Программы для разгона процессора Intel. Программы для разгона процессора Intel Энергопотребление и температуры

Для Андроид 22.10.2020
Для Андроид

Вступление

В первом обзоре процессоров Sandy Bridge (Core i5-2400 и Core i7-2600) я несколько раз обращал внимание читателей, что исследование новых CPU является неполным без участия «самых-самых оверклокерских» моделей с индексом К.

На тот момент Sandy Bridge еще не был официально представлен и таких процессоров в России были считанные единицы, так что для редакции overclockers.ru стоило больших трудов достать сразу пару CPU на тестирование. Речи о том, чтобы еще и выбрать конкретные модели, вообще не шло. В завершении обзора я пообещал читателям вскоре раздобыть экземпляр с индексом «K». В силу обстоятельств и большой загрузки тестами новых ускорителей nVidia сделать это быстро не получилось.

Попробую исправиться, пусть и с опозданием. На сегодняшний день «разблокированные» Sandy Bridge успешно обосновались в системных блоках многих посетителей форума overclockers.ru, уже накоплены некоторые данные о разгонном потенциале этих CPU.

Так что данная заметка о разгоне не претендует на какую-то ультра-новизну и «открыть Америку» автор не пытается. Это скорее материал «вдогонку», где будут учтены не только данные, полученные при тестировании. Будет приведен ряд собственных соображений по поводу новых процессоров и сравнение Intel Core i5-2500 «лоб в лоб» с парой очень популярных и активно разгоняемых моделей предыдущего поколения. Надеюсь, что это станет полезным для читателей, подумывающих о переходе на новую платформу LGA1155 .

Архитектура и положение в модельном ряду

о моделях Core i7-2600К и Core i5-2500K с разблокированным множителем. Если у большинства CPU Sandy Bridge максимальное значение множителя лежит в пределах 35-38 единиц (с учетом «резерва» Turbo Boost), то на этих моделях его можно увеличить до 57 единиц (а в некоторых случаях даже до 59, но с обязательным снижением частоты тактового генератора). Номинальная частота системной шины для всех процессоров Intel нынешнего поколения составляет 100 МГц. Путем нехитрого умножения (100 х 57) можно определить, что максимальная частота удачных моделей с индексом «K» может доходить до 5700 МГц даже без разгона системной шины.

Есть еще одно обстоятельство, которое лично мне очень нравится. Intel не стала «приделывать» к названию этих CPU слово Extreme и продавать потом по $1000 за штуку (так было с «разблокированными» моделями в предыдущих поколениях). Стоимость Intel Core i7-2600 составляет $317 (здесь и далее: для партии из 1000 штук - стандарт производителя), при этом цена обычного Intel Core i7-2600 - $294. Получается, за возможность разгона надо доплатить всего $23, что не так уж и много, учитывая какой рост частоты можно получить. Такая же ситуация и с Core i5-2500К, который стоит $216, тогда как обычный 2500-й тянет на $205.

Итак, существуют только две модели, пригодные для серьезного разгона, и разница по цене между ними составляет добрую сотню долларов. За что же берут эти деньги? Ключевое отличие процессоров Intel Core i5 и Intel Core i7 - поддержка Hyper Thrеading. Core i7-2600K способен одновременно обрабатывать до восьми потоков. Вкупе с высокой удельной производительностью архитектуры и возможностью достижения высокой рабочей частоты этот процессор может оказаться настоящим «чемпионом» в многопоточных расчетах.

Core i5-2500 умеет считать только в четыре потока, поскольку не поддерживает HT. Так ли это плохо? На мой взгляд, в данный момент и на ближайший год - это не критично. Игры и «софт» сейчас успешно освоили многоядерные процессоры. Ситуация тут не в пример лучше, чем всего год-полтора назад. Однако работать более чем с четырьмя потоками пока умеют только немногочисленные приложения и единичные игры. Четыре «физических» ядра 2500K - это вполне достаточное количество для современных игр, заметный проигрыш может наблюдаться только при профессиональном использовании компьютера: рендеринге, работе с графическими редакторами или сложными программами проектирования и «обсчета» различных конструкций.

Есть еще одно небольшое отличие Core i5 и i7 - это объем cache-памяти третьего уровня. У старших CPU он составляет 8 Мбайт, у младших - только 6 Мбайт. Мои собственные тестирования и эксперименты коллег убедительно доказывают, что это преимущество дает реальный эффект далеко не во всех случаях, а там, где он есть, наблюдается разница в считанные проценты. Да и вообще, Intel Sandy Bridge - сущая «числодробилка», а уж в разгоне до 4,5+ ГГц... в общем, 2 Мбайта cache L3 погоды не делают.

В общем и целом, Core i5-2500K представляется мне более выгодной покупкой по соотношению цена/качество, особенно если бюджет на системный блок не достигает «космических» значений. Лишнюю сотню долларов разумнее потратить на более мощную видеокарту.

Основой тестового стенда стала материнская плата ASUS P8P67 Pro. Сразу скажу, что это очень интересный и добротный продукт, на данный момент готовится его подробный обзор. У данной платы много интересных «фишек», но я пока не буду раскрывать все карты, а скажу лишь, что система питания была настроена таким образом, чтобы обеспечивать максимально точное соответствие напряжения питания CPU, которое выставлено в BIOS, реальному (без просадок и завышений).

Процессор Intel Core i5-2500K разгонялся с увеличением множителя. На первом этапе тестов я решил не экспериментировать с частотой системной шины, так как уже не раз подчеркивалось, что Sandy Bridge таким способом можно разогнать только на несколько процентов.

В качестве стартового напряжения было выбрано значение 1,15 В. Назову это «холодным разгоном», когда температура процессора даже в тяжелых тестах не слишком высока. Подобный вариант может быть интересен «фанатам тишины», использующим низкооборотные вентиляторы, или просто обладателям не очень производительных кулеров, которые могут перекочевать на LGA1155 c предшествующей платформы LGA1156. В общем - пока обойдусь без «экстрима».

На пробу был выставлен множитель CPU, равный 40 единицам. В этом случае можно получить «ровную» частоту 4000 МГц, которая еще совсем недавно была своеобразным «стандартом» разгона. Сможет ли процессор работать в тестах на 4 ГГц при таком низком напряжении? Удивительно, но да! Вот скриншот предварительной проверки 10 прогонами Linpack c объемом задачи 2048 Мбайт.

После этого были проведены и другие тесты, но температура не превысила значений, представленных на скриншоте. Как говорится, снимаю шляпу: 4000 МГц, 1,15 В и 49 градусов по самому горячему ядру в Linpack. Отмечаю, что температура самого холодного ядра составила всего 43-градуса: такое может произойти из-за чуть другого расположения датчика, неравномерного прилегания кристалла к обратной стороне крышки или просто ее кривизны. Если вести понятие «усредненная температура ядер», то получится результат на уровне 46 градусов.

В стенде используется один из лучших процессорных радиаторов современности - Noctua NH-D14, да еще и с высокоскоростными вентиляторами Scythe Slip Stream (~1700 об/мин во время теста), и все равно температурные данные по-хорошему удивляют. Заменой термопасты (по старинке задействовалась КПТ-8) можно «срезать» еще несколько градусов.

В дальнейшем выяснилось, что с множителем 40 единиц я попал в точку. При следующем значении 41 (CPU - 4100 МГц) было невозможно даже загрузить операционную систему. Отмечу, что протестированный ранее процессор Intel Core i7-2600 также мог работать на частоте 4070 МГц при напряжении менее 1,2 В. Следовательно, подобные результаты достижимы для многих Sandy Bridge.

На таком разгоне останавливаться, разумеется, рано, ведь подобных частот может достичь и обычный Sandy Bridge без индекса «K» в случае удачного разгона по шине. Пользователь, переплачивающий за «разблокированную» модель, явно рассчитывает на большее.

Попробую увеличивать напряжение шажками по 0,1 В. Итак, 1,25 В - тоже совсем не «страшное» значение, при котором 45 нм Bloomfield или Lynnfield только начинают «просыпаться», часто не достигая отметки 4000 МГц.

Какое же значение множителя выбрать. Хорошо, обнаглею и выставлю 45 - вдруг «заведется»? - Завелось! Удалось загрузить операционную систему, но при попытке запуска любого теста происходил вылет в «синий экран». Любопытно, а если чуть меньше, например - 44?

Полет нормальный. Причем нет даже намека на нестабильность, я несколько раз прогнал Linpack, в том числе с увеличенным объемом задачи и парочку многопоточных тестов, активно нагружающих все ядра процессора.

Температура самого горячего ядра выросла на 9 градусов (до 58), усредненная температура ядер составила ~55 градусов. Хм, опять упомяну процессоры предыдущего поколения - вы можете представить себе Core i7-930 на частоте 4400 МГц, демонстрирующий такие температуры (это, если вообще повезет, и такая частота будет достигнута «на воздухе»)? Вот и я не могу. Ради интереса были снижены обороты вертушек до 950 об/мин (тот уровень, когда «субъективное ухо» перестает улавливать их шум) - система оставалась стабильной, хотя ядра CPU в Linpack прогрелись на 12-14 градусов сильнее.

Следующий шаг - напряжение 1,35 В. Это уже серьезное значение, тут не лишним будет предпринять дополнительные меры для успешного разгона. В частности я зафиксировал все «второстепенные» напряжения с небольшим превышением номинального значения. По умолчанию на плате ASUS все они стоят в положении «Auto», но кто его знает, что может «учудить» материнка.

Использовались следующие значения напряжений:
VCCSA - 0,95 В;
VCCIO - 1,075 В;
CPU PLL - 1,9 В;
PCH - 1,06;
DRAM - 1,65 В (стандартное значение для используемых модулей).

Читатели, уже знакомые с разгоном Sandy Bridge, могут отметить, что значительно повышено только напряжение CPU PLL (считается, что это может увеличить разгонный потенциал процессора). Остальные напряжения (System Agent, IO и южный мост) были подняты совсем чуть-чуть - скорее по привычке, чем для реальной пользы.

При напряжении 1,35 В я начал разгон с установки множителя CPU равного 46 единицам. Никаких проблем со стабильностью на частоте процессора 4600 МГц выявлено не было. Следующий шаг - 4700 МГц, ситуация повторилась. Еще больше? Ок, множитель 48, частота 4800 МГц - стабильно!

На этом значении процессор наконец-то «наелся», попытки выставить 49 единиц CPU Ratio приводили к зависанию еще до начала загрузки операционной системы.

Температура самого горячего ядра достигла значения 70 градусов по Цельсию. Это уже больше похоже на привычные цифры, получаемые при разгоне старых 45 нм процессоров. При этом отмечаю, что самое холодное ядро нагрелось всего до 62 градусов, а усредненная температура составила ~66 градусов. По-прежнему возможно «убрать» обороты вентиляторов до комфортного значения 1050-1150 об/мин, система остается стабильной, ядра прогреваются на 9-15 градусов сильнее.

Кстати, не стоит забывать, что я говорю о температуре в Linpack, показатели в других тестах (даже многопоточных) ниже на десяток и более градусов.

Логическим завершением тестирования стала проверка разгонного потенциала CPU при напряжении 1,4 В. В интернете упорно ходят слухи, что превышение этого порога со временем неминуемо приводит к деградации процессора. Это означает, что CPU начинает «терять» частоту: снижается максимально достижимое значение, а для получения тех же цифр, что раньше, приходится выставлять большее напряжение.

Тут есть сразу несколько вопросов и сомнительных моментов. Каков механизм деградации? На всех ли процессорах она проявляется при одном и том же напряжении? Связана ли деградация с температурным режимом? Связана ли она с «удачностью» того или иного экземпляра процессора, и, если да, то как? Точных ответов на эти вопросы никто не знает, вот и приходится прикрываться фиговым листком «1,4 В - максимум».

