Пропускная способность каналов связи. Пропускная способность систем передачи информации

Скачать Viber 27.05.2019
Скачать Viber

Рассмотрим канал связи, представленный на рис. 5-1. На его передающий конец подается сигнал x(t) , который поступает на вход приемника в искаженном шумом n(t) виде y(t) [Л. 47, 53]. Введем понятие пропускной способности канала связи. Пропускная способность канала связи определяется как максимальная величина относительной информации выходного сигнала относительно входного:

где I(x, y) - относительная информация, задаваемая формулой (7-8), причем все сигналы рассматриваются как эквивалентные дискретные (рис. 7-1), так что


Иногда величина называется скоростью передачи информации по каналу связи. Эта величина равна количеству относительной информации, передаваемой в единицу времени. За единицу времени при дискретном канале связи удобно считать время передачи одного символа. В этом случае в формулах для скорости передачи информации понимают энтропии и количества информации на один символ. Для непрерывных каналов связи используются две единицы измерения или обычная единица (к примеру, секунда), или интервал времени между отсчетами , в этом последнем случае в формулах понимаются дифференциальные энтропии на один отсчет (или степень свободы). Нередко в руководствах специально не указывается, какая конкретно из двух единиц применяется. В связи с этим часто используют другую формулу для средней скорости передачи информации


где N=2f c t 0 . Если отсчеты независимы, то V=I 1 (х, y) . Очевидно, что с помощью величины V пропускная способность канала связи может быть определена по формуле


Для энтропии шума можно написать:

Н(n)=2f c t 0 H 1 (n),


Энтропия шума на один отсчет для нормального шума.

Аналогичные формулы можно записать для нормальных сигналов х и y .

Формулу (7-10) для единицы отсчета можно записать в виде

Смысл этого определения требуется разъяснить. Отметим, что максимум здесь взят по множеству распределений вероятности входных сигналов при неизменном шуме, которое предполагается заданным. В частном случае это множество распределений может состоять из одного нормального, как это часто и считается.

Если пропускная способность одного канала связи больше, чем другого (С 1 >С 2) при остальных одинаковых условиях, то физически это означает, что в первом случае совместная плотность распределения вероятности входного и выходного сигналов больше, чем во втором, так как с помощью формулы (7-11) нетрудно убедиться, что пропускная способность определяется в основном величиной совместной плотности распределения вероятности. Если относительная информация (или энтропия) выходного сигнала относительно входного больше, то канал обладает большей пропускной способностью. Ясно, что если шумы возрастают, то пропускная способность падает.

Если вероятностная связь выходного и входного сигналов пропадает, то

р(х,y)=р(х)р(y)

и в формуле (7-11) логарифм и, следовательно, пропускная способность становятся равными нулю.

Другой случай, когда

р(х,y)=р(х|y)р(у)

стремится к нулю, требует детального рассмотрения, так как log р(х,y) стремится к - ∞. Если р(y)→ 0, то


Рассуждения можно продолжить следующим образом. Так как вероятность появления выходного сигнала стремится к нулю, то можно положить, что вероятность появления сигнала х не зависит от y , т. е.

p(х|y)=р(х)


В этом случае пропускная способность равна нулю, что согласуется с физической интерпретацией, т. е. если на выходе канала связи не появляется никакого сигнала [ни полезного x(t) , ни шумов n(t) ], это означает, что в канале есть "пробка" (разрыв). Во всех остальных случаях пропускная способность отлична от нуля.

Естественно определить пропускную способность канала связи так, чтобы она не зависела от входного сигнала. Для этого введена операция максимизации, которая в соответствии с экстремальными свойствами энтропии чаще всего определяет входной сигнал с нормальным законом распределения. Покажем, что если x(t) и n(t) независимы и y(t)=x(t)+n(t) , то

I(х,y)=Н(y)-Н(n), (7-12)

где Н(y) и Н(n) - дифференциальные энтропии принимаемых сигнала и шума. Условие (7-12) означает линейность канала связи в том смысле, что шум просто добавляется к сигналу как слагаемое. Оно непосредственно следует из

I(х,y)=Н(x)-Н(х|y)=Н(y)-Н(y|х).

