Простой робот с ультразвуковым дальномером. Робот избегающий препятствия на ATmega32. Объединение и подключение ИК-датчиков

Viber OUT 24.04.2019
Viber OUT
26.01.2011, 09:18
Источник:

Обычно, в статьях, я стараюсь излагать материал в порядке его разработки, но думаю, что это не тот случай. Поэтому, пропустим этапы проектирования принципиальной электрической схемы, разводки печатной платы и всего прочего. На рисунке 1 смотрим какое «безобразие» у меня получилось.

С первого взгляда кажется просто нагромождением железа, электроники и проводов. Наверное, это потому, что в ход пошли куски разнородных материалов. Давайте разбираться.

Теперь все по порядку. На микроконтроллер Attiny2313 с двух инфракрасных датчиков поступает сигнал о препятствии (логическая единица или нуль). Затем, согласно, прошивки микроконтроллер управляет микросхемой драйвер двигателя L293D (ток управления до 1 Ампера). На рисунке 3 представлена фотография перевернутого робота.

Основой конструкции самодельного робота является согнутая в трапецию металлическая полоска. Угол изгиба порядка 120°. Принципиально важно, чтобы с обеих сторон получился одинаковый изгиб, иначе робот будет двигаться не прямолинейно. Хотя, с другой стороны, что плохо сделал механик или электроник, иногда может загладить программист, скажем, с помощью ШИМ добиться прямолинейного движения робота

Из курса школьной геометрии все мы знаем, что плоскость образуется или тремя точками или прямой и точкой в пространстве. Третей точкой является свободно вращающееся роликовое колесо.

Приемники ИК-датчиков, фототранзисторы находятся снизу, дабы снизить засветку и свести к минимуму ложное срабатывание. Сами ИК-датчики крепятся на подвижных шарнирах, что позволяет производить настройку зоны сканирования. Интересная, кстати, реакции была моего кота на ползающего робота в коридоре?. Кот у меня черный. ИК-датчики я настраивал серого цвета обои, поэтому робот поворачивал перед котом почти в самый последний момент, а кот отпрыгивал на шаг назад с громким шипением.

Следующий моддингом для роботы стали ИК-датчики на его пузе, позволяющие роботу следовать по черной линии, нарисованной на белой бумаге маркером. Для реализации потребовалось три датчика и компаратор на микросхеме LM339N, чтобы разгрузить микроконтроллер. Существенным минусом оказалось, необходимая предварительная настройка датчиков подстроечными резисторами в зависимости от освещения в помещении.

P.S. Наградой за потраченное время на создание бессмысленного устройства, пожалуй, будет наглядность работы микроконтроллера и память которая будет пылиться на полке, до тех пор пока ей может быть не заинтересуется чей то ребенок.

На Arduino очень легко делать разные машинки с дистанционным управлением, простыми сенсорами и логикой. Поэтому линейка эта невероятно популярна. Продается множество совместимых с ней сенсоров и плат расширения. Интернет наполнен готовыми программными библиотеками и проектами с открытым исходным кодом на все случаи жизни. Практически все вопросы, которые у тебя возникнут в процессе освоения Arduino, уже кем-то задавались, и ты всегда найдешь ответ.

Давай с чего-нибудь начнем? Главный вопрос - выбор контроллера. Существует множество ревизий Arduino, а также сторонних клонов, построенных на основе этих версий. Вот, пожалуй, два самых интересных для нас класса:

  • Arduino Uno - лучший выбор новичка, самая простая, бюджетная и распространенная плата. В основе - чип ATmega328 с тактовой частотой в 16 МГц, 32 Кб флеш-памяти, 2 Кб ОЗУ и 1 Кб EEPROM. В Uno 14 цифровых входов/выходов, которые могут использоваться для управления сенсорами и сервоприводами и другими устройствами;
  • Arduino Mega / Mega 2560 - плата, которая подойдет в случае, когда ты заранее знаешь, что проект будет сложным. Главное отличие - большее количество входов/выходов (48 в Mega, 54 в Mega 2560). Также тут намного больше памяти: 8 Кб ОЗУ, 4 Кб EEPROM, а флеш-памяти 128 и 256 Кб (в Mega и Mega 2560 соответственно). Между собой платы также отличаются чипом, скоростью USB и некоторыми другими характеристиками.

Разумеется, еще есть Arduino Pro, Arduino LilyPad и многие другие. Но сейчас давай остановимся на первых двух моделях. В нашем случае все довольно просто: Mega нужна для робота с большим количеством ног.

Первый код

Для начала установим Arduino IDE (arduino.cc) - это кросс-платформенная бесплатная среда разработки. Теперь, если мы подключим наш Arduino, мы сможем попробовать написать первый код на самом простом примере: программе мигания светодиодом. На большинстве Arduino-контроллеров он есть и подключен к пину 13. Кстати, в мире Arduino программы принято называть скетчами. Вот текст скетча с комментариями:

// Дадим этому пину имя LED: const int LED = 13; void setup() { // Инициализация цифрового пина // для вывода: pinMode(LED, OUTPUT); } void loop() { // Подать уровень логической единицы // на пин 13 (зажечь светодиод): digitalWrite(LED, HIGH); // Приостановить выполнение скетча // на секунду: delay(1000); // Подать уровень логического нуля // на пин 13 (потушить светодиод): digitalWrite(LED, LOW); // Снова приостановить выполнение // скетча на секунду: delay(1000); }

Обрати внимание на функции setup и loop. Они должны присутствовать в любом Arduino-скетче. Setup вызывается единожды при включении или после перезапуска контроллера. Если хочешь, чтобы код выполнялся только один раз, его следует размещать именно здесь. Чаще всего это всевозможные процедуры инициализации чего-либо. Наш скетч не исключение: цифровые пины Arduino могут работать и как входы, и как выходы. В функции setup мы говорим, что пин 13 будет работать как цифровой выход контроллера.

После того как функция setup завершит свою работу, автоматически запускается замкнутый цикл, внутри которого будет вызываться функция loop. От нас требуется написать, что мы хотим там выполнять. А мы хотим подать на пин 13 уровень логической единицы (5 В), то есть зажечь светодиод, затем подождать одну секунду (1000 в миллисекундах), потом подать уровень логического нуля (0 В) и опять подождать одну секунду. Следующий вызов loop все повторит.

Теперь «заливаем» наш скетч в контроллер. Нет, нам не понадобится программатор. Контроллеры Arduino, кроме наших скетчей, содержат специальную программу - bootloader, которая, в частности, управляет загрузкой кода из компьютера. Так что для заливки скетча нам понадобится только USB-кабель и пункт меню File → Upload (Ctrl + U) в Arduino IDE.

Ключевой вопрос

А сколько, собственно, нам нужно ног? Определимся во множестве конфигураций шагающих роботов. По количеству ног:

  • biped - двуногий (прототип - человек);
  • quadruped - четвероногий (прототип - большинство млекопитающих животных);
  • hexapod - шестиногий (прототип - большинство насекомых);
  • octopod - восьминогий (прототип - пауки, скорпионы, крабы и другие членистоногие).

Кроме количества ног, важна и конфигурация каждой. Главной характеристикой ноги является количество степеней свободы, или dimensions of freedom (DOF). Степень свободы - это способность поворачиваться или изгибаться вокруг одной оси (реже - поступательно двигаться вдоль нее). Очевидно, что если степень свободы одна, то на такой ноге далеко не уйдешь. Ноги с двумя степенями свободы (2DOF) уже позволяют двигаться многоногим роботам, хотя 2DOF дает возможность свободно перемещать кончик ноги только в одной плоскости. А 3DOF-нога перемещает «стопу» в 3D-пространстве (если, конечно, не все три оси параллельны). Есть и 4DOF-ноги, которые просто увеличивают гибкость и диапазон перемещения ноги. У насекомых чаще всего 4DOF-лапы.

Что это значит для нас? В дешевых любительских роботах каждую степень свободы реализует один двигатель, точнее, сервопривод, или серв. Конфигурация ног однозначно определяет, сколько таких сервов нужно. Так, 3DOF-гексапод потребует 18 сервов, а 4DOF-паук - уже 32. Не пугайся количества, маленькие сервоприводы, используемые в любительских радиоуправляемых моделях, очень дешевы. В интернет-магазинах их можно найти по запросу micro servo.

Чтобы программировать сервоприводы, достаточно знать, что в них уже есть контроллер, который делает основную работу. И все, что нужно, - подавать питание и цифровой сигнал, сообщающий контроллеру, в какую позицию мы хотим повернуть вал привода. Об их конструкции легко найти информацию. Протокол у них самый простой из всех цифровых протоколов связи: широтно-импульсная модуляция - ШИМ (PWM на английском). У всех простых сервов есть разъем с тремя контактами: земля, +5 В (вольтаж может отличаться в зависимости от размера и мощности) и сигнальный вход. Arduino-контроллеры могут двумя различными способами генерировать такой сигнал. Первый - аппаратный PWM, который сам чип умеет выдавать на нескольких из своих цифровых I/O-пинов. Второй - программный. Программный позволяет получить одновременно больше различных PWM-сигналов, чем аппаратный. Для него под Arduino предоставляется удобная обертка - библиотека Servo. Она позволяет использовать одновременно 12 сервоприводов на большинстве малогабаритных контроллеров (Uno, Due, Nano) и 48 сервоприводов на Arduino Mega и ему подобных. Сигнальный контакт серва подключается к цифровому выводу Arduino. Земля и питание - очевидно, к земле и питанию, они могут быть общими для всех сервов. В трехпроводных шлейфах сервов черный или коричневый - это земля, посередине обычно красный +5 В и, наконец, белый или желтый - сигнальный. С программной точки зрения управление предельно простое:

Servo myservo; // Сервопривод на 9-м пине Arduino myservo.attach(9); // Повернуть в положение на 90º myservo.write(90);

Большинство сервов умеют вращать вал на 180°, и для них 90° - среднее положение. Для упрощения подключения сервов к плате Arduino существует ряд решений. Самое каноничное - это Sensors Shield. Установив его на Uno и подав на клеммы питание для сервов, можно их разъемы подключать прямо в него.