Кстати, а почему 1,4? Почему не 1,38 или 1,41? И почему на новых 32 нм процессорах этот порог максимального напряжения остался тем же, что и на 45 нм Bloomfield/Lynnfield? Техпроцесс ведь стал тоньше, рабочие напряжения снизились, а «заколдованное» напряжение так и осталось на своем месте. В общем, все это смахивает на сказку-страшилку. Да, я верю, что процессоры могут деградировать - такие случаи есть, но вот в «порог 1,4 В» поверить мне трудновато. Хотя для самых бережливых и боязливых оверклокеров я бы вообще рекомендовал снизить максимальное значение напряжения Sandy Bridge до ~1,35 В из-за 32 нм техпроцесса (это, по крайней мере, выглядит логично).

Тем более, что толку от последнего «шажка» 1,35 -> 1,4 В оказалось совсем немного. Если при более низких значениях процессор уверенно набирал частоту от шага к шагу, то тут прирост составил всего 100 МГц.

Вот, собственно и «упор». Причем не только по частоте, но и по температуре. Самое горячее ядро прогрелось до 75 градусов. Большинство процессорных радиаторов значительно уступают Noctua NH-D14 с высокооборотными вентиляторами, так что используя их (да еще и в комфортном по шуму режиме) в этом тесте можно легко уйти далеко за 80 градусов. В общем, напряжение 1,4 В еще является для Sandy Bridge рабочим, но тут уже нужно как следует подходить к подбору кулера. Меньшие значения (1,3-1,35 В) тоже позволяют достигать приличных частот, но гораздо менее требовательны в этом плане.

Далее автор предпринял ряд экспериментов для преодоления частоты 4900 МГц при том же напряжении. Для начала, частота BCLK была поднята на 1 МГц. Вкупе с высоким множителем (49 единиц), это должно дать результат на уровне 4950 МГц. Система оказалась нестабильна, хотя и могла загрузить операционную систему.

Зайдем с другого бока. Что если попробовать понизить множитель, но «добить» итоговую частоту шиной? Выставив CPU Ratio равным 47, я задал частоту BCLK 105 МГц (для платы ASUS это значение не является максимальным). Одновременно был понижен множитель оперативной памяти, чтобы модули не оказались переразогнанными. Процессор смог работать в тестах на частоте 4935 МГц, но следующий шаг по шине до 106 МГц опять вывел систему из состояния стабильности.

В целом, самый обычный разгон по множителю оказался намного проще и эффективнее. Задействуя шину, постоянно получаешь нестандартные значения частоты оперативной памяти, что приводит к неудобствам. Кроме того, разгон по шине может привести к увеличению частоты контроллера памяти, шины PCI и остального - их множители заблокированы и не поддаются регулировке. Неизвестно, как это отразится на работе системы в целом.

Данные собраны, теперь необходимо понять, получен ли такой разгон из-за исключительной удачности процессора или он является типичным.

В новостной ленте overclockers.ru несколько раз публиковались заметки о достижении очередного мирового рекорда разгона Sandy Bridge с приведением статистики собранной HWBot. Рекордными являются значения 5700-5850 МГц, полученные на исключительно удачных отборных процессорах, которые могут работать при множителе 56-57. Таких CPU единицы, плюс для достижения рекордов применяется очень высокое напряжение. А вот результатов на уровне 5300-5400 МГц очень много, это тоже удачные процессоры, но их процент не в пример выше.

Можно определить и нижнюю границу. Согласно сообщениям на форуме, даже самые неудачные экземпляры 2500K/2600K берут частоты порядка 4400 МГц. При этом владельцы таких процессоров, как правило, и не стараются получить больше, ограничиваясь небольшим повышением напряжения. В разделе сайта «статистика разгона процессоров» есть только два результата разгона «разблокированных» процессоров. Один результат - 4700 МГц для повседневного использования, другой - 5000 МГц для расчетов Folding@Home.

Принимая во внимание еще ряд данных, почерпнутых на заграничных форумах, вырисовывается следующая общая картина . Если отмести уж совсем неудачные экземпляры, которые попадаются так же «часто» как и рекордные, то покупатель Sandy Bridge «K» может рассчитывать как минимум на достижение частоты 4400-4500 МГц. Такие результаты наблюдаются при использовании не самых эффективных систем воздушного охлаждения и при напряжениях, не превышающих 1,325-1,35 В. Более «смелый» оверклокер, располагающий хорошим производительным кулером, может рассчитывать на дополнительные 100-200 МГц.

При чуть большем везении приобретенный процессор может «взять» и 5 ГГц в режиме, пригодном для повседневного использования. Такие результаты тоже нередки. В общем, я ошибусь максимум на сотню МГц, если обозначу частотный потенциал «случайного» Sandy Bridge как 4600-5000 МГц . Можно отметить, что это выше, чем в предыдущем поколении: 45 нм процессоры традиционно «гонялись» в пределах 4100-4400 МГц «на воздухе».

Таким образом, протестированный процессор вряд ли является выдающимся по своим характеристикам: в условиях хорошего теплоотвода и с повышением напряжения до 1,4 В такие частоты могут продемонстрировать многие Sandy Bridge. Если говорить максимально осторожно, данный CPU можно назвать только «не неудачным», в том плане, что он хорошо реагирует на поднятие напряжения и не «упирается» в частоту раньше времени.

Ах да, чуть не забыл. Я никак не мог позволить себе остановиться в 50 МГц от заветной цифры 5 ГГц и не попробовать достичь данной отметки. Помимо улучшения личного рекорда по разгону на воздухе, это позволит понять, остался ли у процессора «запас», или он окончательно «уперся» в множитель. При напряжении 1,49 В удалось снять скриншот на частоте 5200 МГц. Возможно, при дальнейшем увеличении «вольтажа» реально было добиться и стабильности системы в тестах. Я отказался от этой затеи, опасаясь той самой деградации, а при указанном напряжении система зависала в самом простом тесте Super-Pi. В любом случае, такой результат недоступен даже отборным CPU предыдущего поколения.

Заключение

Общие выводы будут разделены на два «блока».

Первый. Выводы по разгонному потенциалу исследованного CPU.
Для покорения частоты в 4 ГГц процессорам Sandy Bridge зачастую достаточно напряжения 1,15-1,2 В, чем достигается невысокий уровень тепловыделения при очень солидной производительности CPU. Положительный момент состоит в том, что в связке с этими процессорами можно запросто использовать устаревшие/слабые/дешевые кулеры (что может снизить общую стоимость нового «системника» в сборе). Такой вариант придется по нраву любителям тишины - при грамотном подходе для охлаждения может хватить самых низкооборотных вентиляторов или даже пассивной системы.

Общие разгонные характеристики новых процессоров очень впечатляют. Выше я приводил статистические сведения, но повторюсь: 4500 МГц с использованием воздушного охлаждения теперь можно считать посредственным результатом, многие процессоры могут разгоняться до более высоких значений. При этом чаще всего не нужны сверхвысокие напряжения - 1,35 В хватит, чтобы выжать из процессора 90% частотного потенциала «на воздухе».

Исследованный процессор продолжает уверенно набирать частоту и после прохождения «критической» отметки напряжения в 1,4 В. Эта информация может быть интересна любителям соревноваться в различных бенчмарках, которые практикуют кратковременный разгон с завышением «вольтажа». Процесса деградации при проведении тестов не наблюдалось. Я не буду комментировать этот факт, а лишь порекомендую соблюдать осторожность даже в таком увлекательном деле, как «разгон за 5 ГГц».

Разгон процессоров Sandy Bridge c индексом «K» очень прост и не требует особых навыков оверклокинга. Достаточно постепенно повышать напряжение питания и множитель CPU, отслеживая температуру процессора и стабильность системы. Для улучшения результата полезным может оказаться незначительное повышение второстепенных напряжений, особенно CPU PLL. Рекомендую не превышать при этом отметки 1,9 В.

Разгон с увеличением частоты BCLK для исследованного процессора оказался практически бесполезным. Кроме того, такой метод приводит к получению «кривых» значений частоты оперативной памяти. Описаны случаи, когда отдельные экземпляры Sandy Bridge очень рано «упирались» именно в множитель, а не в абсолютную частоту, в этой ситуации разгон BCLK может принести дополнительные 100-200 МГц. Советую попробовать и этот метод разгона, хотя бы в качестве интересного эксперимента.

Второй. Выводы по производительности разогнанного Intel Core i5-2500K и области его применения.
Сверхвысокие частоты и общая продуманность архитектуры Sandy Bridge позволяют исследованному процессору демонстрировать выдающуюся производительность в любых тестах. Если речь идет о расчетах в 1-2-3-4 потока, то новый CPU превосходит всех возможных конкурентов, кроме старшей модели Intel Core i7-2600K.

При расчетах в 5 и более потоков производительность процессора ограничена из-за отсутствия Hyper Threading. Хотя запаса по частоте хватает, чтобы успешно конкурировать с лучшими 45 нм процессорами Intel на ядрах Lynnfield и Bloomfield.

Для игрового компьютера новый процессор будет не так полезен. К примеру, причин переходить с разогнанных Core i7-9xx или Core i7-8xx на новую платформу я не вижу. В «тяжелых» играх, где вся нагрузка ложится на плечи видеокарты, разница будет совершенно незаметна. В легких играх с использованием очень мощного ускорителя топ-уровня результат будет, но к чему он, если FPS и так «зашкаливает»? C «прокачкой» видеокарт среднего класса с успехом справятся гораздо более скромные и дешевые процессоры.

Совсем другое дело, если мозгом вашего ПК являются процессоры Intel E7x00-8x00 или заслуженный «квад» Q6600 (а таких систем много). В этом случае Core i5-2500K - прекрасный выбор для новой сборки. С его приобретением вы сможете поставить новые личные рекорды частоты и уж точно отчетливо заметите ускорение работы компьютера. Да и стоимость такой конфигурации не будет беспредельной, ее приобретение получится гораздо более выгодным, чем переход год-полтора назад на Intel LGA1366.

Забегая вперед, отмечу, что модель Intel Core i7-2600K при частотах порядка 5000 МГц вообще не находит достойного конкурента на рынке «настольных CPU». Исключением может быть разве что 32 нм шестиядерный процессор Intel Gulftown. Сочетание Hyper Threading, 8 Мбайт cache L3 и отличного разгонного потенциала должно принести этому CPU победу над любым соперником, как в однопоточных, так и в многопоточных расчетах. Впрочем, это «лирическое отступление», чтобы делать такие заявления, автору необходимо воочию познакомиться с этой моделью.

Проблемы при регистрации на сайте? НАЖМИТЕ СЮДА ! Не проходите мимо весьма интересного раздела нашего сайта - проекты посетителей . Там вы всегда найдете свежие новости, анекдоты, прогноз погоды (в ADSL-газете), телепрограмму эфирных и ADSL-TV каналов , самые свежие и интересные новости из мира высоких технологий , самые оригинальные и удивительные картинки из интернета , большой архив журналов за последние годы, аппетитные рецепты в картинках , информативные . Раздел обновляется ежедневно. Всегда свежие версии самых лучших бесплатных программ для повседневного использования в разделе Необходимые программы . Там практически все, что требуется для повседневной работы. Начните постепенно отказываться от пиратских версий в пользу более удобных и функциональных бесплатных аналогов. Если Вы все еще не пользуетесь нашим чатом , весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта. Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD. Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке .

Железный эксперимент: разгон процессоров Intel Core i5-6400 и Core i3-6300T

Под давлением Intel разгон центральных процессоров Core стал исключительно прерогативой зажиточных пользователей. Хочешь больше мегагерц, не хватает быстродействия? Покупай самый дорогой чип в линейке, а вместе с ним и матплату соответствующего уровня! С выходом 14-нанометровых Skylake показалось, что «избушка» повернулась к нам передом. Перекрестившись, изучаем лазейку по разгону неоверклокерских чипов Intel Core шестого поколения.