Так как x и n статистически независимы, то

Подставив это соотношение в предыдущее, получим (7-12). Очевидно, если шум аддитивен и не зависит от входного сигнала, то максимальная скорость передачи сообщений по каналу связи (максимальная пропускная способность) достигается при maxН(y) , так как

Рассмотрим гауссов канал связи, исходя из следующих предположений: ширина полосы частот канала ограничена частотой f с ; шум в канале - нормальный белый со средней мощностью на единицу полосы S n =S n 2 ; средняя мощность полезного сигнала Р x ; сигнал и шум статистически независимы; выходной сигнал равен сумме полезного сигнала и шума.

Очевидно, что в соответствии с формулой (7-4) пропускная способность такого канала определится как

H(n)=Flog2πeS n f c . (7-14)

Так как сигнал и шум статистически независимы, то они не коррелированы между собой, поэтому средняя мощность суммарного сигнала

Р y =Р x +S n f c =Р x +Р n

В соответствии с формулой (7-13) необходимо найти максимум энтропии сигнала y(t) на один отсчет при заданной средней мощности. В силу экстремальных свойств энтропии (см. гл. 6) сигнал y(t) должен быть распределен нормально. Белый шум в полосе f c эквивалентен сигналу в этой же полосе со спектральной плотностью S , если равны их средние мощности, т. е.


Действительно, для нормального сигнала была доказана формула для энтропии на один отсчет

5.2. Пропускная способность канала связи.

Характеристики системы связи в значительной мере зависят от параметров канала вязи, который используется для передачи сообщений. Исследуя пропускную способность канала мы предполагали, что их параметры сохраняются постоянными. Однако большинство реальных каналов обладают переменными параметрами. Параметры канала, как правило изменяются во времени случайным образом. Случайные изменения коэффициента передачи канала m вызывают замирания сигнала, что эквивалентно воздействию мультипликативной помехи

Однородный симметричный канал связи полностью определяется алфавитом передаваемого сообщения, скоростью передачи элементов сообщения u и вероятностью ошибочного приема элемента сообщения р (вероятностью ошибки).

Пропускная способность канала будет вычисляться по формуле:

в частном случае для двоичного канала (m=2) получим формулу:

, где р =0,003, t=15 10 -6

Сравнивая пропускную способность канала связи и производительность источника (после оптимального кодирования) можем сделать вывод, что условие К.Шеннона выполняется, т.е. производительность источника меньше пропускной способности канала, что позволит нам передавать информацию по данному каналу связи. Для некодированного источника это условие выполняется также, т.к. производительность некодированного источника меньше производительности оптимально закодированного источника.

6. Помехоустойчивое кодирование.

При передаче цифровых данных по каналу с шумом всегда существует вероятность того, что принятые данные будут содержать некоторый уровень частоты появления ошибок. Получатель как правило устанавливает некоторый уровень частоты появления ошибок, при превышении которого принятые данные использовать нельзя. Если частота ошибок в принимаемых данных превышает допустимый уровень, то можно использовать кодирование с исправлением ошибок., которое позволяет уменьшить частоту ошибок до приемлемой.

Кодирование с обнаружением и исправлением ошибок как правило связано с понятием избыточности кода, что приводит в конечном итоге к снижению скорости передачи информационного потока по тракту связи. Избыточность заключается в том, что цифровые сообщения содержат дополнительные символы, обеспечивающие индивидуальность каждого кодового слова. Вторым свойством связанным с помехоустойчивым кодированием является усреднение шума. Этот эффект заключается в том, что избыточные символы зависят от нескольких информационных символов.

При увеличении длинны кодового блока (т.е. количества избыточных символов) доля ошибочных символов в блоке стремиться к средней частоте ошибок в канале. Обрабатывая символы блоками, а не одного за другим можно добиться снижения общей частоты ошибок и при фиксированной вероятности ошибки блока долю ошибок, которые нужно исправлять.

Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.

Разновидностями как блочных, так и непрерывных кодов являются разделимые (с возможностью выделения информационных и контрольных символов) и неразделимые коды. Наиболее многочисленным классом разделимых кодов составляют линейные коды. Их особенность состоит в том, что контрольные символы образуются как линейные комбинации информационных символов.

6.1. Принцип обнаружения и исправления ошибок.

Корректирующие коды строятся так, чтобы количество комбинаций М превышало число сообщений М 0 источника. Однако в этом случае используется лишь М 0 комбинаций источника из общего числа для передачи информации. Такие комбинации называются разрешенными, а остальные – запрещенными М-М 0 . Приемнику известны все разрешенные и запрещенные комбинации, поэтому, если при приеме некоторого разрешенного сообщения в результате ошибки это сообщение попадает в разряд запрещенных, то такая ошибка будет обнаружена, а при определенных условиях исправлена. Следует заметить, что при ошибке, приводящей к появлению другого разрешенного сигнала, такая ошибка не обнаружима.

Расстоянием Хемминга d между двумя последовательностями называется число позиций, в которых две последовательности отличаются друг от друга. Наименьшее значение d для всех пар кодовых последовательностей называется кодовым расстоянием.

Ошибка обнаруживается всегда, если её кратность, т.е. число искаженных символов в кодовой комбинации: gd, то некоторые ошибки также обнаруживаются. Однако полной гарантии обнаружения ошибок нет, т.к. ошибочная комбинация может совпадать с какой-либо разрешенной комбинацией. Минимальное кодовое расстояние, при котором обнаруживаются любые одиночные ошибки, d=2.

Исправление ошибок в процессе декодирования сводится к определению переданной комбинации по известной принятой. Расстояние между переданной разрешенной комбинацией и принятой запрещенной комбинацией d 0 равно кратности ошибок g. Если ошибки в символах комбинации происходят независимо относительно друг друга, то вероятность искажения некоторых g символов в n-значной комбинации будет равна:

6.1. Коды с обнаружением ошибок.

Одним из кодов подобного типа является код с четным числом единиц. Каждая комбинация этого кода содержит помимо информационных символов – один контрольный, выбираемый равный 0 или 1 так, чтобы сумма количества единиц в комбинации всегда была четной.

Простейшим примером кода с проверкой на четность является код Бодо, в котором к пятизначным комбинациям информационных символов добавляется шестой контрольный символ: 11001,1; 10001,0. Правило вычисления контрольного символа находится как:

откуда вытекает, что для любой комбинации сумма всех символов по модулю два будет равна нулю. Это позволяет в декодирующем устройстве сравнительно просто производить обнаружение ошибок путем проверки на четность. Нарушение четности имеет место при появлении однократных, трехкратных и в общем случае нечетной кратности, что и дает возможность их обнаружить. Появление четных ошибок не изменяет четности суммы, поэтому такие ошибки не обнаруживаются.

Определим избыточность кода:

k=6 – число символов в помехоустойчивом коде

n=5 – число символов без избыточности

Заключение

В данной работе было рассмотрено:

1. Система когерентного приемника с ФМ. Рассчитав параметры и сравнив полученные в результате расчетов данные с другими системами приема сигналов выявлены некоторые преимущества и недостатки данной системы передачи и приема информационных сообщений. Также было проведено сравнение с идеальным приемником Котельникова, обеспечивающим потенциальную помехоустойчивость. Отмечено как можно улучшить характеристики приемника с помощью согласованных фильтров.

2. Передача непрерывных аналоговых сигналов цифровыми методами. Произведен анализ и сравнение дискретных методов (АИМ, ШИМ, ВИМ) с цифровым методом передачи непрерывных аналоговых сигналов ИКМ. Отмечены преимущества цифровых методов передачи информации по сравнению с аналоговыми.