Батарея

Еще один важный вопрос - питание. Если у тебя продвинутая плата, которая позволяет снабжать всю систему по одной линии питания (и двигатели сервов не дадут помех в работу контроллера), то можно обойтись одним источником. Выбор огромен, лучше всего, конечно, Li-Ion/Li-Po брикеты для радиомоделек. Но им нужны и соответствующие зарядные устройства. Если у тебя контроллер попроще (Uno/Due/Nano), то можно питать его отдельно, например 9-вольтовой «Кроной», а сервоприводы подключить к основной мощной батарее. Так сервоприводам точно хватит питания. В случае литиевых аккумуляторов нужно еще тщательней, чем обычно, следить за напряжением, чтобы не было переразряда (допустимые напряжения стоит уточнить для конкретного типа батареи). Для этого на робота-Слейпнира, о котором дальше пойдет речь, также прикручен маленький цифровой вольтметр.

Робожук своими руками

Набор

  • Контроллер Arduino Uno: 1150 р.
  • Три серводвигателя. Я использовал HXT500, 200 р. за штуку
  • Батарейный отсек для «Кроны» с выключателем: 50 р.
  • Батарейка «Крона»: 145 р.
  • ИК-приемник: 90 р.
  • Стальная проволока диаметром примерно 1,5 мм. Я, к примеру, использовал сломанный венчик для взбивания яиц

Итого: 2035 р.

DmitryDzz: Я хочу предложить тебе сделать небольшого дистанционно управляемого шестиногого робожука на базе контроллера Arduino Uno. Лапки будут иметь одну степень свободы, управление будет происходить с помощью обычного ТВ-пульта.

Надо сказать, что это цены дорогих московских магазинов. В китайских интернет-магазинах все это обойдется раза в два дешевле. Считая доставку. Правда, ждать придется, по моему опыту, от двух недель до трех месяцев.

Более простой способ - взять набор-конструктор, потому что на первых шагах одного контроллера будет мало. Сейчас много магазинов предлагают такие наборы. Например, есть замечательный интернет-магазин «Амперка» . Здесь тебе предложат несколько подобных конструкторов, отличающихся наполненностью и, конечно, ценой. Мне вполне хватило самого простого - «Матрешка X». В него входит контроллер Arduino Uno, USB-кабель для подключения к компьютеру, доска для прототипирования (незаменимая вещь!), набор перемычек, светодиоды, резисторы и прочая мелочь.

В этом же магазине есть раздел «Вики», где ты найдешь даже замечательные короткие видео­уроки, переведенные на русский язык. Обязательно посмотри их. И конечно, есть форум, где тебе наверняка постараются помочь.

Что понадобится из инструментов:

  • паяльник и все, что нужно для пайки. Паять много не придется, и особого мастерства не потребуется;
  • термоклеевой пистолет и стержни к нему;
  • пассатижи для работы с проволокой.

Если все собрали, приступим!

Управление

Перейдем к первому шагу: нам надо научиться взаимодействовать с пультом ДУ и выведать коды нажатий на некоторые его кнопки. Эти коды потом пригодятся для скетча управления роботом.

На этом этапе понадобится еще ИК-приемник и хорошо бы иметь доску для прототипирования. Подавляющее большинство ИК-пультов работают на несущих частотах 36 кГц, 38 кГц или 40 кГц (Panasonic, Sony). Исключение составляют пульты Sharp (56 кГц), Bang & Olufsen (455 кГц) и, может, кто-то еще более экзотический. Поэтому нам вполне подойдет любой ИК-приемник на 36, 38 или 40 кГц. Частота может точно не совпадать с несущей частотой сигнала. В таком случае чувствительность приемника будет снижаться, но на практике я не заметил дискомфорта, используя ИК-приемник TSOP2136 (36 кГц - последние две цифры - частота) и пульт ДУ Sony (40 кГц).

Итак, для большинства пультов подойдут ИК-приемники TSOP21xx, TSOP22xx, TSOP312xx. Две последние цифры могут быть 36, 37, 38 или 40. Перед включением ИК-приемника уточни разводку его контактов - их всего три: +5V (питание), GND (земля), Vs (выход). Соберем схему, как на иллюстрации (разводка для TSOP2136).


Как видишь, к аналоговому входу контроллера A0 мы подключили выход ИК-приемника.

Вот как выглядит код скетча:

#include "IRremote.h" // Аналоговый вход контроллера, // к которому подключен ИК-приемник: const int IR_PIN = A0; // Создаем объект ИК-приемник: IRrecv irrecv(IR_PIN); void setup() { Serial.begin(9600); Serial.println("ready"); // Начинаем прослушивание ИК- // сигналов: irrecv.enableIRIn(); } void loop() { // Описываем структуру results, // в которую будут помещаться // принятые и декодированные // ИК-команды: decode_results results; // Если ИК-команда принята и успешно // декодирована, то выводим // полученный код в последовательный // порт контроллера: if (irrecv.decode(&results)) { Serial.println(results.value); irrecv.resume(); } }

В скетче используется специальная библиотека IRremote.h, декодирующая сигналы самых разных ИК-пультов. Эта библиотека - открытый проект, скачать ее ты можешь со страницыhttps://github.com/shirriff/Arduino-IRremote. А чтобы ее подключить к нашему проекту, надо выполнить три действия:

  • каталог библиотеки скопировать в каталог libraries, который, в свою очередь, находится в инсталляционном каталоге Arduino IDE;
  • перезапустить IDE;
  • добавить в начало нашего скетча строку #include «IRremote.h».

Теперь в скетче будут доступны функции декодирования ИК-сигналов. Но, чтобы увидеть полученные коды, мы еще будем использовать объект Serial. С его помощью по последовательному порту (все тот же USB-кабель) мы будем передавать коды на компьютер. В функции setup мы выполняем инициализацию объекта Serial. «9600» - это 9600 бод - скорость, которая будет использоваться для передачи данных. После инициализации мы можем производить запись в последовательный порт с помощью функции println. Для просмотра результата этого вывода на компьютере в Arduino IDE выбери пункт меню Tools → Serial Monitor (Ctrl + Shift + M). Только убедись, что в нем установлена скорость 9600 бод.

Итак, питание контроллер получает по USB-кабелю, данные передает по нему же. Загружаем скетч, запускаем Serial Monitor и начинаем жать кнопки пульта ДУ. В окне Serial Monitor должны появляться коды. Протоколы пультов отличаются, иногда это может быть один код, иногда несколько. В любом случае ты всегда можешь выделить коды, уникальные для каждой кнопки пульта.

Нам потребуется 13 кнопок пульта. Я использовал следующие:

  • 1 - плавный поворот налево;
  • 2 - движение вперед;
  • 3 - плавный поворот направо;
  • 4 - поворот налево на месте;
  • 5 - стоп;
  • 6 - поворот направо на месте;
  • 7 - движение назад с поворотом направо;
  • 8 - движение назад;
  • 9 - движение назад с поворотом налево;
  • синяя кнопка - очень медленно;
  • желтая - медленно;
  • зеленая - быстро;
  • красная - очень быстро.

Запиши коды этих кнопок, позже они понадобятся для скетча управления роботом.

Алгоритм движения

Скетч управления роботом доступен на странице нашего проекта (bit.ly/1dEwNDC). Не забудь изменить значения констант кодов нажатых кнопок пульта на коды своего пульта (константы IR_COMMAND_XXX_CODES в файле ir_command_codes.h).

Скетч подробно мы разбирать не будем, думаю, достаточно комментариев в коде, но один вопрос все же стоит рассмотреть.

Движения насекомых очень интересны. И хоть всем этим жукам падать до земли совсем недалеко, они почему-то всегда устойчивы: в любой момент времени минимум три ноги (две с одной стороны и одна с другой) стоят на поверхности. И пока эти ноги тянут жука к одному ему ведомой цели, три другие подтягиваются, чтобы повторить это движение. Наша задача - сделать что-то похожее.

У нашего робожука три серводвигателя, расположенные в ряд перпендикулярно движению. У левого и правого серводвигателей ось вала направлена вверх, а у центрального - вперед. Задача, например, левой сервомашинки - качать сразу две ноги: левую переднюю и левую заднюю. Они, кстати, жестко соединены между собой и приклеены к качалке этой сервомашинки. Задача центральной сервы - приподнимать то левый бок жука, то правый. Поэтому к качалке этого двигателя крепятся центральные левая и правая ноги, представляющие собой единую П-образную деталь.

