две причины приводит к тому, что радиосигналы РРС нередко охватывают полосы частот в сотни и тысячи килогерц, а иногда и в единицы и десятки мегагерц.

Второй важной причиной наряду с широкополосностью сигналов обуславливающей необходимость применения для радиорелейной связи УКВ, является почти полное отсутствие в этих диапазонах атмосферных и промышленных помех от источников радиоизлучения, находящихся за горизонтом. Низкий уровень внешних помех наряду с высокой помехоустойчивостью ЧМ и ИМ позволяет получить требуемый нижний уровень шумов в каналах и трактах РРЛ, т.е. обеспечить их высокую шумовую защищенность .

В настоящее время системы радиорелейной и тропосферной связи продолжают совершенствоваться в различных направлениях, увеличиваются пропускная способность и помехоустойчивость, разрабатываются новые системы связи, радиорелейные линии в миллиметровом диапазоне волн и волноводные линии связи, обладающей огромной пропускной способностью. Наряду с этим происходит переход аналоговой формы сообщений к передаче сообщений в дискретной (цифровой) форме, что дает возможность не только увеличить помехоустойчивость систем связи, но и удешевить производство и эксплуатацию аппаратуры. Последнее объясняется тем, что дискретные элементы радиоэлектроники, используемые в многоканальных дискретных системах связи, могут изготовляться с применением методов автоматизации, позволяющих стандартизировать все конструктивные элементы аппаратуры. Именно в этом направлении сконцентрированы усилия ученных нашей страны.

Г. Достоинства и недостатки радиорелейной связи

Радиорелейная связи сочетает в себе достоинства как радиосвязи, так и проводной многоканальной связи и занимает промежуточное положение: многоканальные сигналы передаются и принимаются средствами радиосвязи, но формируются, особенно при частотном уплотнении, средствами проводной связи. При этом радиорелейные линии обеспечивают такое же качество связи и достоверность передачи информации, как и линии проводной дальней связи.

Радиорелейная связь получила широкое распространение во всех областях народного хозяйства, а также в вооруженных силах для управления войсками .

Радиорелейные линии широко используются для коммерческой связи и для обмена программ вещания и телевидения между различными странами всех континентов.

Достоинство радиорелейной связи :

· возможность организации многоканальной связи и передачи любых сигналов, как узкополосных, так и широкополосных;

· возможность обеспечения двухсторонней связи (дуплексной) связи между потребителями каналов (абонентами);

· возможность создания 2-х проводных и 4-х проводных выходов каналов связи;

· практическое отсутствие атмосферных и промышленных помех;

· узконаправленность излучения антенных устройств;

· сокращение времени организации связи в сравнении с проводной связью.

Недостатки радиорелейной связи:

· необходимость обеспечения прямой геометрической видимости между антеннами соседних станций;

· необходимость использования высокоподнятых антенн;

· использование промежуточных станций для организации связи на большие расстояния, что является причиной снижения надежности и качества связи;

· громозкость аппаратуры;

сложность в строительстве радиорелейных линий в труднодоступной местности.

Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.

Радиорелейная связь относится к беспроводным каналам связи, но их не нужно путать с известным WI —FI . Отличия следующие:

  • В РРЛ создаются резервные каналы и применяется агрегирование. Теоретически, понятие дальности связи к радиорелейным станциям не применяется, так как расстояние ретрансляции зависит от количества вышек;
  • Высокая пропускная способность;
  • Работа в полном канальном дуплексе;
  • Использование собственных (локальных) диапазонов и высокоэффективных модуляций.

Применение радиорелейных линий связи

Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.

Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI —FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.

Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.

В практике развертывания РРЛ сегодня используются два типа технологии. Первый – PDH – плезиохронная цифровая иерархия. При такой организации передачи сигнала обеспечивается скорость в режимах 32 каналов или мультиплексирования на скорости от 2 до 139 Мбит в секунду. Считается устаревшей технологией радиорелейной связи. На смену предыдущему поколению пришел стандарт SDH . Иерархия цифровой синхронизации обеспечивает более устойчивые каналы связи посредством транспортных модулей STM . Скорость потоков в этом диапазоне варьируется от 155 Мбит в секунду до 160 Гбит. По утверждениям разработчиков стандарта, скорость передачи данных совместимой с PDH технологии может быть и выше.

В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.

Принцип построения, используемое оборудование, применение

Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.

В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.

Для передачи информации на одной частоте или дуплексе используется комплекс аппаратуры. Это радиоствол (канал с широкой пропускной способностью), телефонный ствол и ТВ ствол, предназначенные для передачи сигналов соответствующего типа. Топология построения комплекса оборудования представлена трехуровневой системой:

Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.

Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.



Рекомендуем почитать

Наверх