Удивляться такому положению дел не приходится. Начиная со второго поколения процессоров Core (Sandy Bridge), в сериях Core i5 и Core i7 есть два-три флагманских процессора, оснащенных разблокированным множителем. Эти чипы имеют отличительную оверклокерскую символику — литеру «К» в названии. Разгон таких моделей сводится к простому увеличению коэффициента умножения. Легендарный Core i5-2500K, выпущенный в 2011 году, спокойно разгонялся до 5 ГГц с применением воздушной системы охлаждения. Остальные модели — те, что без разблокированного множителя, — остались без оверклокинга вообще. Разгон по шине Intel заблокировала.

С выходом третьего поколения Core ситуация ухудшилась. Вместо припоя, используемого в Sandy Bridge, Intel стала добавлять под крышку процессоров Ivy Bridge термопасту весьма посредственного качества. В итоге к откровенно куцему списку оверклокерских моделей с разблокированным множителем прибавились общее снижение разгонного потенциала и увеличенные требования к охлаждению. Энтузиасты вновь вспомнили про скальпирование . Современные решения — Haswell, Broadwell и Skylake — переняли все антиоверклокерские «фишки». Так и живем.

Сегодня, в международный день оверклокинга, я подробно расскажу о том, как обойти запрет по разгону процессоров Skylake без разблокированного множителя. И что для этого необходимо.

Хронология событий

Летом 2015 года вышла линейка современных 14-нанометровых чипов Skylake. В этот раз Intel начала с топовых моделей, а потому первыми в продажу поступили оверклокерские Core i5-6600K и Core i7-6700K . Процессоры получили не только разблокированный множитель, но и возможность разгона за счет увеличения частоты тактового генератора BCLK (разгона по шине). Я несказанно обрадовался этому факту, так как заранее присвоил такую возможность всем остальным (еще не вышедшим в продажу) «камням» Skylake. Радовался недолго: вскоре стало ясно, что по шине разгоняются исключительно Core i5-6600K и Core i7-6700K. И только на платах с логикой Z170 Express.

В декабре 2015 года филиппинский энтузиаст Dhenzjhen разогнал процессор Core i3-6320 до 4680 МГц. Для этого оверклокер увеличил BCLK материнской платы Supermicro C7H170-M до 120 МГц. Чуть позже другой процессор, Core i3-6100, разогнали до 6104 МГц при помощи жидкого азота, увеличив частоту шины до 165 МГц. Оказалось, что инженеры Supermicro обошли блокировку. Чуть позже подтянулись остальные производители: ASRock, ASUS, BIOSTAR, EVGA, GIGABYTE и MSI. Перечисленные компании представили специальные прошивки для целого ряда материнских плат.

Первое правило оверклокерского клуба: не рассказывать об оверклокерском клубе. Сначала во всеуслышание о разгоне неоверклокерских Skylake заявила компания ASRock. Появилась целая маркетинговая технология под название Sky OC: обновляешь BIOS, активируешь эту функцию, разгоняешь процессор по шине. Пафоса было немерено. Другие производители оказались скромнее. Например, на сайте ASUS вы не найдете необходимых прошивок для матплат Z170 Express. BIOS’ы переданы оверклокерам с форума hwbot.org . Таким образом, к ASUS никак не подкопаться, все вопросы к энтузиастам. ASRock в итоге принудили отказаться от поддержки функции Sky OC. В новых прошивках ее больше нет. Информации по другим брендам на момент написания статьи не поступало, но не исключаю сценария, в котором Intel «прижмет» и другие бренды. Все это наводит на определенные мысли. Во-первых, «оверклокерскую революцию» устроили производители матплат. Их легко понять: в 2015 году продажи технологичного текстолита упали в среднем на 20%, а возвращение к истокам разгона — хороший способ подтолкнуть пользователя к переходу на новую платформу. Во-вторых, Intel принципиальна. Чипмейкер сказал: разгоняются только Core i5-6600K с Core i7-6700K — и точка. Жирная.

Экономическая целесообразность

Оверклокинг делает жизнь бедняков краше. Изначально разгонять железо начали исключительно ради выгоды. Цепочка упрощена, но: берем дешевый процессор, увеличиваем производительность до уровня более дорогого представителя, радуемся полученному результату и собственной находчивости. Теперь же, повторюсь, Intel превратила оверклок в дополнительный бонус для тех, кто изначально не экономит.

За примером далеко не пойду. Взглянем на основного конкурента Intel — AMD. У «красных» есть линейка процессоров FX. Каждая модель оснащена разблокированным множителем. В итоге любой желающий может купить какой-нибудь FX-8320E (10 000 руб.) и мановением указательного пальца правой руки превратить его в FX-8370 (17 000 руб.), а то и вовсе в FX-9370 (19 000 руб.). Да и приличная часть гибридных APU оснащена разблокированным множителем. В плане лояльности к энтузиастам к AMD нет никаких нареканий, их позиция достойна похвалы.

Впрочем, с «красными» все ясно. Возможность разгонять все без исключения FX-чипы — это еще один козырь в борьбе с Intel, которая давно задает планку на рынке центральных процессоров. Не вижу смысла раскрывать этическую сторону этого вопроса. Статья не об этом. Просто есть факт: разгон экономит денежные средства. Еще один пример — сборка непосредственно системного блока на платформе LGA1151. Допустим, что самый дешевый четырехъядерник, Core i5-6400, разгонится до частот, заведомо превышающих скорость работы старшей модели Core i5-6600. Для этого нам потребуется более качественное охлаждение и более дорогая плата на чипсете Z170 Express. Даже в этом случае мы либо экономим, либо получаем большую производительность за те же деньги, либо и то, и то сразу. Звучит заманчиво, правда? К сожалению, разгону неоверклокерских Skylake характерны несколько ограничивающих факторов. О них поговорим далее.


Методология разгона и подводные камни

О первом факторе я уже сказал. Для разгона не К-чипов Skylake требуется плата исключительно на чипсете Z170 Express. Ограничение формальное, внедрено либо Intel, либо производителями материнских плат. Доказать это очень просто, ведь первые успехи по разгону неоверклокерских чипов получились при помощи Supermicro C7H170-M, построенной на логике H170 Express.

Полный перечень материнских плат легко найти в интернете. Я приведу список наиболее доступных моделей от ASRock, ASUS, GIGABYTE и MSI. Покупать более дорогие платы для разгона неоверклокерских Skylake не вижу смысла. Теряется так рьяно пропагандируемый мной эффект экономии. Да и сборки, в которых матплаты стоят дороже процессоров, выглядят весьма странно.

Для разгона по шине необходима специальная версия BIOS. Сначала перепрошиваемся, затем занимаемся оверклокингом. В гиперссылках — архивы с BIOS’ами для всех матплат от ведущих производителей.

Материнские платы, поддерживающие разгон процессоров Skylake без разблокированного множителя

ASRock (скачать BIOS) ASUS (скачать BIOS) GIGABYTE (скачать BIOS) MSI (скачать BIOS)
  • Z170 Pro4;
  • Z170 Pro4S;
  • Z170 Pro4D3;
  • Z170 Gaming K4;
  • Z170 Gaming K4D3.
  • Z170M-E D3;
  • Z170-P D3;
  • Z170M-Plus;
  • Z170-P;
  • Z170-K;
  • Z170 Pro Gaming;
  • Z170-E;
  • Z170-A.
  • GA-Z170-HD3;
  • GA-Z170XP-SLI;
  • GA-Z170X-UD3;
  • GA-Z170M-D3H;
  • GA-Z170-D3H;
  • GA-Z170-Gaming K3;
  • GA-Z170-HD3P.
  • Z170A TOMAHAWK;
  • Z170 KRAIT GAMING;
  • Z170-A PRO;
  • Z170A PC MATE;
  • Z170A-G43 PLUS;
  • Z170A SLI PLUS;
  • Z170M MORTAR.

А вот мой джентльменский набор:

Единственный способ разгона неоверклокерского Skylake — увеличить частоту тактового генератора BCLK (шины). Результирующая частота центрального процессора зависит от произведения шины и коэффициента умножения. Чипы в одной линейке делятся по скорости работы. У кого-то множитель больше, у кого-то меньше. Чтобы разогнать Core i5-6400 до 4500 МГц, придется увеличить частоту шины до 4500/27=167 МГц. Чтобы на такой скорости заработал Core i5-6600, потребуется поднять BCLK до 4500/33=136 МГц. Во втором случае вероятность покорения заветных 4,5 ГГц гораздо выше.

Разгон процессоров Skylake по частоте BCLK (шине)

Частота BCLK \ Множитель процессора
100 МГц
110 МГц
120 МГц
130 МГц
150 МГц
170 МГц

Разгон — это всегда лотерея. С неоверклокерскими чипами на итоговый результат влияют сразу два фактора: потенциал как самого чипа, так и материнской платы. С момента выхода платформы LGA1151 тестовая лаборатория познакомилась с несколькими Z170-устройствами. Каждая плата вела себя по-разному. Мне удалось разогнать ASUS MAXIMUS VIII EXTREME до 360 МГц по шине, а MSI Z170A GAMING M7 — до 158 МГц.

Эксперимент проводился над процессорами Core i5-6400 и Core i3-6300T (обзор). Легких путей я не искал, так как обе модели работают на весьма низких множителях. Интереснее всего разгонять четырехъядерник. По статистике, эта модель очень даже хорошо разгоняется, но, как мы уже выяснили, требуется определенный запас прочности и от материнской платы. С другой стороны, в сравнении с дефолтными 2,7 ГГц оверклок даже до 4 ГГц даст ощутимый прирост производительности. Что нам и нужно.

Третий ограничивающий фактор — отключение энергосберегающих функций неоверклокерских Skylake. Для успешного разгона потребуется деактивировать следующие функции: Intel SpeedStep, CPU C states и Turbo Boost (Turbo Mode). Ниже приведен скриншот BIOS матплаты ASUS Z170-PRO Gaming. Эти три функции отключаются в ветке Advanced/CPU Configuration/CPU Management Configuration. Без них центральный процессор всегда будет работать на максимальной частоте при заданном напряжении. Ничего страшного в этом нет. Skylake отличаются высокой энергоэффективностью и греются не так сильно, как те же Haswell, например.

Четвертое ограничение — отключаются датчики температуры ядер процессора. Следить за термическим состоянием кристалла можно лишь по единственно доступному параметру CPU Package. Это температура области под теплораспределительной крышкой, ядра чипа греются приблизительно до такого же значения, но бывают исключения.

С цветочками познакомились, пора поговорить о ягодках. Есть у разгона два серьезных ограничивающих фактора. Первый такой: оверклок по шине приводит к отключению встроенного графического ядра. Windows элементарно не загружается. Если в системе используется дискретная видеокарта, то, прямо скажем, потеря невелика. Во всех остальных случаях про разгон неоверклокерских Skylake придется забыть.

Второй серьезный ограничивающий фактор — снижение скорости выполнения AVX/AVX2-инструкций. Возьмем тесты FPU бенчмарка AIDA64. Выполнение паттернов Mandel и Julia существенно замедлилось на разогнанном процессоре. Да и в тесте VP8 прирост получился какой-то несерьезный. Поэтому производительность софта, задействующего инструкции AVX/AVX2, может быть снижена. Что это за приложения? Векторные системы команды используют кодировщики видео, программы 3D-моделирования, некоторые фоторедакторы и даже компьютерные игры (GRID 2).

Наличие шести ограничивающих факторов, особенно тех, что влияют на общую производительность системы, откровенно расстраивает. Все они — софтверные, внедрены специально, ведь тот же Core i5-6400 ничем не отличается от оверклокерского Core i5-6600K. Вывод напрашивается сам собой: палки в колеса энтузиастов вставляются, чтобы как можно сильнее уменьшить пул желающих поднять своему Skylake-чипу несколько сотен мегагерц, а, следовательно, сэкономить на покупке более дорогой и быстрой модели процессора.