Скетч должен обеспечивать движение робота вперед, назад, плавные повороты в движении и повороты на месте. А еще хотелось бы управлять скоростью жука. Чтобы описать эти движения программно, нам пригодится математика. Посмотри на схему.

Синими кружками обозначены ноги робожука, стоящие на поверхности, а белыми - находящиеся в воздухе. Обрати внимание, что при движении вперед или назад левый и правый серводвигатели должны двигаться абсолютно одинаково. А при поворотах на месте двигатели должны крутиться в разных направлениях (симметрично). Еще интересно, что движение вперед и назад отличается только фазой центрального серводвигателя.

Итак, как это реализовано? Мы помним, что контроллер постоянно вызывает функцию loop. Значит, в эту функцию мы должны поместить код, который определяет текущее положение серводвигателей и устанавливает их в это положение. Каждый серводвигатель должен совершать колебательные движения. Рассчитать положение серводвигателя в момент времени t мы сможем по следующей формуле:

X = A sin(2πt/T),

где X - искомое положение серводвигателя, A - амплитуда колебаний, T - период колебаний.

Так, в зависимости от момента времени t мы получим изменение величины X в интервале от –A до +A. Серводвигатели могут принимать положение в диапазоне от 0 до 180°. Поэтому колебания нам лучше производить вокруг «нулевого» положения в 90°. И если мы хотим обеспечить колебания с периодом 1 с вокруг положения 90° с амплитудой 30°, то формула преобразуется в следующий вид:

X = 90 + 30 sin(2πt/1000),

где t - это время в миллисекундах, прошедшее от начала колебаний. Для управления скоростью движения робожука мы можем изменять период колебаний. Чем он больше, тем ниже скорость.

А теперь еще раз вернемся к нашей схеме, потому что формула, написанная выше, еще не завершена. Как обеспечить то синхронное, то встречное движение левого и правого серводвигателя? Как менять фазу центрального серводвигателя? Мы должны добавить в нашу формулу фазу колебаний. Сдвиг аргумента синуса на величину π для, например, правого двигателя заставит его работать в противофазу левому, то есть так, как нам надо для поворота на месте. Вот как теперь будет выглядеть наша формула:

X = 90 + 30 sin(2πt/1000 + Φ),

где Φ - фаза колебаний, значение от 0 до 2π.

Посмотри на таблицу, чтобы понять, какими должны быть фазы колебаний для серводвигателей применительно к каждому типу движения.

Сборка

Теперь давай соберем робота на доске для прототипирования и зальем скетч управления.

Это очень важный этап перед сборкой. Попробуй отключить USB-кабель и запитай макет от батарейки «Крона». Проверь все фазы движения и убедись, что все работает. После сборки робота что-либо менять (например, заменить неработающий серводвигатель) будет уже сложнее.

Теперь перейдем к самой сборке. Основной несущий элемент - это батарейный отсек. Я советую использовать отсек закрытого типа и обязательно с выключателем.

Закреплять детали жука проще всего термоклеем. Начни с серводвигателей. Удали ненужные ушки креплений и соедини машинки между собой. Затем приклей эту сборку из трех «серв» к крышке батарейного отсека. Не забывай, что батарейный отсек должен свободно открываться для смены батарейки.

Контроллер проще всего приклеить к отсеку, но мне этот вариант не очень нравится, так как придется навсегда отдать Arduino Uno жуку. Поэтому можно усложнить себе жизнь и использовать разъемы Arduino для крепления батарейного отсека. На нижней части отсека приклей штырьковый разъем с шагом между штырьками 2,54 мм. Он должен располагаться так, чтобы входить в гнездо контроллера в районе цифровых выводов 8–11. Они пока все равно нам не понадобятся. Если разъема под рукой не оказалось, подойдет П-образно изогнутая канцелярская скрепка.

Провода, идущие от батарейного отсека, надо соединить с выводами Vin и соседним с ним GND. Не перепутай полярность! Плюс «Кроны» на Vin, минус на GND. Чтобы обеспечить надежный контакт проводов с Arduino-разъемами, можно просто облудить кончик провода потолще, я же как штекер использовал короткий отрезок скрепки. А место пайки закрыл термоусадочной трубкой.

Разъемы со шлейфов сервоприводов следует срезать, провода питания (+5 В - обычно красный и GND - черный или коричневый) надо объединить и вывести к гнездам 5V и соседнему с ним GND на контроллере. Подключать будем чуть позже. Провода управляющего сигнала (обычно желтый) выводим на цифровые выводы контроллера: левый серводвигатель на пин 2, центральный на пин 4, правый на пин 7.

«+» и «–» ИК-приемника можно просто вставить в разъем Arduino (5V и соседний GND). Правда, согнув пополам, удвоив их толщину. К этим же ножкам питания ИК-приемника припаиваем ранее подведенные провода питания серводвигателей. Выход сигнала ИК-приемника до аналогового входа контроллера А0 уже вряд ли дотянется, и тебе придется наращивать его проводом.

Несколько советов по изготовлению ног. Сначала подготовь левую и правую «передне-задние» ноги. Убедись в их симметричности (обрати внимание и на длины, и на углы изгибов). Начинай клеить ноги, только убедившись, что серводвигатели установлены в «нулевое» положение (90°).

Среднюю пару ног лучше устанавливай в последнюю очередь. Советую сначала сделать средние ноги длиннее, а затем после установки подрезать их до нужной длины. В «нулевом» положении все шесть ног должны стоять на поверхности. Качение средних ног с амплитудой 15° не должно мешать поворотам «передне-задних».

Что дальше?

Робожук - это готовая мобильная платформа на базе одного из самых популярных и доступных контроллеров. Проект открытый: https://github.com/beetle-ringo/arduino . Делай в GitHub форк (ответвление) и добавляй свою функциональность. Дай волю фантазии - добавь ИК-светодиод, и робот готов для робобитвы. Подключи дальномеры, тактильные сенсоры, гироскоп… Научи робота обходить препятствия или ходить по линии, попробуй установить на него веб-камеру. Идей может быть миллион, и ты всегда можешь выбирать самую интересную.

Робот-Слейпнир

Набор

  • Контроллер Arduino Uno Dagu Spider Robot: 2530 р.
  • Сервоприводы SG90 9g (16 штук) 1150 р.
  • Аккумулятор LiPo battery pack, 7,4 В, 1800 мА ч 490 р.
  • Радиомодуль 4 Pin Bluetooth RF Transceiver 270 р.
  • Индикатор напряжения (опционален) DC 3,3–30 В Red LED Panel Meter 100 р.
  • Уголок алюминиевый. В ближайшем строймаркете 135 р.
  • Болтики и гайки. На ближайшей барахолке 35 р.

Итого: 4710 р.

*Компоненты покупались в разное время, и многие позиции можно оптимизировать

poconoco: Попробуем собрать нестандартную конфигурацию - восьминогого 2DOF-робота. 2DOF-ноги намного проще программировать, к тому же у меня есть в запасе куча неиспользованных сервоприводов. А главное, можно будет назвать его в честь восьминогого коня бога Одина Слейпниром (всегда мечтал!).

У нашего Слейпнира с каждой стороны будет по четыре ноги с двумя шарнирами. Каждый шарнир - сервопривод, значит, восемь сервоприводов на сторону. Для простоты все восемь шарниров одной стороны коня будут вращаться в одной плоскости. Хотя это вовсе не обязательно. Более того, если ноги с одной стороны пустить немного «шахматкой», чтобы две соседние ноги не могли задеть друг друга, это будет даже лучше, позволит делать шире шаг и скакать галопом.

Аккуратное и функциональное, но далеко не самое дешевое решение - использовать нестандартную плату контроллера, оптимизированную для подключения сервоприводов в большом количестве. Мне подвернулась Dagu Spider Robot Controller - это тот же самый Arduino Mega, но на плате с заранее распаянными 3-пиновыми штырьковыми разъемами, куда сразу, без всяких шилдов, можно подключить те самые 48 сервоприводов. Идеальна для многоногих роботов на Arduino.

Управление

Управление у нас будет происходить по Bluetooth. Для этого есть различные аппаратные решения. Это и шилды, и отдельные платки с UART последовательным интерфейсом (как обычный ком-порт, только с уровнями сигналов 5 В). Мне самой практичной показалась именно маленькая платка с UART-интерфейсом. Подключается к соответствующим контактам UART/Serial порта Arduino. Отметим два нюанса: на Uno/Due/Nano и подобных всего один такой порт, и он же используется для прошивки через USB. Поэтому, возможно, потребуется отключать Bluetooth-модуль на время прошивки. А второй нюанс - не забывай, что RX-контакт модуля подключается к TX-контакту Arduino, а TX - к RX. Такие дела в UART.

Программирование Bluetooth не сложнее сервов, данные можно побайтово вычитывать, чем мы и будем пользоваться:

Char cmd; Serial.begin(9600); if (Serial.available()) cmd = Serial.read();

Если используется Arduino Mega и Bluetooth подключен ко второму порту, то вместо Serial пишется Serial1. Примечательно, что можно и не использовать Bluetooth, а управлять роботом прямо по USB. И в коде выше не изменится ничего! Это просто работа с последовательным портом, а висит ли там BT-передатчик или преобразователь USB Serial - нам неважно.