3. Кодирование сообщений. Сравнивались и определялись характеристики статистического (эффективного кодирования) по сравнению с помехоустойчивым (избыточным) кодированием. Была определена пропускная способность канала связи и установлено, что данная система является работоспособной (т.е. выполняется условие К.Шеннона).

При рассмотрении передачи и приема сигналов методом ИКМ с кодированием сообщений, можно сделать вывод, что для повышения качества получаемых сообщений следует применять помехоустойчивое кодирование. Рассмотренный метод помехоустойчивого кодирования является самым простейшим. Для более эффективного использования канала связи нужно использовать более совершенные алгоритмы кодирования сообщений.

Литература


1. Зюко А.Г., Коробов Ю.Ф. Теория передачи сигналов – М.Связь 1972.

2. Б.Н.Бондарев, А.А.Макаров “Основы теории передачи сигналов” Новосибирск – 1969 г.

3. Э.Прагер, Б.Шимек, В.П.Дмитриев – “Цифровая техника в связи” – М. Радио и связь.

В дискретной системе связи при отсутствии помех информация на выходе канала связи (канала ПИ) полностью совпадает с информацией на его входе, поэтому скорость передачи информации численно равна производительности источника сообщений:

При наличии помех часть информации источника теряется и скорость передачи информации оказывается меньшей, чем производительность источника. Одновременно в сообщение на выходе канала добавляется информация о помехах (рис.5).

Поэтому при наличии помех необходимо учитывать на выходе канала не всю информацию, даваемую источником, а только взаимную информацию:

бит/с. (22)

На основании формулы (20) имеем

где H¢(x) - производительность источника;

H¢(x/y) - "ненадёжность" канала(потери) в единицу времени;

H¢(y) - энтропия выходного сообщения в единицу времени;

H¢(y/x) =H’(n) –энтропия помех (шума) в единицу времени.

Пропускной способностью канала связи (канала передачи информации) C называется максимально возможная скорость передачи информации по каналу

. (24)

Для достижения максимума учитываются все возможные источники на выходе и все возможные способы кодирования.

Таким образом, пропускная способность канала связи равна максимальной производительности источника на входе канала, полностью согласованного с характеристиками этого канала, за вычетом потерь информации в канале из-за помех.

В канале без помех C=max H¢(x) , так как H¢(x/y)=0 . При использовании равномерного кода с основанием k , состоящего из n элементов длительностью , в канале без помех

,

при k =2 бит/c. (25)

Для эффективного использования пропускной способности канала необходимо его согласование с источником информации на входе. Такое согласование возможно как для каналов связи без помех, так и для каналов с помехами на основании двух теорем, доказанных К.Шенноном.

1-ая теорема (для канала связи без помех):

Если источник сообщений имеет энтропию H (бит на символ), а канал связи – пропускную способность C (бит в секунду), то можно закодировать сообщения таким образом, чтобы передавать информацию по каналу со средней скоростью, сколь угодно близкой к величине C, но не превзойти её.

К.Шеннон предложил и метод такого кодирования, который получил название статистического или оптимального кодирования. В дальнейшем идея такого кодирования была развита в работах Фано и Хаффмена и в настоящее время широко используется на практике для “cжатия сообщений”.

2-ая теорема (для каналов связи с помехами):

Если пропускная способность канала равна C, а производительность источника H’(x)C, то можно закодировать источник таким образом, что ненадёжность будет меньше, чем H’(x)-C+e, где e. – сколь угодно малая величина.

Не существует способа кодирования, обеспечивающего ненадёжность, меньшую, чем H"(x)-C.

К сожалению, теорема К.Шеннона для каналов с шумами(помехами) указывает только на возможность такого кодирования, но не указывает способа построения соответствующего кода. Однако известно, что при приближении к пределу, устанавливаемому теоремой Шеннона, резко возрастает время запаздывания сигнала в устройствах кодирования и декодирования из-за увеличения длины кодового слова n . При этом вероятность ошибки на выходе канала стремится к величине

. (26)

Cледовательно, имеет место “обмен” верности передачи на скорость и задержку передачи.