Разгон тестовых образцов

Вооружившись полученными знаниями, приступаем к нелегитимному разгону Core i3-6300T и Core i5-6400. Отключаю функции Turbo Boost, SpeedStep и C states. Далее выставляю для всех ядер процессора множитель, соответствующий номинальной частоте процессора. У Core i5-6400 — x27, у Core i3-6300T — x33. Все, можно повышать скорость работы тактового генератора. В стенде использовался классический комплект оперативной памяти DDR4-2133 с задержками CL15. Я не стал его разгонять, поэтому при поднятии частоты шины эффективная частота ОЗУ регулировалась уменьшением делителя (функция DRAM Frequency в BIOS матплат ASUS).

Core i3-6300T оказался весьма посредственен в разгоне, что только подтверждает сказанное ранее: оверклокинг — это всегда лотерея! Частоту чипа удалось увеличить с 3,3 ГГц до 4,29 ГГц. Почти на 1 ГГц, или на 30%. «Посредственен», потому что все познается в сравнении. Частота Core i5-6400 увеличилась с 2,70 ГГц до, держите меня семеро, 4,94 ГГц — почти на 83%! В интернете полно валидаций, когда младший 4-ядерный Skylake успешно разгоняли до 4,7/4,8 ГГц. Так что подобный результат — закономерность. Для получения 4,29 ГГц для Core i3-6300T пришлось поднять частоту тактового генератора всего до 130 МГц, а напряжение VCore — до 1,4 В. С таким оверклоком справится абсолютное большинство матплат на чипсете Z170 Express. А вот разгон Core i5-6400 до 4,94 ГГц станет серьезным испытанием, ведь придется поднять шину до 183 МГц. Напряжение чуть больше — 1,42 В. Замечу, что в обоих случаях речь идет о стабильных частотах, на таких скоростях процессоры работают в режиме 24/7.

Результаты

Тестовый стенд:

  • Процессор: Intel Core i5-6600K, Core i5-6400, Core i3-6300T
  • Процессорный кулер : Corsair H110i GT
  • Материнская плата: ASUS Z170 PRO Gaming
  • Видеокарта: AMD Radeon R9 Nano, 4 Гбайт HBM
  • Оперативная память: DDR4-2133 (15-15-15-36), 2 x 8 Гбайт
  • Накопитель: OCZ Vertex 3, 360 Гбайт
  • Блок питания: Corsair HX850 i, 850 Вт
  • Периферия : Samsung U28D590D , ROCCAT ARVO, ROCCAT SAVU
  • Операционная система: Windows 10 х64

Начну с изучения производительность разогнанных Core i5-6400 и Core i3-6300T в тесте кэша и памяти AIDA64. Основной вывод — встроенный контроллер во время оверклока «не пострадал». Скорость операций с оперативной памятью с увеличением частоты процессоров только увеличилась.

Парадигма оверклокинга в том, что модель с разблокированным множителем — Core i5-6600K — разогналась до более скромного показателя в размере 4,7 ГГц. Таков потенциал К-процессора, попавшего в мои руки. Неудивительно, что в приложениях, не использующих команды AVX/AVX2, оверклокнутый Core i5-6400 оказался быстрее разогнанного Core i5-6600K. И это при разнице в цене в ~6000 рублей.

Самый наглядный пример — CINEBENCH R15. В этом бенчмарке разогнанный Core i5-6400 опередил Core i5-6600K на 5%. Если же сравнить младший 4-ядерник с самим собой до оверклока и после, то быстродействие чипа увеличилось на 47,5%. Core i3-6300T за счет прибавки одного гигагерца ускорился на 32,4% соответственно.

А вот и первый звоночек. Разгон ускорил обработку 3D-графики в Blender, но прирост оказался непропорционален увеличению тактовой частоты. Core i5-6400 быстрее себя самого на 33,5%, а Core i3-6300T — всего на 12,5%. Оверклокнутый Core i5-6600K победил: увеличение частоты на 32% ускорило рендеринг на 22%. А ведь Core i5-6400 в OC-режиме работал на 240 МГц быстрее.

И все же толк от разгона есть.

Заметное снижение — именно снижение, а не уменьшение прироста — производительности неоверклокерских Skylake наблюдается LuxMark 2.0 и x265 Benchmark. В первом приложении разгон Core i5-6400 на 83% привел к уменьшению баллов на 15%. У Core i3-6300T результат еще печальнее: трассировка лучей замедлилась на 40%.

В x265 Benchmark наблюдается схожая, но не такая печальная картина. Core i3-6300T после оверклока замедлился на 12,5%, Core i5-6400, наоборот, ускорился на 19,7%, но все равно отстал от разогнанного Core i5-6600K на 24,6%.

Важно помнить, что разгон — это всегда лотерея. Мне попался очень бодрый Core i5-6400, который в итоге разогнался лучше, чем специально для этого разработанный Core i5-6600K. Я не могу гарантировать, что другие пользователи смогут как минимум повторить такой результат. В принципе, до 4-4,2 ГГц Core i5-6400 разгонится точно. Это тоже очень приличный результат. Главное, чтобы матплата сумела взять 4200/27=155,5 МГц по шине.

Core i3-6300T — плохой «экспонат» для оверклокинга в домашних условиях. Вся соль этого чипа заключена в очень низком TDP. Вот и потенциал у него так себе. Лучше разгонять заведомо более быстрые модели Core i3-6100/6300. Здесь уж точно получится покорить отметку в 4,5-4,7 ГГц.

Выдвину гипотезу: AMD не в том положении, чтобы в 2016 году хоть как-нибудь ущемлять права энтузиастов. Следовательно, добрая часть чипов Zen, если их частотный потенциал окажется на высоте, получит разблокированный множитель. Если между производителями вновь возгорит жаркая конкуренция, то Intel пойдет на уступки в том числе и любителям разгона. Возможно, позабытая в далеком 2011-м году золотая эра оверклокинга вернется.

Здравствуйте админ! Читал, что недорогой четырёхъядерный процессор от Intel - Core i5-6400 (2.70 ГГц) на архитектуре Skylake имеет заблокированный множитель, но несмотря на это его можно разогнать до частоты 4.3 ГГц и работать он будет на уровне процессора i7-6700K (4.0 ГГц), который в два раза его дороже (18 тысяч рублей)! Каким образом разгоняется i5-6400 , если у него заблокирован множитель?

Разгон процессора по шине на примере i5 6400 и материнской платы Asrock Z170 Pro 4s

Итак, для начала давайте разберемся, что же такое разгон (оверклокинг), тактовая частота и производительность процессора. Разгон - это принудительное повышение характеристик оборудования для увеличения его эффективности. Мощность ЦП напрямую связана с его тактовой частотой, которая высчитывается путем умножения частоты тактового генератора BCLK (шина) на множитель (коэффицент).

Вы, наверное, замечали, что камни (сленг. – процессор) у Intel делятся на два типа, одни с индексом K на конце (i5-6600K, i5-2500K, i7-5820K и т.д.), другие без него (i7-2600, i5-7600, i5-4590). Так вот у первых множитель разблокирован и может быть легко изменен. И если вспомнить формулу, приведенную мной ранее (частота шины Х коэффициент = частота процессора), становится понятно, что если его увеличить конечная производительность вырастет. У второй категории процессоров этот множитель заблокирован производителем и сами по себе они оверклок не подразумевают. Но благодаря некоторым энтузиастам в этой сфере увеличение КПД все же возможно путем увеличения тактовой частоты шины. Хочется сразу отметить, что после разгона процессора по шине, гарантия на него спадает.

Многие спрашивают: Для чего вообще нужен оверклок?

Ответ очень прост. Разгоняя сердце компьютера, его характеристики на выходе будут значительно выше, чем в стоковом варианте. К примеру, наш i5 6400, о котором дальше пойдет речь, в конечном итоге будет работать как i5 6700 без разгона, не плохо ведь, правда? Логичный вывод из этого всего этого это банальная экономия денег. Зачем платить больше, если можно заплатить меньше и разогнать?

Второй постоянный вопрос: Зачем гнать по шине, если гарантия перестает действовать? Можно ведь купить К-процессор и разогнать по множителю?

Здесь ответ тот же самый. Экономическая целесообразность. Все дело в том, что К-процессоры стоят ощутимо дороже своих собратьев без индекса. Да и про разгон в сервисных центрах никто не узнает, если сбросить настройки БИОСа. Это всего лишь попытка разработчиков запугать нас и заставить платить больше, но мы-то с вами знаем толк, верно?

Еще один немаловажный момент, о котором стоит упомянуть, это то, что у разогнанных камней отключается встроенное видео ядро. Но если используется дискретная видеокарта, то я думаю, потеря не велика. Да и зачем нужно гнать процессор без хорошей видюхи?

Теперь, когда мы разобрались с теорией, можно приступать к практике.

Для разгона по шине нам потребуется:

Сам процессор без индекса K (возьмём Intel Core i5-6400 Processor на архитектуре Skylake).

Материнская плата нужна исключительно на 170 чипсете (Asrock Z170 Pro 4s)

Специальная версия BIOS которую можно скачать на сайте производителя.

Затем в БИОСе, на вкладке OC Tweaker/CPU Configuration, увеличиваем значение BCLK. Сильно нагружать компьютерное сердце я не стал и остановился на отметке в 159, что равняется 4.3 МГц (тактовая частота процессора).

Из-за того, что мы разогнали процессор по шине, а не по множителю у нас увеличилась и частота оперативной памяти.

Для того, чтобы камень работал стабильно и не сбрасывал новые частоты на базовые, поднимаем ему напряжение до 1.3V (было 1V ) во вкладке Voltage Configuration. Не бойтесь, интеловские скайлейки спокойно берут отметку в 1.4V при хорошем охлаждении, главное не переусердствуйте.

Процессоры линейки представлены в столь широком спектре моделей, что совсем непросто выбрать оптимальный чип для решения задач, связанных с популярным в среде российских IT-специалистов увлечением - "оверклокингом". То есть разгоном "железа". По каким критериям можно выбрать оптимально подходящий для подобных целей процессор линейки Intel Core i5? На что обращать внимание при разгоне микросхемы?

Факты о линейке чипов

Это не один процессор, а огромное семейство чипов, позиционируемое как продукция среднего ценового сегмента. По уровню производительности процессор Intel Core i5 (отзывы многих IT-специалистов подтверждают это) занимает промежуточную позицию между своими "собратьями" - i3 и i7. Каковы отличительные особенности данных чипов? Каковы основные свойственные большинству его модификаций?

Процессор, себя разгоняющий

Можно, к примеру, отметить, что в чипах линейки реализована примечательная технология Turbo Boost. Она подразумевает разгон процессора в автоматическом режиме, в случае если штатных величин, отражающих производительность, становится недостаточно. Также ряд моделей линейки имеет встроенный чип, отвечающий за независимую от видеокарты обработку графики.

Интервал тактовых частот, определяющих производительность процессора Intel Core i5, - 1,2-3,6 ГГц. Показатель скорости обмена данными через DMI более чем приличный - 2,5 ГП/сек. Технология производства чипов различна - есть те, что выпускаются на базе кристаллов в 45 нм, а есть те, в выпуске которых задействуются элементы в 32 нм. Микроархитектура процессоров данной линейки реализуется в двух вариантах - Intel Nehalem и Sandy Bridge. Количество ядер варьируется - 2 или 4, кэш второго уровня - 256 КБ (на 1 ядро), третьего - 4-6 МБ.

Многие IT-специалисты уверены, что можно осуществлять внушительный разгон процессора Intel Core i5 в большинстве его модификаций. Поэтому мы будем изучать особенности этого чипа, соотнося их с перспективами увеличения производительности методом "оверклокинга".

Особенности архитектуры

Рассмотрим для начала некоторые аспекты, отражающие строение процессора. Если вести речь о Sandy Bridge, то следует отметить, что процессор Intel Core i5, отзывы о котором особенно часто встречаются в среде энтузиастов "оверклокинга", - не единственный, где данная архитектура реализована. Sandy Bridge - это основа функционирования также i3 и i7-линеек. Вместе с тем, как отмечают эксперты, особенности данной архитектуры скорее мешают качественному разгону процессора. В связи с чем?