Другая сторона Bluetooth

Самый удобный способ подключения - это стандартные утилиты Linux. Для работы нам понадобятся утилиты sdptool, rfcomm (входят в состав пакета bluez в репозиториях Ubuntu), а также minicom (пакет так и называется). Инструкции по работе с этими утилитами можно найти в Сети.

Алгоритм движения

Для гексапода самой простой походкой будет такая: ноги делятся на две группы по три ноги, и одна из групп полностью на земле, другая - в воздухе, переставляется вперед. Это далеко не единственная возможная походка. Можно в воздухе держать только две лапы или даже одну, а остальные четыре или пять - на земле. Для октапода походок тоже множество. Мы возьмем самую простую, также с двумя группами по четыре ноги.

Итак, что нам нужно делать для работы с 16 сервоприводами и выбранной походкой? Правильный ответ - читать про инверсную кинематику (ИК). Объем статьи не позволяет развернуть тему широко, но материалов в интернете предостаточно. Вкратце, ИК решает задачу нахождения необходимых управляющих сигналов для того, чтобы система в пространстве заняла нужное положение. Для ноги это значит, что по координатам точки, куда должна попасть стопа, следует определить углы сервоприводов, которые для этого нужно выставить. А управляя координатами стоп, можно управлять положением тела. У нас 2DOF-ноги, оси параллельны, поэтому стопа перемещается всегда в одной плоскости. Задача ИК в данном случае сводится к 2D-пространству, что сильно ее упрощает.

Пускай для каждой ноги локальным началом координат O будет вал верхнего серва, то есть бедра. И у нас есть координаты точки A, куда нужно попасть стопе. Тогда легко увидеть, что нужно решить задачу нахождения точек пересечения двух окружностей (см. схему ног одной стороны, там на самой правой ноге это проиллюстрировано). Найдя точку B пересечения окружностей (выбрав любую из них), несложно посчитать искомые углы, используя перевод из декартовых координат в полярные. В коде решение этой задачи выглядит так:

Float A = -2 * x; float B = -2 * y; float C = sqr(x) + sqr(y) + sqr(hipLength) - sqr(shinLength); float X0 = -A * C / (sqr(A) + sqr(B)); float Y0 = -B * C / (sqr(A) + sqr(B)); float D = sqrt(sqr(hipLength) - (sqr(C) / (sqr(A) + sqr(B)))); float mult = sqrt(sqr(D) / (sqr(A) + sqr(B))); float ax, ay, bx, by; ax = X0 + B * mult; bx = X0 - B * mult; ay = Y0 - A * mult; by = Y0 + A * mult; // или bx для другой точки пересечения float jointLocalX = ax; // или by для другой точки пересечения float jointLocalY = ay; float hipPrimaryAngle = polarAngle(jointLocalX, jointLocalY); float hipAngle = hipPrimaryAngle - hipStartAngle; float shinPrimaryAngle = polarAngle (x - jointLocalX, y - jointLocalY); float shinAngle = (shinPrimaryAngle - hipAngle) - shinStartAngle;

где x и y - координаты точки, куда нужно дотянуться стопой; hipStartAngle - угол, на который повернуто «бедро» изначально (при среднем положении серва), аналогично - shinStartAngle. Кстати, в этих расчетах углы, очевидно, в радианах, а в объекты Servo их передавать нужно уже в градусах. Полный работоспособный код прошивки, включающий этот кусочек, выложен на GitHub, см. ссылку в конце статьи. Это кусок ИК, но кроме него нужно еще немного довольно простого кода, чтобы использовать эту ИК на всех ногах (см. функции legsReachTo(), legWrite()). Также необходим будет код, который собственно реализует походку - движение одной группы ног «назад» (чтобы робот двигался вперед), в то время как другая группа ног приподнимается и переставляется вперед для следующего шага, см. функцию stepForward(). Она делает один шаг с заданными параметрами. Этими параметрами, кстати, можно сделать и шаг назад, несмотря на название функции. Если эту функцию вызывать в цикле, то робот будет шагать вперед.

Теперь получение команд и их интерпретация. Добавим в программу состояние:

Enum State { STOP, FORWARD, BACKWARD, FORWARD_RIGHT, FORWARD_LEFT };

И в главном цикле исполнения loop() будем смотреть на текущее состояние (переменная state) и дергать stepForward(), если движемся вперед (с поворотом или без), и опять же stepForward(), но с отрицательным аргументом xamp, если надо двигаться назад. Повороты при этом будут обрабатываться в legWrite(), и для поворота направо ноги с правой стороны будут стоять на месте (пока левые гребут). Вот такой вот конь-танк. Брутально, зато очень просто и работает. Плавный поворот можно сделать только с 3DOF-ногами, пример этого можно увидеть в репозитории buggybug.

Switch (state) { case FORWARD: case FORWARD_RIGHT: case FORWARD_LEFT: stepForward(h, dh, xamp, xshift); break; case BACKWARD: stepForward(h, dh, - xamp, xshift); break; }

Char command; while (Serial1.available()) command = Serial1.read(); switch (command) { case "w": state = FORWARD; break; case "s": state = BACKWARD; break; case "d": state = FORWARD_RIGHT; break; case "a": state = FORWARD_LEFT; break; default: state = STOP; }

На этом основные моменты прошивки закончились, остальное - всякая мелочевка. Хотя есть еще один, пожалуй, важный момент - возможность точной подстройки сервов. Даже при самой аккуратной сборке, если всем сервам подать команду повернуться на 90°, все равно некоторые из них получатся чуть со сбитым углом. Потому нужна возможность его подстраивать. Как у меня это сделано, можно посмотреть в методах hipsWrite() и shinsWrite() и собственно в массивах тонких настроек hipsTune и shinsTune.

Сборка

Для подобных конструкций не нужно ничего особенного: подойдет листок оргстекла подходящей толщины (с ближайшей хозяйственной барахолки) и лобзик либо ножовка, чтобы выпиливать детальки. И конечно, дрель, чтобы сверлить отверстия. Вместо оргстекла можно использовать фанеру (тогда на финальной конструкции можно еще сделать памятную надпись выжигателем). Можно использовать и листы или уголки алюминия. Со Слейпниром я пошел как раз по пути использования алюминиевого уголка с ребрами в 1 см (купил где-то в строительном супермаркете).

Основой будет прямоугольная рама. Конечности - 4-сантиметровые полосочки. Стоит также запастись множеством маленьких болтиков, гаечек. Режем уголок на нужные кусочки, вырезаем пазы для сервов, сверлим дырочки для крепежных болтов и шурупов. Конструкцию лучше раз показать, чем описывать. Размеры могут быть любые, роботы должны быть разнообразны. Но помни: чем длиннее ноги, тем больший рычаг придется толкать сервоприводу и тем больше будет на него нагрузка. Вплоть до невозможности провернуться и даже поломки. Но 4–5 см - без проблем.

Для бюджетных легких роботов часто не заморачиваются на отдельное шарнирное соединение конечностей, и вся нагрузка ложится целиком на вал сервопривода. При маленьком весе это совсем не критично. А при большем весе стоит подумать о сервах с металлическими шестеренками и шариковым подшипником вала.

В комплекте с каждым сервом, как правило, поставляется пара-тройка шурупов и набор насадок, которые можно закрепить шурупом на валу для различных применений. Нам больше всего подойдет одиночный «рог» (или horn), который позволяет прикрепить к серву планку. Так, к одной планке крепятся оси двух сервов, и планка становится «бедром». При этом один серв крепится на теле, а другой становится частью голени. К нему стоит прикрутить еще планку, просто чтобы удлинить или сделать конечность поинтересней. Немного кропотливой работы - и платформа готова (удобные наборы отверток, ключей, пинцеты, кусачки и прочее сильно ускоряют дело).


Что дальше?

Весь проект доступен на странице https://github.com/poconoco/sleipnir . Я описал одну из самых непрактичных конфигураций - много 2DOF-ног, высокий, узкий, легко валится на бок. Попробуй сделать лучше, робота с 3DOF-ногами. С 4DOF-ногами. С клешнями или челюстями. В качестве примера 3DOF инверсной кинематики можешь обращаться к репозиторию buggybug - там прошивка гексапода. Также можно делать не управляемых, а интеллектуальных роботов, ставя вместо Bluetooth датчики расстояния, научить робота обходить стены и препятствия. Если такой сенсор поставить на сервопривод и вращать им, то можно сканировать местность, практически сонаром.

Начнем с концепции: мы хотим робота, который может самостоятельно передвигаться по комнате, при этом объезжать все препятствия, встречаемые на своем пути.
Задачу поставили. Теперь бегом по магазинам! 1) Платформа. Есть такие варианты: сделать самому всё, купить детальки (например Tamiya) и собрать из них, либо же купить готовое. Я остановился на последнем варианте. Вид танка, ну или трактора мне почему-то пришелся более по душе, и в итоге я остановился на таком варианте (платформа от DF robot ):

В комплекте - платформа (по одному мотору на каждой гусенице) и отсек для батареек.
Ну, тут ничего сложного, поехали дальше.

Дальномер
Сонар (он же дальномер, он же Ultrasonic module) В качестве дальномера изначально выбор был между ультразвуковым и инфракрасным. Поскольку характеристики ультразвукового существенно лучше (максимальная дальность около 4-5 метров, против 30-60 см), а цена примерно одинаковая, то выбор пал на Ultrasonic. Наиболее распространена модель HC-SR04 .