Вопросы
  1. Что такое пропускная способность канала связи, как она определяется?
  2. Чему равна пропускная способность канала связи без помех?
  3. Как влияют помехи на величину пропускной способности?
  4. Что утверждает теорема Шеннона для канала связи без помех?
  5. Что утверждает теорема Шеннона для канала связи с помехами?

Ранее мы рассмотрели кодирование и передачу информации по каналу связи в идеальном случае, когда процесс передачи информации осуществляется без ошибок. В действительности этот процесс неизбежно сопровождается ошибками (искажениями). Канал передачи, в котором возможны искажения, называется каналом с помехами (или шумами). В частном случае ошибки возникают в процессе самого кодирования, и тогда кодирующее устройство может рассматриваться как канал с помехами.

Наличие помех приводит к потере информации. Чтобы в условиях наличия помех получить на приемнике требуемый объем информации, необходимо принимать специальные меры. Одной из таких мер является введение так называемой «избыточности» в передаваемые сообщения; при этом источник информации выдает заведомо больше символов, чем это было бы нужно при отсутствии помех. Одна из форм введения избыточности – простое повторение сообщения. Таким приемом пользуются, например, при плохой слышимости по телефону, повторяя каждое сообщение дважды. Другой общеизвестный способ повышения надежности передачи состоит в передаче слова «по буквам» – когда вместо каждой буквы передается хорошо знакомое слово (имя), начинающееся с этой буквы.

Пропускная способность канала, когда число элементарных символов более двух и когда искажения отдельных символов зависимы может быть определена с помощью второй теоремы Шеннона. Зная пропускную способность канала, можно определить верхний предел скорости передачи информации по каналу с помехами.

Рассмотрим на примере: Пусть имеется источник информации Х, энтропия которого в единицу времени равна , и канал с пропускной способностью Х. Тогда если

то при любом кодировании передача сообщений без задержек и искажений невозможна.

то всегда можно достаточно длинное сообщение закодировать так, чтобы оно было передано без задержек и искажений с вероятностью, сколь угодно близкой к единице.

Задача 2 : Выяснить, достаточна ли пропускная способность каналов для передачи информации, поставляемой источником, если имеются источник информации с энтропией в единицу времени =110 (дв. ед.) и количество каналов связи n = 2 , каждый из них может передавать в единицу времени К = 78 двоичных знаков (0 или 1); каждый двоичный знак заменяется противоположным с вероятностью μ=0.17 .

η(μ) = 0,434587

η(1 – μ) = 0,223118

η(μ) + η(1 – μ) = 0,434587 + 0,223118 = 0,657688

На один символ теряется информация 0,584239 (дв. ед.).

Пропускная способность канала равна:

С = 78∙(1 – 0,657688) =26,7≈27 двоичных единиц в единицу времени.

Максимальное количество информации, которое может быть передано по двум каналам в единицу времени:

27∙2 = 54 (дв. ед.), чего не достаточно для обеспечения передачи информации от источника, так как источник передает 110 дв. ед. в единицу времени. Для обеспечения передачи информации в достаточном объеме и без искажения необходимо увеличить количество пропускных каналов связи до трех. Тогда максимальное количество информации, которое может быть передано по трем каналам в единицу времени:

3*54=162 двоичных единиц в единицу времени. 162>110, следовательно информация будет передаваться без искажений.

Для передачи информации без задержек можно:

1. Использовать способ кодирования-декодирования;

2. Применять компандирование сигнала;

3. Увеличить мощность передатчика;

4. Применять дорогие линии связи с эффективным экранированием и малошумящей аппаратурой для снижения уровня помех;

5. Применять передатчики и промежуточную аппаратуру с низким уровнем шума;

6. Использовать для кодирования более двух состояний;

7. Применять дискретные системы связи с применением всех посылок для передачи информации.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13



Рекомендуем почитать

Наверх