Специфика Sandy Bridge

Дело в том, что определенные ключевые множители, без которых разгон процессора Intel Core i5 затруднителен, во многих моделях чипов, которые оснащены Sandy Bridge, попросту заблокированы. Максимум, на что может рассчитывать "оверклокер" с таким i5 на "вооружении", - это прирост частоты порядка 900 МГц. Для профессионального энтузиаста разгона это не самый выдающийся показатель (хотя для любителя - вполне приемлемый).

Вместе с тем, есть в линейке i5 процессоры, в которых выставлять значения по необходимым множителям можно свободно. К таким чипам относится, например, Intel Core i5-2500K. Теоретически такие модели можно разгонять, как считают некоторые IT-специалисты, до 5 ГГц и выше. Многим экспертам "оверклокинга" также импонирует тот факт, что стоимость процессоров с разблокированными множителями довольно демократична. Это позволяет, например, заплатив порядка 200-250 долларов за процессор, способный хорошо "разгоняться", достичь уровня производительности едва ли не "премиальных" чипов - так считают многие специалисты.

Идеальный процессор для разгона

По версии некоторых экспертов, разгон процессора Intel Core i5 лучше всего производить в той самой модификации i5-2500K. Она и стоит сравнительно недорого - примерно столько, сколько указано выше, и результаты выдает в разогнанном состоянии весьма приличные. В некоторых аспектах "ускорения" данный процессор, как считают некоторые эксперты, вполне сравним с более престижным i7. А если сравнивать их стоимость, то соотношение цены и потенциала роста производительности, как полагают специалисты, делает i5 едва ли не более предпочтительным решением, чем та модель, что новее, но ощутимо дороже.

Безусловно, если сравнивать i7 и процессор отличия в уровне технологий есть. Например, разный в этих чипах размер кэша третьего уровня. Более старшая модель оснащена 8 МБ, младшая - 6. Однако, как отмечают многие эксперты, практической значимости эта разница в большинстве случаев не имеет.

Intel Core 2500K: особенности

Продолжая описание процессора Intel Core i5 2500K, что является кандидатом на статус самого оптимального для разгона, следует отметить: многие эксперты считают его отлично адаптированным для игровых потребностей. Более того, 4 ядра, которыми оснащен чип, - это предел для многих современных "геймерских" решений. Процессоры, которые поддерживают большее количество одновременно обрабатываемых потоков, далеко не всегда способны обеспечивать реальный рост производительности в играх.

Фактор "железа"

Разумеется, планируя разгон процессора Intel Core i5, "оверклокер" должен заблаговременно обзавестись адекватным предстоящим экспериментам "железом". Аппаратные возможности иных компонентов ПК должны соответствовать производительности процессора. Если мы используем Core i5 2500K, то нам понадобится компьютер, характеристики которого не должны уступать следующим:

Кулер с оборотами не менее 1800 единиц в минуту;

Видеокарта уровня Radeon HD 5870;

ОЗУ типа DDR3-1600, минимум 4 ГБ;

Желательно, чтобы качественная система охлаждения стояла также и на системном блоке.

Фактор софта

Разгон процессора - это, как считают некоторые энтузиасты "оверклокинга", своего рода небольшое исследование. Поэтому пользователю не лишним будет обзавестись также и адекватной "софтверной" составляющей. Если говорить об оптимальной операционной системе, разгонять процессор вполне допустимо в ОС Windows 7. Также необходимо убедиться, что для всех компонентов аппаратного обеспечения установлены свежие драйвера.

Результаты требуют замеров

По части софта важно обзавестись программой для эффективного измерения результатов, которые покажет разгон процессора. На какого рода ПО имеет смысл обратить внимание? Одна из самых универсальных программ, используемых "оверклокерами", - 3D Mark. Она, как считают многие IT-специалисты, дает в достаточной мере объективные результаты по производительности ядра процессора, адекватно сравнивает достигнутые показатели с теми, что показаны другими чипами.

Еще одна полезная утилита - PC Mark. Ее можно задействовать как комплексный вид ПО для тестирования производительности процессора.

В числе самых разносторонних типов ПО для исследования скорости работы ПК (и не только процессора, но и других аппаратных компонентов) - программа SiSoft Sandra. Одним из самых объективных (если говорить об измерении производительности чипов) замеров, что присутствуют в SiSoft Sandra, является арифметический тест. Также полезным могут оказаться результаты криптографических измерений, производимых одним из модулей данной программы.

Некоторые эксперты считают, что архитектура процессора Intel Core i5 неплохо адаптирована к работе в "шахматных" программах. Тем самым, измерить производительность чипа по факту разгона можно исходя из количества производимых им операций в процессе "обдумывания ходов". Программа, которая идеально, по мнению экспертов, подходит для этой цели, - Fritz Chess Benchmark.

Софт, который под рукой

Вышеперечисленные программы - это специлизированный софт для "оверклокинга". Несмотря на то что их использование, как правило, дает вполне достоверные и довольно подробные цифры, позволяющие понять, насколько удачным получился разгон, специалисты рекомендуют задействовать в дополнение также и "обычные" утилиты. Например, архиватор: с помощью ускоренного процессора можно пробовать запаковывать (или производить обратную процедуру) файлы, измеряя, во-первых, общую скорость выполнения операций, а во-вторых, наблюдая за стабильностью работы компьютера в целом.

Может пригодиться и Photoshop - особенно в части операций с изображениями, где применяется наложение фильтров. Такого рода действия весьма прилично нагружают процессор. Если компьютер будет работать при задействовании подобных возможностей Photoshop устойчиво - значит, чип был разогнан в достаточной мере грамотно.

Какие еще утилиты могут пригодиться? Вполне уместным может оказаться, например, такое приложение, как Linpack. Также полезно будет установить утилиту, с помощью которой можно будет вести В качестве таковой можно задействовать программу Real Temp. Также может пригодиться приложение CPU-z для сбора данных о системе.

Игровой фактор

Выше мы отметили, что рассматриваемый нами чип - это игровой процессор. Intel Core i5, если посмотреть на его базовые характеристики (такие как, например, базовая - более 3 ГГц), действительно видится вполне производительным для "геймерских задач". Поэтому при разгоне имеет смысл изучить то, как процессор себя поведет в специализированных программах, имитирующих игровую среду, или же, собственно, сами игры. Во втором случае показатели его производительности можно фиксировать с помощью утилиты FRAPS.

Прежде чем начинать тестирование - в программной среде или игровой - процессор Intel Core i5 нужно "замерить" на "заводских" настройках. Зафиксировав цифры в соответствующих видах ПО, можно увеличивать частоту множителей. Как это сделать?

Возможности BIOS

Самый доступный способ "разогнать" процессор - это выставить соответствующие настройки по множителям в BIOS. Для этого перезагружаем ПК и в самом начале запуска компьютера нажимаем DEL - посредством этого действия мы выходим в BIOS. Возможно, конечно, что клавиша входа в систему ввода-вывода будет иной. Но, как правило, нужная подсказка всегда высвечивается на экране. Выглядеть она может примерно так: Press DEL to Enter BIOS. Вместо DEL, таким образом, будет указана иная нужная кнопка, если она отлична от отмеченной.

Войдя в BIOS, находим опцию вида Frequency Control. В ней будут доступны несколько базовых множителей. Нас будут интересовать два - общая частота шины процессора (она выражается в МГц) и, собственно, ее коэффициент. Первый параметр трогать не рекомендуется. Технологический тип процессора Intel Core i5, основанного на архитектуре Sandy Bridge, не слишком совместим с корректировкой параметров системной шины. Тем более, как отмечают эксперты, практически значимого прироста производительности эксперименты с данной настройкой, как правило, не обеспечивают.

Чтобы рост был поступательным

Со вторым из компонентов эксперименты вполне допустимы. Характеристики процессора Intel Core i5-2500K допускают увеличение коэффициента, о котором идет речь, до 57. Однако очень нежелательно выставлять это значение сразу. Следует поднимать цифру постепенно, измеряя результат "разгона" в программах, которые мы рассмотрели выше. Оптимальное стартовое значение множителя - 40. Если система начнет работать нестабильно, можно понизить его.

Некоторые эксперты советуют "оверклокерам" экспериментировать не только с множителем, но также и с напряжением процессора. Но однозначной точки зрения на этот счет в среде специалистов не наблюдается. Есть и противники данного подхода. В то же время, если пользователь все же пожелает поработать с этим компонентом, то стоит начать с показателя в 1,15 В. Кстати, некоторые специалисты отмечают, что конкретно для процессора Intel Core i5-2500K данная величина напряжения вполне достаточна для достижения оптимальных результатов разгона.

Практические результаты

Какие результаты можно получить от разгона чипа? Может ли существенно повлиять установка процессора Intel Core i5 на игровой компьютер в аспекте роста реальной производительности? Как считают эксперты, результаты могут быть отличные. Установка - оправданной. Многие из IT-специалистов, кто провел соответствующий эксперимент, пришли к выводу, что разгонные возможности процессора особенно примечательны в части рисков перегрева. То есть вполне реально увеличить практическую производительность чипа, при которой температура процессора будет безоговорочно находиться в пределах технологической нормы. Это значит, что в случае необходимости множитель можно увеличить еще. Правда, тогда становится актуальным вопрос о стабильности системы. Ее нужно тестировать, желательно посредством сразу нескольких программ.

Разгон - это шанс реально ускорить работу компьютера без дополнительных вложений. Вполне возможно, таким образом, приобрести бюджетный четырехъядерный процессор Intel Core i5 и увеличить его производительность на порядок, доведя до уровня, сопоставимого с показателями ведущих "премиальных" моделей.

Для всех нас, кто интересуется компьютерными технологиями, недавний анонс новой платформы Intel LGA1156 не мог остаться незамеченным. Новые процессоры получились очень интересными, не без недостатков, конечно, зато с рядом очевидных достоинств. Впрочем, вы наверняка и сами всё это знаете, особенно, если уже успели ознакомиться с нашим обзором «Второе пришествие Nehalem: платформа LGA1156 и процессоры Core i7-870 и Core i5-750 ». Как это обычно бывает с новыми системами, сразу возникают вопросы по поводу разгона. Формально основные принципы разгона процессоров не менялись уже очень давно. Следует повышать базовую частоту, при этом стараясь удержать в рамках допустимого все остальные связанные частоты. Для улучшения результатов при необходимости можно поднимать напряжения, внимательно следя за температурным режимом. Всё просто, однако начинающие осваивать технологии разгона обычно теряются и не могут найти соответствия со своей современной системой, когда отсылаешь их к руководствам по разгону процессоров, скажем, Intel Pentium II. Поэтому лучше всего объяснять на конкретных примерах, чем мы сегодня и займёмся.

Новые процессоры Lynnfield относятся к микроархитектуре Nehalem, поэтому базовые принципы разгона, описанные в статье «Разгон Core i7-920: подробное руководство », справедливы и для них. Однако имеется ряд особенностей, связанных как с интеграцией контроллера шины PCI Express в процессор и переходом от двух- к одночиповым наборам микросхем, так и с иной, улучшенной реализацией турбо-режима. На примере процессоров Intel Core i5-750 и Intel Core i7-860 мы узнаем, как они разгоняются при использовании статического и динамического варианта технологии «Intel Turbo Boost», однако, прежде всего, нужно познакомиться с возможностями LGA1156 материнской платы Asus P7P55D Deluxe, основанной на логике Intel P55 Express, на которой будет проводиться разгон.

Упаковка и комплектация

Нам давно знакомы коробки, в которых поставляются системные платы Asus, базирующиеся на наборах микросхем Intel. В оформлении используется преимущественно синяя гамма, как дань цвету логотипа Intel, лицевая сторона нередко дополняется откидной крышкой, что позволяет увеличить площадь поверхности, на которой размещается информация о возможностях и особенностях платы. Именно так, как ожидалось, выглядит упаковка материнской платы Asus P7P55D Deluxe.