Что бы понять, как устроен этот фрукт - есть даташит + достаточно информации в интернете.
Расскажу основное. На фотографии видны 2 цилиндра. Один из них приемник, другой передатчик. Приемник генерирует ультразвуковые волны, передатчик принимает отраженную волну от объекта, и сообщаем нам об этом. На его плате 4 контакта (5V, GND, Trig, Echo) .
Алгоритм работы таков:

Подаем на ножку Trig сигнал, длительностью 10мкс, что запускает генератор, создающий пачку коротких импульсов на передатчике (8 шт). Далее, приемник получает отраженный сигнал и на ножке Echo генерируется прямоугольный сигнал, длина которого пропорциональна времени между излучением импульсов и детектированием их приемником.

Реальное время, за которое звук дойдет до приемника, конечно же, составит копейки. Что бы по нему определить расстояние, можно воспользоваться нехитрой формулой:

s=vt/2 , s - расстояние, v - скорость звука, t - время получения сигнала на приемнике.

Ну почему пополам делим, думаю всем понятно. Только в данном случае эта формула не нужна. Привожу ее здесь исключительно для понимания физики процесса.
С выхода Echo идет уже сформированный сигнал, с достаточно большой длительностью. Заглянув в даташит, мы увидим формулу пересчета: s = t/58 , s - расстояние, t - длительность импульса Echo, s - расстояние в сантиметрах.

Ок, вроде все основы разобрали. Перейдем к коду под Arduino:

Const int Trig = 3; // обозначим к какой ножке и что подключаем const int Echo = 2;
void setup()
{
pinMode(Trig, OUTPUT);
pinMode(Echo, INPUT);
Serial.begin(9600); // Инициализируем сериал порт, дабы вывести результат на монитор
}

Unsigned int time_us=0; // Переменная для хранения временного интервала
unsigned int distance_sm=0; // Переменная для хранения расстояния в сантиметрах

Void loop()
{
digitalWrite(Trig, HIGH); // Подаем сигнал на выход микроконтроллера
delayMicroseconds(10); // Удерживаем 10 микросекунд
digitalWrite(Trig, LOW); // Затем убираем
time_us=pulseIn(Echo, HIGH); // Замеряем длину импульса
distance_sm=time_us/58; // Пересчитываем в сантиметры
Serial.print(distance_sm); // Выводим на порт
Serial.print(" ");
delay(500);
}

Драйвер
Ну что же, с сонаром вроде разобрались. Продолжим.
Платформа содержит 2 мотора. Ими надо как-то управлять. Казалось бы - подключил их напрямую, подавай то HIGH то LOW и радуйся. Тут одно существенное «НО» - с атмеги не получишь ток выше ~40мА, а мотору надо где-то на порядок больше.

Как быть? Первое что приходит в голову это - поставить на выход микроконтроллера транзистор и с него уже питать моторы. Это конечно хорошо, но не прокатит, если мы захотим мотор в другую сторону пустить… Зато с этой задачей хорошо справится H - мост, который представляем собой немного более сложную схему, чем пара транзисторов. Но в данном случае их полно в виде готовых интегральных схем, так что думаю велосипед изобретать незачем - купим готовый. К тому же цена располагает - 2-3 доллара…

Двинемся дальше. Для этих целей я себе купил микросхему L293D , собственно о которой речь дальше и пойдет. Она проста в использовании, повсеместно доступна и имеет удобный корпус Dip16.
Её максимальный ток сравнительно небольшой (600 мА), что для конкретной задачи более чем достаточно. Если нужно больше, то есть, например, L293B (1А) и т.д…
Чуть не забыл, сей мост позволяет подключить к нему 2 мотора, по одному с каждой стороны.
Что бы понять, как взаимодействовать с ним, я нашел , ею и воспользуемся:

Все просто и наглядно. Внимательно изучив первую часть статьи, остановим взор на рисунке:

Схема включения данной микросхемы, собственно, взятая из даташита.

Кратко пробежимся по её ножкам:

1) Инициализация мотора1. Пока вы не подадите на эту ножку HIGH, что бы вы не делали с остальными, моторчик не заработает. Хоть и написано 1,2E - мотор там один. Не путайте. Дело в том, что для управления одним мотором вам понадобится 2 ножки микроконтроллера, а соответственно и H - моста. Подадим на одну ножку HIGH, другую LOW - мотор закрутился в одну сторону. Подадим на первую LOW, вторую HIGH - закрутится в противоположную. подадим на обе LOW - остановится.
2) 1A . На эту ножку вы будите посылать сигнал с микроконтроллера(слаботочный) для управления 1 входом мотора.
3) 1Y . А это уже сигнал(большой ток), который идет непосредственно на мотор. По своему виду он полностью повторяет сигнал, подаваемый на вход 1A .
4) - 5) Земля
6) 2Y Сюда подключаем вторую ножку мотора.
7) 2A Сигнал с микроконтроллера для управления втором входом мотора.
8) Сюда мы подаем напряжение, которым будут питаться моторы. По-сути, что подадим на этот вход, то и будет отпираться на ножках 1Y , 2Y .
9) - 16) Полная аналогия с первыми восемью, но для второго мотора.

Дабы убрать скачки напряжения при включении мотора, используем конденсатор, как показано ниже:

Ну и напоследок, приводится исходный код, с моей небольшой редакцией, который резюмирует все вышесказанное:

Const int motor1Pin = 3; // H-bridge leg 1 (pin 2, 1A)
const int motor2Pin = 4; // H-bridge leg 2 (pin 7, 2A)
const int enablePin = 9; // H-bridge enable pin
void setup()
{ // set all the other pins you"re using as outputs:
pinMode(motor1Pin, OUTPUT);
pinMode(motor2Pin, OUTPUT);
pinMode(enablePin, OUTPUT); // set enablePin high so that motor can turn on:
digitalWrite(enablePin, HIGH);
}

Void loop()
{ // Вращаем мотор в одну сторону
digitalWrite(motor1Pin, LOW); // set leg 1 of the H-bridge low
digitalWrite(motor2Pin, HIGH); // set leg 2 of the H-bridge high delay(1000); // А через секунду в другую digitalWrite(motor1Pin, HIGH); // set leg 1 of the H-bridge high
digitalWrite(motor2Pin, LOW); // set leg 2 of the H-bridge low delay(1000);
// А теперь всё сначала
}

Сервомашинка
Итак, с работой дальномера мы разобрались. Двинемся дальше. Дальномер у нас один, смотреть надо как вперед, так и по сторонам, что бы знать куда поворачивать в случае чего. Для этих целей воспользуемся серво (сервомашинка, сервопривод, servo).

Эти игрушки используются в основном в авиамоделизме, но для роботов тоже очень даже ничего.
Данное устройство может поворачиваться на углы от 0 до 180 градусов. От корпуса идет трехжильный кабель:

Черный - GND
Красный - 5V
Белый - Сигнал

Мотор управляется контроллером (не пугайтесь - ничего покупать не надо, он уже есть внутри серво), который, получая внешний сигнал - контролирует, что бы мотор повернулся на заданный угол. Для этих целей с мотора заведена обратная связь на контроллер, которая представляет собой переменный резистор, меняющий своё сопротивление в зависимости от угла поворота. Сам контроллер управляется длиной входного импульса. Как правило: 380 - 400 мкс - 0 градусов, 2200мкс - 180 градусов. Приведем простой алгоритм управления серво для Arduino:

#define ServoPin 2 // На эту ножку мы подключим наше серво (его белый провод)
void setup()
{
pinMode(2,OUTPUT);
}

Void Servo_motion(int angle) // функция управления серво
{
int time=390+10*angle; // Пересчитываем заданный угол поворота в длину импульса, который подадим на //серво
digitalWrite(ServoPin, HIGH); // Сигнал пошел
delayMicroseconds(time); // Удерживаем его заданное время
digitalWrite(ServoPin, LOW); // Выключаем его
delayMicroseconds(20000-time); // Даем серво время, что бы повернуться (20000 мкс - 50 гц)
}

Void loop()
{

For(int i=0;i<=180;i++)
{
Servo_motion(i); // Прокрутим серво в одну сторону
delay(10); // C задержкой 10 миллисекунд на каждом градусе
}

For(int i=180; i>=0; i--)
{
Servo_motion(i); // Затем в другую сторону
delay(10);
}

Но в дальнейшем, мы будем использовать специальную библиотеку для управления серво, вот её описание:

Данный пример (2 ссылка) проделывает ровным счётом тоже самое что и программа, описанная выше. Там приведено красочное описание кода с рисунками, картинками, комментариями, так что думаю - особых затруднений не возникнет. Ограничусь лишь небольшими комментариями - при проверки данного кода не забудьте переставить серво на на цифровой порт 9, либо поправить в том коде вот эту строчку:

Myservo.attach(9); // attaches the servo on pin 9 to the servo object

А то ничего не заработает. И последнее что хотелось бы добавить - данный пример доступен как по вышеуказанной ссылке, так и в среде разработки Arduino во вкладке «Examples».

Сборка
Перейдем к сборке нашего творения. Поскольку плату я не делал, то и принципиальной схемы, у меня нету, к сожалению. Но я думаю, это не сильно нам помешает - схема простая, все понятно. Фотографий и небольших комментариев вполне хватит. На данном этапе возникает Arduino nano, как вы уже могли догадаться, поскольку весь предыдущий код был сделан с расчетом на него. Описывать сей прибор занятие довольно трудоемкое и утомительное, поэтому для тех, кто не знает - ссылки:

Я все же, как и ранее, буду предполагать, что вы имеете хоть небольшой, но все же опыт знакомства с этой штуковиной, ну или хотя бы просто представляете что это это такое. В данном случае этого вполне достаточно. Так, поднабравшись не много знаний, поедим дальше.
Начнем с соединений. Перечислю, к какому входу и что у меня подключено:

4 ножки - входы H моста, по 2 на каждый мотор:
1A - 11
2A - 6
3A - 10
4A - 5

EnablePin - 12

1 Ножка под 1,2EN и 3,4EN - посадил их вместе, так как оба мотора все равно по отдельности нам не нужны. В принципе вообще, можно эти 2 ножки моста к Arduino не подключать, а просто подать на них 5V.

2 ножки для сонара:
Trig - 3
Echo - 2

Ножка для подключения серво:
Servo - 8

На этом вроде бы и всё. Далее, в процессе сборки робота, я столкнулся с одной проблемой - периодически робот останавливался, Arduino перезагружалось. Немного подумав, я понял что Arduino nano неспособен питать всю эту систему (H-мост, серво, сонар) от своего штатного стабилизатора. Потому на помощь мне пришел стабилизатор напряжения 7805 (L7805, LM7805). Прибор прост в применении, имеет 3 ножки: вход(6 - 35 В), земля, выход(~5В). Даташит к нему можно повсеместно найти в интернете. Объединив его землю, с землёй Arduino и, соответственно с минусом аккумулятора тоже. Я сделал так - от Arduino я питаю только H - мост, а всё остальное (серво, сонар) от стабилизатора. После этого робот стал отлично работать без сбоев. Да, не забывайте важное правило - земля в любой схеме должна быть общей для всех элементов! Ну, по поводу самих моторов, я думаю понятно - подаем напряжение с аккумулятора на вход моста - Vcc2. Ну вроде с подключением разобрались, проиллюстрирую вышесказанное фотографиями:

Вся схема:

Стабилизатор напряжения (конденсаторы можно не ставить):

Шлейф от сонара:

H – мост:

Немного о самой конструкции: обошлось без излишеств). Вырезал из пластика крышку на платформу, в ней было проделано отверстие для крепления серво. Из того же пластика выгнута (предварительно нагрев промышленным феном) Г - образная скобка. К ней приклеен четырехжильный шлейф (под PLS вилку, с шагом 2.54мм), в который уже и вставляется сам сонар.

Программирование
Итак, робот собран. Переходим к заключительному этапу - прошивка. Здесь я опишу мой вариант реализации данного алгоритма. Заранее отмечу, что все можно было существенно упростить, например, вращать сонар не постоянно, а остановиться, когда на пути встречается преграда, «осмотреться» и повернуть в наилучшее направление. Либо вообще не вращать головой.

Ну, тут мы не будем искать легких путей, к тому же первый вариант наиболее интересный и зрелищный. Представленный ниже код конечно же сыроват, местами, возможно, не оптимален. Так что все ваши замечания и предложения приветствуются. Но тем не менее данная версия отлично зарекомендовала себя в полевых условиях. Ну что же, приступим. Буду излагать основные моменты кода, в последовательности, наиболее удобной для понимания:

Объявление переменных:
Переменная, для реализации алгоритма работы сонара - unsigned int time_us=0;
Расстояние, определяемое сонаром - unsigned int distance_sm=0;
Данная переменная используется в цикле loop для того, что бы при включении робот «осмотрелся» на месте, а потом уже поехал -
unsigned int circle=0;
Расстояние до ближайшего объекта спереди - unsigned int dist_f=0;
Расстояние до ближайшего объекта слева - unsigned int dist_l=0;
Расстояние до ближайшего объекта справа - unsigned int dist_r=0;
Расстояние до ближайшего объекта под углом 45 градусов - unsigned int dist_45=0;
Расстояние до ближайшего объекта под углом 135 градусов - unsigned int dist_135=0;

Константа времени(мс), определяющая минимальный шаг движения робота. Подобрана экспериментально. В зависимости от скорости движения и скорости вращения серво вашего робота, возможно придется её изменить. Позже станет более понятно для чего она нужна -
unsigned int t=15;

Функции:
sonar() - реализует алгоритм работы сонара, возвращает расстояние [см].
forward (), back (), right (), left () - наши базовые функции движения.
Основная функция, реализующая движение -

Void motion (char dimention, int prev_angle, int next_angle, int time)
{
/*Данная функция одновременно управляет как и вращением моторов, так и серво.
char dimention - направление движения
int prev_angle - предыдущее положение серво
int next_angle - положение, на которое хотим установить серво
int time - временной шаг одного движения робота*/

// Величина, на которую изменяется угол в процессе движения -
int a;
if(next_angle>=prev_angle)
a=15;
else
a=-15;
if (dimention=="f")
{
// Если сказано двигаться вперед, то
int i=prev_angle;
while(i!=next_angle)
{
/*Пока не достигли заданного значения угла, будем в цикле постепенно изменять текущее положение серво на величину a*/
i+=a; myservo.write(i); // И передавать это значение на серво
forward(); // После чего делаем движение вперед
delay(time); // В течении временного интервала time
}
}

/* Аналогичный алгоритм для движения влево, вправо, назад и стоянии на месте*/

Void front_motion(int time)
{
/* Функция, которая осуществляет небольшой «доворот» робота в одну из сторон, если объект расположен под углами 45 и 135 градусов*/
if(dist_45<=9)
{ // Если расстояние до объекта под углом 45 градусов меньше 9см, поворачиваем налево
left();
delay(3*time); // В течении трех минимальных интервалов движения
}
/* Аналогичный алгоритм для «доворота» вправо */

}
void motion_back(int time)
{
/* Движение робота назад в течении времени 2*time, с поворотом серво от угла 180 градусов, на угол 180 градусов*/
motion("b",180,90,2*time);
}
void loop()
{
// Наша главная функция, реализующая итоговый алгоритм работы
if (circle==0)
{
//Если робота только что включили, установим серво в начальное положение.
myservo.write(0); //И «осмотримся» по сторонам
dist_r=sonar();
motion("w",0,45,t);
dist_45=sonar();
motion("w",45,90,t);
dist_f=sonar();
motion("w",90,135,t);
dist_135=sonar();
motion("w",135,180,t);
dist_l=sonar(); } // Больше мы данное действие производить не будем
circle++; i
f(dist_f>=25)
{ // Если до ближайшего объекта спереди более 25 сантиметров
a: //Двигаемся вперед, при этом осуществляем поворот серво от 180 до 135 градусов
motion("f",180,135,t); //Сделаем замер расстояния до объектов под углом 135 градусов
dist_135=sonar(); //Если необходимо, сделаем доворот
front_motion(t); //Далее аналогично, но с другими значениями
motion("f",135,90,t);
dist_f=sonar();
front_motion(t);
motion("f",90,45,t);
dist_45=sonar();
front_motion(t);
motion("f",45,0,t);
dist_r=sonar();
front_motion(t);
motion("f",0,45,t);
dist_45=sonar();
front_motion(t);
motion("f",45,90,t);
dist_f=sonar();
front_motion(t);
motion("f",90,135,t);
dist_135=sonar();
front_motion(t);
motion("f",135,180,t);
dist_l=sonar(); front_motion(t); // Если расстояние спереди все еще больше 25 сантиметров, то вернемся в точку "a"
if (dist_f>=25)
goto a;
}
else
{ //Если нет
if(dist_f<5)
{ // Если робот уже слишком близко к ближайшему объекту, то делаем движение назад
motion_back(t);
// Производим новый замер расстояния
dist_f=sonar();
} //При этом поворачиваем в ту сторону, где больше свободного места
if(dist_l>=dist_r || dist_135>dist_r)
{
motion("l",180,90,t);
dist_f=sonar();
}
if(dist_l {
motion("r",180,90,t);
dist_f=sonar();
}
} // Далее новый круг
}

Полную версию данной программы можно скачать вот тут.

Вступление

В эллинистическую эпоху, на острове Фарос был маяк, на котором были установлены четыре статуи. Эти статуи через определённые промежутки времени, поворачиваясь, отбивали склянки; в ночное же время они издавали трубные звуки, предупреждая мореплавателей о близости берега.

5 век до н.э. В работах Платона выражаются идеи, имеющие отношение к человеческому мышлению и механике машин. Блестящий философ и математик Архит из Тарентума, друг Платона, конструирует деревянного голубя, который мог летать и управлялся струей пара.

1495 год. Леонардо да Винчи разрабатывает детальный проект механического человека, способного двигать руками и поворачивать голову. Механизм выглядит как бронированный рыцарь.

Что объединяет все эти «изобретения»? То, что человек пытался создать предметы, которые могли бы также автономно, как и живые существа, существовать в нашем мире, или даже мыслить.

Меняются времена, меняются технологии. Но человека не покинула идея сделать себе «механических слуг», способных мыслить и выполнять разные задачи. Современное название этих устройств - роботы.