Когда мы говорим о комплектации плат, то обычно обходимся перечнем аксессуаров и небольшой иллюстрацией. Вряд ли найдётся читатель, который станет внимательно, в деталях рассматривать кабели, шлейфы или дополнительные планки на заднюю панель, которые он уже видел неоднократно. На этот же раз мы предлагаем вам ознакомиться с увеличенной фотографией и всё благодаря тому, что помимо стандартного набора комплектующих к материнской плате Asus P7P55D Deluxe прилагается дистанционный пульт управления TurboV Remote. Он представляет собой Г-образную планку с кнопками, которые позволят включить или выключить компьютер, выбрать режим автоматической или ручной регулировки энергосбережения, а главное, даёт возможность моментально переключаться между тремя заранее заданными профилями работы. К примеру, можно быстро перейти от экономичного режима для работы в сети Интернет к производительному режиму для игр. Кроме того, можно прямо с пульта менять базовую частоту и даже обнулить CMOS с помощью утопленной кнопки на обратной стороне TurboV Remote, но эти возможности уже вряд ли будут пользоваться большой популярностью. Пульт дистанционный, но не беспроводной, что в данном случае скорее достоинство, чем недостаток - не потеряется. Откуда-нибудь с дивана удобно управлять мультимедийными приложениями, а TurboV Remote будет полезен лишь в тех случаях, когда вы находитесь рядом с компьютером, к тому же его полутораметровый соединительный провод в большинстве вариантов позволит найти устройству наиболее удобное место.



Помимо самой материнской платы и пульта TurboV Remote в комплекте к Asus P7P55D Deluxe можно найти следующий набор аксессуаров:

шлейф PATA;
шесть SATA-кабелей с металлическими защёлками, половина кабелей с Г-образными разъёмами, а оставшиеся три кабеля с прямыми;
дополнительную планку для задней панели системного блока с портом eSATA и парой USB;
гибкий мостик для объединения двух видеокарт в режиме SLI;
заглушку на заднюю панель (I/O Shield);
комплект переходников Asus Q-Connector, включающий модули для упрощения подключения кнопок и индикаторов передней панели системного блока и разъёма USB;
руководство пользователя;
DVD-диск с программным обеспечением и драйверами;
наклейку «Powered by ASUS» на системный блок.

В списке обращает на себя внимание дополнительная планка для задней панели системного блока с портом eSATA и парой USB - такое сочетание нам ещё не встречалось. Дело в том, что, как мы увидим далее, на заднюю панель материнской платы Asus P7P55D Deluxe выведен порт IEEE1394 (FireWire), а eSATA нет, для чего и понадобилась такая планка.

В итоге можно резюмировать, что системная плата Asus P7P55D Deluxe оснащена неплохим набором безусловно полезных аксессуаров и пультом TurboV Remote. Пульт вряд ли можно отнести к предметам первой необходимости, однако ненужным его тоже назвать нельзя, наверняка найдутся владельцы, которые станут использовать его возможности на постоянной основе. К тому же это именно одна из тех особенностей, которые отличают плату класса Deluxe от всех остальных плат в линейке.

Дизайн и возможности

Материнские платы LGA1156, основанные на логике Intel P55 Express, выглядят немного непривычно, благодаря переходу на одночиповую компоновку и отсутствию северного моста, возможности которого перенесены в центральный процессор. Впрочем, в будущих обзорах мы увидим и примеры более традиционного дизайна. На ряде системных плат единственная микросхема Intel P55 Express - Platform Controller Hub, находится на привычном месте северного моста. При этом она обычно оснащается явно избыточной системной охлаждения с использованием тепловых трубок, как и раньше. Место южного моста занимают дополнительные контроллеры, обеспечивающие подключение PATA- и SATA-накопителей, эти микросхемы накрываются отдельным радиатором, как ранее южный мост набора микросхем. В итоге новая плата выглядит почти так же, как и платы на предшествующих наборах логики, но к Asus P7P55D Deluxe это не относится. Привыкайте, примерно так должна выглядеть материнская плата, предназначенная для процессоров Lynnfield.


Раз уж мы начали разговор о системах охлаждения, то давайте отдадим должное разработчикам платы Asus P7P55D Deluxe, которые очень тщательно и внимательно отнеслись к этому аспекту. Единственная микросхема Intel P55 Express находится на месте южного моста, её охлаждает большой по площади, но очень невысокий радиатор, чего вполне достаточно и никакие тепловые трубки ему в помощь не требуются. Зато радиаторы, установленные на 16-фазном преобразователе питания процессора, не просто для красоты используют прочное винтовое крепление и недаром объединены тепловой трубкой. Именно на них, помимо процессорного радиатора, конечно, приходится основная тепловая нагрузка, которая заметно увеличивается при разгоне. Именно поэтому тепло, выделяемое преобразователем питания процессора, с обратной стороны платы через теплопроводящий интерфейс отводится на пару дополнительных металлических пластин.



Чтобы дать более взвешенную, всесторонне обоснованную и более объективную оценку плате Asus P7P55D Deluxe, параллельно тесты новых процессоров проводились и на плате Gigabyte GA-P55-UD3, с обзором которой мы познакомим вас чуть позже. Несмотря на то, что это одна из самых младших плат в линейке, она тоже имеет пару довольно крупных радиаторов на преобразователе питания процессора, только крепятся они обычными пластиковыми защёлками и не имеют дополнительных пластин для отвода тепла с обратной стороны платы. При разгоне был отмечен чрезвычайно высокий нагрев радиаторов, а позже было обнаружено, что даже текстолит платы под ними изменил свой цвет и потемнел из-за перегрева.



На плате Asus P7P55D Deluxe такого сильного нагрева радиаторов замечено не было. Вполне вероятно, что это произошло благодаря большему количеству фаз питания процессора, но, возможно, свой вклад внесло более плотное винтовое крепление и дополнительные радиаторы с обратной стороны. В общем, хочется сразу поставить первый «плюс» разработчикам Asus P7P55D Deluxe за достаточно эффективную, но при этом неизбыточную систему охлаждения платы.

Возможности материнской платы Asus P7P55D Deluxe, как нетрудно догадаться даже по её названию, несколько выше, чему у обычной среднестатистической платы, базирующейся на логике Intel P55 Express. Начнём с того, что на современных платах LGA1156 имеется один разъём PCI Express 2.0 x16, либо два, которые при использовании пары видеокарт переходят в режим PCI Express 2.0 x8. Их работу обеспечивает контроллер PCI Express, который теперь находится в центральном процессоре. На плате Asus P7P55D Deluxe имеется и третий разъём для видеокарты, однако он появился благодаря оставшимся свободными четырём линиям PCI Express чипсета и максимальная скорость работы установленной в этот разъём видеокарты не превысит PCI Express 2.0 x4.



Чтобы обеспечить подключение накопителей с интерфейсом PATA, поддержка которых уже давно отсутствует в наборах микросхем компании Intel, разработчикам пришлось использовать дополнительный контроллер JMicron JMB363. При этом один порт SATA выведен, так сказать, в чистом виде, его разъём чёрного цвета, а второй с помощью контроллера JMicron JMB322 разделён ещё на два (разъёмы тёмно-синего и серого цветов). Подключенные к этим двум разъёмам накопители не требуют установки драйверов, их легко можно объединить в массивы RAID уровней 0 или 1 даже не обладая специальными знаниями. В терминологии Asus это называется технология Drive Xpert. В итоге к плате Asus P7P55D Deluxe можно подключить девять накопителей SATA: шесть портов обеспечивает Intel P55 Express и ещё три дополнительные контроллеры.

Дизайн материнской платы Asus P7P55D Deluxe выглядит удобным не только в целом, но и в частностях. Имеются подсвечивающиеся во время работы кнопки для включения питания и перезагрузки, а так же небольшая кнопочка «MemOK!», которая поможет при первом запуске, если система не может стартовать из-за некорректных параметров работы памяти. Чуть выше разъёмов для памяти имеются переключатели, которые позволяют подать повышенное напряжение на процессор, интегрированный в него контроллер памяти и на сами модули DDR3. Рядом с переключателями горят зелёные светодиоды, которые меняют цвет на предупреждающий оранжевый, когда мы подаём дополнительное напряжение. Разъёмы для памяти оснащены защёлками только с одной, дальней от видеокарты стороны, так что установленная видеокарта не сможет помешать замене модулей памяти. На практике удалось оценить удобство использования широких «лапок» крепления на разъёмах для видеокарт. Процессорный кулер Scythe Zipang 2, который мы применяли на этот раз, очень широкий и почти вплотную подходит к видеокарте, установленной в первый разъём. На любой другой плате неизбежно возникли бы проблемы, а на Asus P7P55D Deluxe лёгкое нажатие отвёрткой на «лапку» тут же освободило видеокарту.

Неплохо выглядит и набор разъёмов на задней панели системной платы. В их числе:

PS/2-разъёмы для клавиатуры и мышки;
кнопка для обнуления CMOS;
оптический и коаксиальный S/PDIF, а также шесть аналоговых звуковых разъёмов, работу которых обеспечивает десятиканальный (!) кодек VIA VT2020;
восемь портов USB, а ещё шесть можно подключить к разъёмам на плате;
порт IEEE1394 (FireWire) реализован благодаря контроллеру VIA VT6308P, второй порт можно найти в виде разъёма на плате;
два разъёма локальной сети (сетевые адаптеры построены на гигабитных контроллерах Realtek RTL8112L и RTL8110SC).



Дизайн материнской платы Asus P7P55D Deluxe не просто хороший, он отличный. Мне удалось заметить лишь один, но очень незначительный сегодня недостаток - неудобное расположение COM-разъёма, очень высоко, правее модулей памяти. Лишний раз оценить особенности компоновки поможет схема расположения элементов из руководства к плате.




Завершает наше визуальное знакомство с материнской платой Asus P7P55D Deluxe таблица с перечнем её технических характеристик.

Первоначальное изучение материнской платы Asus P7P55D Deluxe оставляет чрезвычайно благоприятное впечатление. У платы отличный, продуманный дизайн, великолепный комплект возможностей, набор приятных мелочей, которые делают работу с платой ещё удобнее. Хочется надеяться, что изучение возможностей BIOS не испортит нашей предварительной оценки, которая пока выглядит как «9 баллов из 10». Один балл мы скидываем не за какие-то недостатки, которых заметить практически не удалось, а просто так, на всякий случай. Это же первая плата на Intel P55 Express, которую мы изучаем, вдруг завтра в нашей тестовой лаборатории появится плата ещё более удобная, функциональная и при этом недорогая? Однако пока лучшего, чем Asus P7P55D Deluxe, даже желать не приходится. Продолжаем наш обзор.

Изучаем BIOS Setup

Нам хорошо знаком характерный внешний вид и структура BIOS материнских плат Asus, который базируется на существенно переработанном коде AMI.



Опуская детальное изучение всех возможностей, обратим своё внимание лишь на наиболее важные для настройки и контроля параметров системы разделы. Основным с этой точки зрения, безусловно, является «Ai Tweaker». Несмотря на то, что его обширное содержимое никак не может уместиться на одном экране, такая система подачи кажется мне намного более удобной и информативной, чем ряд многочисленных тематических подразделов. При настройке мы последовательно проходим сверху вниз, изменяя значения параметров при необходимости, и это проще, чем «прыгать» по подразделам. Лишь тайминги памяти вынесены на отдельную страницу, но это вполне оправданно, учитывая их большое количество.


Значение параметра «Ai Overclock Tuner» можно поменять на «Manual» и в этом случае мы получим полный доступ к изменению всех параметров по собственному усмотрению. Можно выбрать «D.O.C.P.» - DRAM OverClocking Profiles (профили разгона памяти). В этом случае плата самостоятельно будет подбирать оптимальные параметры системы для заданного режима работы. К примеру, если при использовании процессора Intel Core i7-860 мы захотим разогнать память до 1800 МГц, то плата повысит базовую частоту с номинальных 133 до 150 МГц, чтобы получить нужную частоту работы памяти. При этом она уменьшит коэффициент умножения процессора, чтобы его итоговая частота работы была наиболее близка к штатным 2,8 ГГц.