Цели, задачи, а также приветствие

Здравствуйте, многоуважаемые радиокоты и радиокошки! Так как сам я ещё котёнок, как в области радиолюбительства, так и в области моего физического возраста, то и устройства, создаваемые мной, должны быть детскими и выполнять роль игрушки(да и вообще, данная статья будет интересна только начинающим). А что будет выполнять роль игрушки, вы уже, наверное, догадались. Что же оно будет делать? Хм... О! А пусть оно следует за нарисованной линией, ведь это почти следование по заданной траектории! (можно будет заставить его таскать бутерброды от холодильника к рабочему месту, что бы не отвлекаться от любимого занятия:)) И так, мы вплотную подошли к целям моей работы, а точнее цели :

  • Создать робота (действующую модель), который будет следовать за нарисованной на белом листе бумаги линией.

Задачи:

  • Создание принципиальной электрической схемы
  • Создание программы для созданной платформы
  • Сборка робота, согласно схеме
  • Тестирование, отладка
  • Анализ результатов

Создание действующей модели робота

Итак, создание принципиальной электрической схемы:

Начальная схема выглядит так:

Главная часть схемы - 8- битный МК семейства mega от фирмы Atmel. Именно он выполняет функцию контроллёра поведения робота. В нём заложена программа. Он получает сигналы от двух датчиков - фототранзисторов L32P3C (можно любые другие, лишь бы реагировали на свет). Когда фототранзистор освещён, он пропускает ток, и импульс появляется на выводе МК. МК, получив сигнал высокого уровня, в зависимости от того есть ли сигнал на другом фототранзисторе, посылает сигнал на входы драйвера двигателей L293D, который усиливает эти сигналы (т.к. выводы МК не способны выдерживать ток больше 20мА) и передаёт их на двигатели M1 и M2, которые вращаются. Z1, C1 и C2 задают тактовую частоту МК, в данном случае она установлена на 4МГц, то есть контроллёр будет выполнять 4 миллиона операций в секунду. Всем известно, что правильное питание - залог здоровья, поэтому C3, C4 и VR1 выполняют функцию стабилизатора напряжения, для уничтожения нежелательных помех.

А как же будут работать датчики? Всем известно, что черный цвет поглощает почти весь спектр световых волн, а белый его отражает, поэтому, когда датчики будут находится над чёрной линией, то на них не будет поступать свет, а когда датчики будут находиться над светлой поверхностью, то будет, и соответственно, от датчика будет идти сигнал.


Конечно, это не окончательная схема, доработки некоторых блоков будут представлены ниже.

Алгоритм работы:

Алгоритм работы достаточно прост(подразумевается, что датчики находятся по разные стороны линии)

Небольшие поясниения:

Если участок линии, на которой находится робот, прямой, то от обоих датчиков будет идти сигнал.

Соответственно нужно вращать оба мотора.

Если участок линии, направлен влево, то на левом датчике будет отсутствовать сигнал.

Тогда нужно подать напряжение на правый двигатель.

Если же отсутствует сигнал на правом датчике, то имеет место поворот направо.

Естественно, нужно вращать левый мотор.

Собственно, разработка программы.

В качестве языка разработки был выбран распространённый и мощный язык программирования C.

Разберу, только основной блок, весь код смотрите ниже.

while (1)
{
PORTC.0 = PIND.0;
PORTC.2 = PIND.1;
}

Здесь нет варианта, когда робот завершает роботу, что не соответствует описанному выше алгоритму, потому что не бывает совершенных систем, мой робот, к сожалению, не исключение. Поэтому эта часть была убрана, что бы робот вдруг ни с того ни с сего не останавливался.

Загружая из порта D (ответственен за датчики) в необходимые выводы порта C (именно он ответственен за движение робота) мы заставляем робота реагировать как на одиночные импульсы от разных датчиков, так и от обоих вместе.

Итак, мы подошли к сборке робота, согласно схеме.

Сборка управляющей платы.

Управляющая плата, это плата с микроконтроллером, которая будет контролировать поведение робота. Её схема:

Как видно, схема проста, собирается в течении недолгого времени. Конечный результат:

Сборка стабилизотора напряжения и драйвера двигатетей.

На схеме это:

Собирается так же недолго, вот, что у меня получилось:

Сборка блока датчиков.

Блок датчиков отвечает за приём информации о мире. На схеме это:

Схема настолько проста, что собирается в течении 3-х минут. Конечный результат:

После соединения всех блоков получаем:


Естественно, я никого не заставляю собирать робота именно таким образом, просто сборка данным образом даёт некую "взрослую" систематизацию.

Тестирование, отладка.

Управляющая плата и плата стабилизатора напряжения, к моему удивлению не требовали отладки. Но зато плата драйвера двигателей, а точнее сами двигатели, и блок датчиков компенсировали эту потерю.

В блоке драйвера двигателей, отладки требовали двигатели. Проблема в том, что изначально я неправильно рассчитал мощность двигателей (чего вам делать не советую) и решил, что мне хватит и такой конструкции:

Естественно, я ошибался. Робот не то что медленно ехал, он просто стоял на месте.

Соответственно, мне понадобились редуктора. Ни в магазине, ни в интернете подходящих я не нашёл, поэтому мне пришлось «зверски вырвать» их из радиоуправляемой машинки и добавить их в конструкцию.

После добавления их в конструкцию, робот стал «летать». Он настолько быстро ездил, что иногда пропускал дорогу. О том, как я это исправил написано ниже.

Отладка датчиков

Наверное, ещё ни один датчик не работал сразу без отладки. Мой случай не исключение. Изначально датчики реагировали даже на слабый свет. Следовательно, нужно сделать регулятор чувствительности. Поэтому схема была дополнена:

Переменные резисторы позволяют настроить чувствительность. Затем можно померить сопротивление переменного резистора и поставить уже постоянный. Кстати, оптимальное сопротивление резистора в моём случае равно 9.1 кОм. Также были добавлены светодиоды, которые позволили датчикам работать даже в тёмных помещениях. Конечный результат:

Отладка программы

Как было сказано выше, робот слишком быстро ездил, следовательно, нужно уменьшить скорость робота. Делать это с помощью железа мне показалось неразумным, и я сделал регулировку скорости, напоминающую регулировку с помощью широтно-импульсной модуляции.

Была разработана функция:

void PWM (unsigned char vector)

Return ;

Опытный радиолюбитель скажет, что никакой это не ШИМ, и он будет прав. Но всё же данная функция позволяет регулировать скорость робота. (конечный код смотрите ниже в списках файлов)

И вот когда сборка и отладка закончены, настаёт время проверить работоспособность робота (там на фоне играла музыка, но youtube её убрал =()

Анализ результатов

По завершению работы нужно подвести итоги. И так, что же мне удалось?

  • Создание программы.
  • Создание электромеханической платформы . Остановимся на этом моменте поподробнее. Конечная ЭМП получилась такой, что её можно применять для решения таких простых задач как: прохождение лабиринта, как двухмерного, так и трёхмерного, следование за источником света, он может рисовать (достаточно прикошачить присобачить к корпусу фломастер), робот даже может участвовать в таких робототехнических соревнованиях, как кегельринг.
  • Отладка системы.
  • И самое главное - робот двигается по линии.

Заключение

В заключение обязательно нужно что-то сказать. А скажу я вот что:

Дело это:

  • Финансово затратное

В этой статье мы рассмотрим несколько схем роботов, в которых реализованы следующие варианты поведения:
1. Объезжает препятствие при контакте с ним "усиками".
2. Избегает препятствия без контакта (ИК бампер).
3. Упирается "усиками" в препятствие, отъезжает назад, делает поворот, затем продолжает движение.
4. Избегает препятствие с разворотом (ИК бампер).
5. Следует за объектом, сохраняя дистанцию (ИК бампер).

Перед тем как приступить к рассмотрению схем давайте кратко разберем особенности микросхемы L293.

Рис.1. Расположение выводов микросхемы L293D

Внутри нее имеется два драйвера для управления электромоторами.
Моторы подключаются к выходам OUTPUT. Мы имеем возможность подключить два двигателя постоянного тока.
8-й и 16-й выводы микросхемы подключаются к плюсу питания. Поддерживается раздельное питание, т.е. 16-й вывод (Vss) предназначен для питания самой микросхемы (5 вольт), а контакт Vs (8-й вывод) можно подключить к источнику питания для двигателей. Максимальное напряжение силовой части составляет 36 вольт.
Я их разделять не буду и во всех схемах подключу к общему источнику питания.
Минус питания или земля (GND) подключается к выводам № 4, 5, 12, 13. Эти контакты, кроме того, обеспечивают теплоотвод микросхемы, поэтому при пайке на плату для этих выводов желательно выделить увеличенную металлизированную область.
Еще микросхема имеет входы ENABLE1 и ENABLE2.
Для включения драйверов, необходимо наличие логической единицы на этих выводах, проще говоря 1-й и 9-й выводы подключаем к плюсу питания.
Также имеются входы INPUT для управления двигателями.

Рис.2. Таблица соответствия логических уровней на входах и выходах.

Выше представлена таблица, по которой можно понять, что если на вход INPUT1 подать логической единицу, т.е. соединить с плюсом источника питания, а вход INPUT2 - с минусом, то мотор М1 начнет вращаться в определенную сторону. А если поменять местами логические уровни на этих входах, то мотор М1 будет вращаться в другую сторону.
Аналогично происходит и со второй частью, к которой подключается мотор М2.

Именно эта особенность и использована в представленных схемах роботов.

Схема №1. Робот объезжает препятствие при контакте с ним "усиками".

Рис.3. Схема №1. С механическими датчиками препятствий.

После подачи питания моторы будут вращаться в определенную сторону, двигая робота вперед. Это происходит за счет того, что на INPUT1 через резистор R2 поступает сигнал высокого уровня, так же как и на входе INPUT4. Транзистор VT1 надежно закрыт, база стянута на минус питания, на коллектор ток не втекает.
Объяснять я буду по левой части, т.к. обе части симметричны.
На входе INPUT2 через резистор R3 устанавливается логический 0. Судя по таблице (рис.2) мотор вращается в определенную сторону. В правой части схемы происходит тоже самое и робот едет вперед.
В схеме имеются ключи (SB1, SB2), в качестве которых применены SPDT переключатели. На них с помощью термоклея прикрепляются скрепки и получаются датчики препятствий.

Рис.4. Из скрепок сделаны датчики "усики".

Когда такой датчик упирается в препятствие, ключ замыкается и вход INPUT2 оказывается подключенным к плюсу питания, т.е. подается логическая "1". В этот же момент времени открывается и транзистор, вследствие чего логическая единица на входе INPUT1 сменяется логическим нулем. Мотор при нажатой кнопке вращается в другую сторону. Рывками происходят микропереключения и мотор разворачивает робота от препятствия, до того момента, пока датчик перестанет соприкасаться с препятствием.

Как вы уже догадались, переключатели или сами моторы нужно расположить крест-накрест.

Схема №2. Робот избегает препятствия без контакта (ИК бампер)

Еще более интересное поведение можно реализовать, если в качестве датчиков использовать TSOP-приемники для приема инфракрасных сигналов. Это будет некое подобие ИК-бампера.
Итак, теперь схема выглядит таким образом.

Рис.5. Схема №2. С инфракрасными датчиками препятствий.

"Модуль приема ИК" работает так: при поступлении инфракрасного сигнала на TSOP-приемник на его выходе появляется отрицательное напряжение, которое отпирает PNP транзистор, и ток с плюса питания поступает на входную цепь микросхемы. Если в прошлый раз были использованы механические переключатели, с так называемыми усиками из скрепок, то новая схема позволит роботу не врезаться в препятствие, а реагировать на него с некоторой дистанции. Это выглядит так:

Приемная часть выполнена таким образом: два абсолютно одинаковых модуля (левый и правый) скрепленные между собой (рис.8).

В качестве приемников использованы TSOP1136 с рабочей частотой 36 кГц. Расположение выводов представлено на рисунке ниже.

Рис.6. TSOP1136.

С приемниками мы разобрались, но для обнаружения препятствий нужно в пространство перед роботом посылать инфракрасное излучение с определенной частотой. Рабочая частота приемников бывает разная, в моем случае она составляет 36 кГц. Поэтому на микросхеме NE555 был собран генератор импульсов на данную частоту, а к выходу подключены излучающие диоды инфракрасного диапазона.


Рис.7. Схема излучателя на NE555.

На шасси робота закреплен фрагмент макетной платы, на которую можно установить желаемое количество ик-диодов.
На диоды желательно надеть термоусадочные трубочки или что нибудь подобное, чтобы они светили вперед, а не в разные стороны.

Рис.8. ИК бампер.

После подачи питания робот может попятиться назад, это из-за слишком большой чувствительности TSOP-приемников. Они воспринимают отраженный сигнал даже от пола, стен и других поверхностей. Поэтому в схеме излучателя ИК-сигнала (рис.7) использован подстроечный резистор, с помощью него уменьшаем яркость инфракрасных диодов и добиваемся желаемой чувствительности.

Схема №3. Такой робот отъезжает назад от препятствия, делая поворот.

Давайте рассмотрим еще одну интересную схему.

Рис.9. Схема №3.

Когда такой робот упирается в препятствие одним из своих усиков, то он отъезжает назад, делая небольшой поворот, затем после небольшой паузы робот продолжает движение. Поведение показано на анимации ниже:

Эта схема тоже полностью совместима с инфракрасным бампером, от предыдущей схемы.

В схеме появились электролитические конденсаторы между эмиттером и базовыми резисторами транзисторов VT1 и VT2. Появились диоды VD1, VD2 и светодиоды HL1, HL2.
Давайте по порядку разберем, зачем нужны эти дополнительные компоненты.
Итак, когда замыкается переключатель SB1, т.е. первый датчик, ток от плюса питания через диод VD1 и токоограничивающий резистор R1 поступает на базу транзистора. Он открывается, меняя логический уровень на входе INPUT1, на входе INPUT2 уровень тоже меняется.
В этот момент ток также поступает на конденсатор C1 и он заряжается. Мотор М1 резко меняет направление вращения и робот отъезжает назад от препятствия. На видео можно заметить, что второй мотор тоже меняет направление движения, но на более короткий промежуток времени. Это происходит из-за того, что при замыкании датчика SB1, ток от плюса питания поступает также и на правую часть схемы, через светодиод HL2. Светодиоды не только подают кратковременный сигнал о столкновении с препятствием, но и являются гасителем напряжения, поступающего на противоположную половину схемы. Проще говоря, при замыкании ключа SB1, конденсатор C2 заряжается меньше, чем C1. А при замыкании ключа (датчика) SB2 происходит тоже самое, но наоборот - С2 заряжается больше (т.е. напряжение на его обкладках больше). Это позволяет не только отъехать от препятствия, но и немного отвернуться от него. Угол этого отворачивания зависит от емкости конденсаторов C1 и С2. Конденсаторы емкостью 22 мкФ, на мой взгляд, являются оптимальными. При емкости 47 мкФ угол поворота будет больше.
Также на видео можно заметить, что после того, как робот отъезжает назад от препятствия, то присутствует небольшая пауза перед тем как он поедет вперед. Это происходит из-за разрядки конденсаторов, т.е. в некоторый момент времени логические сигналы на входах INPUT уравновешиваются и драйвер на секунду перестает понимать в какую сторону вращать мотор. Но когда C1 и С2 разрядятся, на входах INPUT установятся первоначальные логические уровни.
Диоды VD1 и VD2 препятствуют разрядке конденсаторов через светодиоды HL1, HL2. Без светодиодов схема не работает.

Схема №4. Предыдущая схема с ИК бампером.

Эта схема отличается от предыдущей тем, что вместо механических датчиков здесь использованы инфракрасные (ИК бампер).

Рис.10. Схема №4.

Коллекторы PNP транзисторов VT1 и VT2 при обнаружении препятствия, подадут сигнал на входную цепь микросхемы. Далее всё происходит также, как было описано ранее, только такой робот при обнаружении препятствия перед собой отъезжает назад, делает поворот, затем продолжает движение.
Поведение показано на анимации ниже:

У робота будет более резкое поведение, если уменьшить емкость конденсаторов C1 и C2 например до 1 мкФ (минимальная емкость 0,22 мкФ).

Как сделать так, чтобы робот следовал за объектом?

Во всех схемах, представленных выше, датчики-сенсоры или сами моторы должны быть расположены крест-накрест. А при прямом подключении (когда левый датчик "командует" левым двигателем, правый - правым) робот будет не избегать препятствие, а наоборот следовать за ним. Благодаря прямому подключению можно добиться очень интересного поведения робота - он будет активно преследовать объект, сохраняя определенную дистанцию. Расстояние до объекта зависит от яркости ИК диодов на бампере (настроить).

Еще немного фотографий:

В шасси использованы металлические детали от конструктора. Макетная плата откидывается для удобства замены батареек.

Питание робота осуществляется от 4-х батареек АА.

Варианты изготовления корпуса и шасси для робота ограничиваются только вашей фантазией, тем более в продаже имеется много готовых решений. В моем случае схема будет перенесена на плату, т.к. куча проводов это не эстетично. Также будут установлены аккумуляторы со схемой подзарядки. А какие еще доработки можно произвести или добавить новые функции - это всё вы можете предложить в комментариях.

К этой статье имеется видео, в котором подробно описана работа схем и продемонстрированы разные варианты поведения робота.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Элементы схемы №1 и №2 (кроме ИК бампера)
VT1, VT2 Биполярный транзистор

2N3904

2 В блокнот
R1, R2, R4, R6 Резистор

10 кОм

4 В блокнот
R3, R5 Резистор

4.7 кОм

2 В блокнот
C1 100 мкФ 1 В блокнот
Элементы "модуля приема ИК" на схеме №2, №4
VT1, VT2 Биполярный транзистор

2N3906

2 КТ361, КТ816 В блокнот
R1, R2 Резистор

100 Ом

2 В блокнот
C1, C2 Электролитический конденсатор 10-47 мкФ 2 В блокнот
Элементы "модуля излучения ИК сигнала" рис.7
R1 Резистор

1 кОм

1 В блокнот
R2 Резистор

1.5 кОм

1 В блокнот
R3 Переменный резистор 20 кОм 1 для настройки яркости FD1, FD2 В блокнот
C1 Конденсатор керамический 0.01 мкФ 1 В блокнот
C2 Конденсатор керамический 0.1 мкФ 1 В блокнот
FD1, FD2 ИК диод 2 Любой


Рекомендуем почитать

Наверх