Если используемые вами модули памяти поддерживают технологию X.M.P. (eXtreme Memory Profile), то плата поступает схожим образом. Чтобы перевести наши модули памяти DDR3 Corsair Dominator GT CM3X2G2000C8GT на частоту 2000 МГц, пришлось повысить базовую частоту до 167 МГц и одновременно снизить коэффициент умножения до x17.



Приведённые примеры справедливы для процессора Intel Core i7-860, а при использовании Intel Core i5-750 действия платы изменятся. Дело не только в том, что у этого процессора ниже номинальная частота и придётся установить иной коэффициент умножения. Как известно, Intel Core i5-750 оказался урезан по возможностям гораздо больше, чем ожидалось. У него отсутствует множитель 12 для памяти, который использовала плата, а максимальным является множитель 10. В этом случае для достижения частоты памяти 2000 МГц базовая частота будет увеличена до 200 МГц, а коэффициент умножения процессора снижен до x13.

Почему мы так много внимания уделяем работе платы при выборе значений «D.O.C.P.» и «X.M.P.» для параметра «Ai Overclock Tuner»? Это ведь не новые возможности, они и раньше имелись у материнских плат Asus. Дело в том, что раньше изменение коэффициента умножения процессора автоматически жёстко фиксировало его на заданном значении, множитель переставал снижаться в состоянии покоя, при отсутствии нагрузки на процессор. Понятно, что это негативно сказывается на энергопотреблении системы и на всех связанных аспектах, таких как тепловыделение и уровень шума, поэтому подобные способы разгона воспринимались как баловство, не более того. Сейчас же это вполне реальный и применимый на практике способ поднять производительность системы, поскольку теперь при изменении коэффициента умножения процессора он всё равно будет уменьшаться в покое. Эта новая способность открывает довольно широкие возможности по оптимальной настройке системы. К примеру, вы можете увеличить базовую частоту таким образом, чтобы получить наиболее благоприятную для ваших модулей памяти частоту её работы. При этом можно снизить коэффициент умножения процессора, чтобы избежать необходимости увеличения на нём напряжения и в итоге получить достаточно быструю и энергетически эффективно работающую систему.

Новой возможностью является встроенная в BIOS утилита для разгона «OC Tuner Utility». При её выборе плата начнёт перезагружаться раз за разом, на каждом этапе слегка увеличивая базовую частоту. Как только на этапе прохождения стартовой процедуры POST появятся ошибки, плата немного отступит от достигнутого значения, чтобы избежать их в будущем при работе.



Конечно, это всё ещё достаточно примитивный способ разгона, зато он практически не требует вмешательства пользователя и проходит в автоматическом режиме. У нас немного возможностей для того, чтобы повлиять на результат работы «OC Tuner Utility». Мы можем лишь изменить значение параметра «OC Tuner Limit Value» с «Good Performance» на «Better Performance». Однако это всё же лучше, чем прежняя возможность разгона «CPU Level Up», когда, как и в случае с памятью, использовались заранее заготовленные профили разгона процессора. На этот раз система не втискивает наш в процессор в кем-то заданные рамки, а сама пытается подстроиться под способности конкретного экземпляра.

Как мы уже говорили, единственным подразделом раздела «Ai Tweaker» является «DRAM Timing Control», позволяющий проконтролировать текущие значения и при необходимости изменить тайминги памяти.


Следующая группа параметров раздела «Ai Tweaker» позволяет управлять напряжениями. Очень удобно, что рядом с каждым из важных параметров мы видим его текущее значение.



В обзоре платы Asus Rampage II Gene мы уже встречали возможность задать для процессора не абсолютное и постоянное, а относительное значение напряжения (Offset), однако у обыкновенной, не относящейся к элитной серии «Republic of Gamers» материнской платы, мы такие способности видим впервые. Трудно переоценить важность этой возможности. Формальное достоинство материнских плат Asus для процессоров Intel, давно превратившееся в недостаток, когда платы самостоятельно повышали напряжение на процессоре при его разгоне, никуда не исчезло. Однако теперь эта особенность плат Asus перестала быть проблемой для любителей энергоэффективного разгона. Теперь при увеличении напряжения на процессоре энергосберегающие технологии Intel спокойно продолжат свою работу, снижая напряжение в покое и повышая при появлении нагрузки на процессор. Более того, шаг изменения напряжения на процессоре очень мал, всего лишь 0,00625 В. Так что можно повысить на это микроскопическое значение напряжение на процессоре, фактически оставив его номинальным, и тем самым избежать автоматического повышения при разгоне. Кстати, можно не увеличивать, а уменьшать напряжение, если необходима не максимальная производительность, а более экономичная и тихая работа системы.

Всем хорош раздел «Ai Tweaker», однако в нём лишь частично представлены возможности, относящиеся к процессору. Чтобы получить полный доступ к процессорным технологиям, следует заглянуть в подраздел «CPU Configuration» раздела «Advanced». Лично я предпочёл бы, чтобы этот подраздел целиком перенесли в «Ai Tweaker».


Далее мы переходим к подразделу «Hardware Monitor» раздела «Power». Раньше он бы вызвал наше недовольство за скудость контролируемых значений, однако не будем забывать, что теперь все важнейшие напряжения нам известны прямо в разделе «Ai Tweaker». Они указаны непосредственно рядом с каждым из изменяющих напряжения параметров. Так что в подраздел «Hardware Monitor» нам нужно заглянуть лишь для того, чтобы включить автоматическую регулировку скорости вращения вентиляторов и выбрать подходящий режим. Кстати, даже при разгоне процессоров со значительным повышением напряжения питания, система регулировки «Q-Fan» спокойно справлялась с их охлаждением в режиме «Standard».



Последний раздел BIOS материнской платы Asus P7P55D Deluxe, на который мы сегодня обратим внимание - это «Tools». В принципе нам знакомы все его возможности, новинкой является лишь последний параметр «ID LED». Рассматривая плату, мы упоминали о наличии светодиодов различного назначения, если они вас раздражают, то с помощью этого параметра можно отключить подсветку.



Существенно расширившиеся в последнее время возможности подраздела «O.C. Profile» позволяют сохранить несколько полных профилей настроек BIOS. Каждому можно дать напоминающее о его содержимом название, выбранный профиль легко загрузить, имеется возможность сохранения профилей не только во внутренней памяти, но и на внешних носителях.



Удобная утилита «EZ Flash 2» поможет сохранить текущую версию BIOS и обновить её до самой последней.



Подводя очередные промежуточные итоги изучения материнской платы Asus P7P55D Deluxe, можно увидеть, что в основном структура и возможности BIOS изменились не сильно по сравнению с моделями на других наборах микросхем. Это ничуть не удивительно, ведь BIOS современных системных плат отрабатывался и шлифовался годами. Вместе с тем, нельзя не отметить и ряд новых возможностей, таких как система автоматического разгона процессоров или возможность отключить подсветку. Однако наибольшее впечатление производят новые способности платы по изменению коэффициента умножения процессора и его напряжения без нарушения работы энергосберегающих технологий. Они открывают широчайшие возможности по оптимальной настройке системы в зависимости от состава текущей конфигурации.

Кроме того, нельзя не отметить, что наши тесты проходили на первой из официально доступных версии BIOS 0504. Вполне естественно, что снимки именно этой версии вы видели в текущей главе обзора, а далее вы узнаете о достигнутых с её помощью результатах. Однако именно сейчас, когда платы поступили в продажу и пошли отзывы со стороны пользователей, интенсифицировалась работа над устранением ошибок и расширением возможностей BIOS. В новых версиях появилась поддержка низковольтной памяти DDR3, постоянно шлифуются алгоритмы работы встроенной «OC Tuner Utility». Появились «Turbo Profile» - это профили, позволяющие разгонять одновременно и процессор, и память. Вполне возможно, что к моменту публикации появятся ещё более новые версии, с новыми функциями и возможностями, так что не забудьте обновить BIOS своей платы, чтобы получить к ним доступ.

Разумеется, BIOS материнских плат Asus, и P7P55D Deluxe в их числе, не идеален. Имеется ряд недостатков, в основном малозначительных, после устранения которых работа с платой станет ещё удобнее. О некоторых мы упоминали сегодня, например, неплохо было бы перенести подраздел «CPU Configuration» в раздел «Ai Tweaker». О некоторых говорили в предыдущих обзорах плат Asus, к примеру, текущие значения таймингов памяти гораздо удобнее контролировать, если они расположены в столбик, каждый напротив соответствующего параметра, а не одной строкой, как сейчас. Однако обо всех этих мелких недоработках даже не хочется вспоминать. Не терпится изучить реальные, а не теоретические возможности платы по разгону процессоров. Однако прежде надо подготовиться и выяснить, как именно следует разгонять новые Intel Core i5 и Core i7, относящиеся к семейству процессоров Lynnfield.

Особенности разгона Lynnfield

Появление новых процессоров ожидалось с двоякими чувствами. С одной стороны, было очень интересно посмотреть на них в работе. Выяснить, в чём различия между возможностями Lynnfield по сравнению с процессорами более высокого класса Bloomfield и младшими Core 2 Quad. Заранее приводила в восторг обновлённая реализация технологии Турбо. Ведь Lynnfield - это первые универсальные процессоры, которые объединяют в себе преимущества многоядерных и одноядерных процессоров. При использовании современных многопоточных приложений они ведут себя как многоядерные процессоры, работая на несильно повышенной частоте, зато исполняя одновременно сразу много вычислительных потоков. Они снижают количество используемых ядер, переводя ненужные в данный момент в энергосберегающие режимы, когда многопоточность не требуется, зато при этом значительно повышают частоту работы оставшихся. С другой стороны, возникали закономерные опасения. Как же разгонять процессоры, коэффициент умножения которых может повышаться относительно номинального значения на 4-5 единиц? Если же учитывать, что в покое множитель снижается до 9, а под нагрузкой может увеличиться до 24-27, то задача по определению стабильности работы во всех промежуточных вариантах кажется почти неразрешимой.

К счастью оказалось, что разгонять новые процессоры ничуть не сложнее, чем любые другие, а отчасти даже проще. По сравнению с платформой LGA1366 нам теперь не нужно следить за частотой интегрированной в процессор части северного моста - UnCore по терминологии Intel или IMC (Integrated Memory Controller), как называет его Asus. Во-вторых, разгон теперь не требует значительного повышения напряжения на IMC. Ранее, лишь для того, чтобы обеспечить работоспособность памяти на высоких частотах, предполагалось увеличение этого напряжения до 1,5-1,6 В. На деле удавалось обойтись повышением лишь до 1,35-1,45 В, но это всё равно довольно много. Теперь же для работы памяти на высоких частотах вообще не требуется повышать напряжение на IMC, а для стабильности при увеличении базовой частоты до 200 МГц достаточно поднять его лишь до 1,2 В.

Как и для процессоров Bloomfield на платах LGA1366, для Lynnfield возможны два варианта разгона. Первый - это статический вариант реализации технологии Intel Turbo Boost или даже полноё её отключение. В обоих случаях мы имеем дело с системой, где коэффициент умножения процессора под нагрузкой постоянен. Либо он равен номинальному при отказе от технологии Турбо, либо немного повышается вне зависимости от уровня нагрузки на процессор. Второй вариант - это динамическая реализация Turbo Boost, когда изменение множителя напрямую зависит от уровня нагрузки на процессор. Чем меньше ядер занято работой, тем больше повышается коэффициент умножения и наоборот.



Понятно, что оба варианта имеют право на существование. Статический необходим той категории, которая широко использует в работе хорошо распараллеливающиеся приложения - программы, способные выполнять многопоточные вычисления, и тем самым серьёзно увеличивающие скорость расчётов. К ним относятся приложения распределённых вычислений, создания и обработки мультимедийного контента: многопоточные программы для работы с моделями, звуком, изображениями и видео. Для повседневного использования в качестве домашнего развлекательно-рабочего компьютера больше подходит динамический вариант разгона. В этом случае мы получаем максимальный выигрыш при использовании одно- или двухпоточных приложений, которых сегодня пока большинство, вместе с тем, обеспечиваем себе достаточно высокий уровень производительности в многопоточных программах.

Однако так просто всё выглядит лишь в теории. На практике нам так и не удалось найти универсальную материнскую плату LGA1366, которая одинаково хорошо реализовала бы оба варианта технологии Intel Turbo Boost. Чаще всего встречались платы только со статической реализацией, реже только с динамической. Если же попадалась плата с возможностью выбора, то опять же лишь один из вариантов оказывался предпочтительнее. Что касается плат LGA1156, то, похоже, подобной проблемы для них просто не существует. По умолчанию все платы настроены на статический вариант реализации технологии Турбо, чтобы включить динамику, следует в BIOS в разделе с процессорными настройками разрешить расширенные режимы C3-C7.

Перед началом любого разгона следует предпринять ряд подготовительных действий. Прежде всего, очень желательно в BIOS для всех значимых параметров ликвидировать установленные по умолчанию значения «Auto». Никто не знает, на каком именно этапе разгона плата вдруг решит повысить напряжения, изменить частоту работы памяти или её тайминги, что может негативно сказаться на работоспособности системы. Поэтому с самого начала снижаем частоту работы памяти, она будет увеличиваться с ростом базовой частоты, а окончательное значение мы выясним позже, после того, как определимся с разгоном процессора. Основные тайминги тоже лучше заранее зафиксировать на гарантированно рабочих значениях, к примеру, 8-8-8-22 или 9-9-9-24. Для напряжений устанавливаем их номинальные значения, за исключением напряжения IMC, его можно сразу повысить до 1,2-1,25 В, потом уменьшим, если такое увеличение не понадобится, и напряжения на памяти, которое следует поднять не более чем до 1,65 В. Что касается напряжения на процессоре, то его можно тоже оставить штатным, если вы предпочитаете получить в итоге более быструю, но всё же достаточно экономичную систему. Не забудьте включить технологию противодействия падению напряжения на процессоре под нагрузкой «Load-Line Calibration». Либо можно сразу увеличить напряжение, но величина повышения во многом зависит от эффективности используемой системы охлаждения процессора.

В качестве первого этапа можно убедиться, что материнская плата в состоянии обеспечить стабильную работу при высоких значениях базовой частоты. Вообще-то никаких проблем с этой стороны не ожидается, все имеющиеся у нас сегодня платы LGA1156 спокойно работали вплоть до увеличения базовой частоты до 210 МГц. Однако лучше заранее в этом убедиться, чтобы потом не гадать, почему процессор больше не разгоняется, а затем выяснить, что проблема вовсе не в нём, а в плате. Для проверки уменьшаем коэффициент умножения процессора до 12-14, чтобы при максимальном разгоне его частота не сильно отличалась от номинальной. Повышаем базовую частоту до 200-210 МГц. Лишний раз проверяем, действительно ли частота памяти при этом находится в рамках допустимого для используемых модулей. После чего проводим проверку с помощью любой тестовой программы. Если вы затрудняетесь с выбором, то можно порекомендовать Prime95. Уже на этом этапе можно уменьшить напряжение IMC, если это окажется возможным. Раз уж даже при таком увеличении базовой частоты достаточно более низкого напряжения, то при меньших значениях и подавно.

Разгон при статической реализации технологии Turbo Boost

Далее рассмотрим алгоритм действий при статическом варианте реализации технологии Intel Turbo Boost или при полном отказе от неё. Если вы разгоняете без повышения напряжения на процессоре, то можно ожидать, что итоговая частота окажется где-то в районе 3,5-3,7 ГГц. Это лишь примерный ориентир, полученный при разгоне всего двух экземпляров процессоров, так что более точные данные станут известны позже, когда накопится статистика, но в любом случае только вы можете выяснить окончательный результат именно для вашего экземпляра процессора. Для надёжности сначала можно убедиться, что используемая вами система охлаждения процессора способна справиться с разгоном. Очень высокую нагрузку на процессор обеспечивает тестовый пакет Intel Linpack, для удобства можно воспользоваться оболочкой LinX для него. После чего, используя в качестве теста утилиту Prime95, мы повышаем базовую частоту, если система проходит проверку, или снижаем, если при выбранном значении появляются ошибки. После нескольких попыток вы найдёте предел стабильной работы своего процессора.



Для достижения более высоких результатов нужно повышать напряжение на процессоре и тут на первый план выходит температура. Чем больше вы увеличите напряжение, тем более высокого разгона можно добиться, но слишком высокое напряжение повысит температуру до недопустимых значений и только ограничит разгон. Наша задача - найти оптимальное соотношение напряжения и температуры процессора.

Извечный вопрос - какова максимально допустимая температура процессора? Как это ни странно, но на него отвечаете лично вы. Кто-то старается удержать температуру в пределах 60 градусов, а для кого-то и 95 не предел. Одно могу сказать совершенно точно - очень нежелательно, чтобы температура ядер достигала 90 градусов. Более того, разгон с превышением 90 градусов бессмысленный и нецелесообразный. К примеру, на платах Asus по достижению температуры процессора 93-94 градуса включаются защитные технологии и частота начинает снижаться. Наступило лето и температура повысилась, пришла зима и начали сильно топить, забился пылью процессорный радиатор - любое, даже малозаметное изменение в условиях работы может привести к нестабильности и ошибкам. Зачем, спрашивается, мы разгоняем процессоры? Чтобы похвастаться рекордным снимком экрана или чтобы получить повышенную производительность в любых условиях и при любой нагрузке?

Для контроля частоты процессора полезно использовать утилиту i7Turbo. Она покажет, не снижается ли коэффициент умножения процессора при полной нагрузке. Нет смысла разгонять процессор, если он не в состоянии стабильно работать под максимальной нагрузкой и начинает снижать частоту. Поэтому 90 градусов - это максимальный предел температуры ядер процессора, от которого всё же желательно держаться подальше. Чем ниже температура, тем лучше. Таким образом, при разгоне мы можем искать не максимальную частоту процессора, а максимальное напряжение, при котором температура будет удерживаться в приемлемых рамках. Максимальную частоту мы получим как следствие увеличения напряжения.


Не важно, выясняли ли вы предел стабильной работы процессора без повышения на нём напряжения или нет. Если выясняли, то оставляете найденное значение, если нет, то примерно задаёте базовую частоту, при которой итоговая частота процессора будет находиться в пределах 3,5-3,7 ГГц, после чего увеличиваете напряжение. Для начала, допустим, до 1,27-1,3 В. Тут же запускаем LinX и смотрим, как далеко температура от опасных 90 градусов или от другой приемлемой для вас границы. Температуру ядер можно контролировать с помощью любой способной на это программы: RealTemp, CoreTemp, HWMonitor, SpeedFan, Everest. Если температура слишком велика, то снижаем напряжение, если достаточно низка, то повышаем, но нужно помнить, что впоследствии при увеличении частоты температура тоже будет расти, хотя и не так сильно, как при изменении напряжения.


Нашли примерное значение напряжения, при котором температура находится в допустимых рамках? Теперь повторяем уже знакомые действия - увеличиваем базовую частоту, если система проходит проверку, или снижаем, при появлении ошибок. Таким образом, мы находим максимальную частоту процессора, которую можно получить при заданном напряжении, величина которого, в свою очередь, не даёт нам выйти за границу допустимой температуры. После этого обычно можно на несколько шагов снизить напряжение на процессоре без потери стабильности работы, зато это ещё больше уменьшит максимальную температуру. Осталось подобрать оптимальную для полученной базовой частоты частоту работы памяти и её тайминги. Поздравляю! Мы только что разогнали систему. В полученном безопасном с точки зрения напряжений и температур режиме она сможет годами радовать вас заметно более высокой относительно номинала производительностью.

Схематично алгоритм наших действий можно представить в виде следующей последовательности:



задаём такое значение базовой частоты, при котором итоговая частота процессора будет находиться в пределах 3,5-3,7 ГГц;
примерно определяем напряжение, при котором температура не будет выходить за рамки допустимого даже при полной загрузке процессора или фиксируем его на номинальном значении;
ещё больше увеличиваем базовую частоту, если система проходит проверку, или снижаем, если при выбранном значении появляются ошибки;

окончательно определяем напряжение, необходимое для стабильной работы процессора;

Разгон при динамической реализации технологии Turbo Boost

Поначалу кажется, что при динамическом варианте реализации технологии Intel Turbo Boost подобрать оптимальные параметры разгона намного сложнее, чем при статическом. На самом же деле, всё оказалось довольно легко. Просто помимо опасной температуры при полной загрузке процессора, нам следует учитывать ограничение по частоте, когда загружено лишь одно ядро и частота процессора максимальна. Мы только что нашли предел разгона процессора, когда его коэффициент умножения находится в пределах 20-24, в зависимости от модели. Очевидно, что не получится взять и просто включить динамический вариант, когда множитель может повышаться до 24-27. Таким образом, нам заранее нужно уменьшить базовую частоту. Ориентироваться можно примерно на 4,1-4,3 ГГц при максимальном множителе процессора. Найденное напряжение можно пока оставить. Поскольку частота работы процессора при полной нагрузке будет ниже, нам, возможно, даже удастся его немного повысить. Если же вы сразу начали эксперименты с динамикой, то предварительно, как и при статическом варианте технологии Turbo Boost, следует определить максимальное напряжение, при котором температура ядер при полной нагрузке будет находиться в допустимых пределах.

Далее мы повторяем уже знакомую процедуру - тестируем стабильность работы разогнанной системы. Отличия лишь в том, что теперь тесты проводятся уже не при полной загрузке процессора, а лишь когда загружено только одно ядро одним-двумя потоками вычислений, чтобы коэффициент умножения процессора был увеличен до максимального. Если система проходит проверку - повышаем базовую частоту, если нет, то снижаем её или увеличиваем напряжение. Только не забывайте, что максимальное энергопотребление и тепловыделение мы получаем при загрузке всех ядер процессора. Так что после повышения напряжения убедитесь, что температура всё ещё остаётся в допустимых пределах.

Суммарно алгоритм наших действий примерно следующий:

На подготовительном этапе снижаем частоту памяти, фиксируем тайминги и напряжения;
находим максимальную базовую частоту, на которой способна работать плата, и одновременно определяем необходимое для этого напряжение IMC;
задаём такое значение базовой частоты, при котором максимальная частота процессора будет находиться в пределах 4,0-4,2 ГГц или 3,8-4,0 ГГц, если напряжение повышаться не будет;
примерно определяем напряжение, при котором температура не будет выходить за рамки допустимого при полной загрузке процессора или фиксируем его на номинальном значении;
ещё больше увеличиваем базовую частоту, если система проходит проверку при загрузке одного ядра, или снижаем, если при выбранном значении появляются ошибки;
можно повысить напряжение, если при полной загрузке ядер температура всё ещё находится в заданных рамках; нужно уменьшить его, если температура слишком высока, после чего повторяем предыдущий шаг;
окончательно определяем напряжение, необходимое для стабильной работы процессора при загрузке одного ядра;
подбираем оптимальную для полученной базовой частоты частоту работы памяти и её тайминги;
радуемся полученным результатам.

Конфигурация тестовой системы

Все эксперименты проводились на тестовой системе, включающей следующий набор компонентов:

Материнская плата - Asus P7P55D Deluxe, rev. 1.06G (LGA1156, Intel P55 Express, версия BIOS 0504);
Процессоры:

Intel Core i5-750 (2,66 ГГц, базовая частота 133 МГц, кэш L3 8 МБ, Lynnfield, напряжение питания 1,225 В);
Intel Core i7-860 (2,8 ГГц, базовая частота 133 МГц, кэш L3 8 МБ, Lynnfield, напряжение питания 1,16875 В);

Память - 2 x 2048 Мбайт DDR3 Corsair Dominator GT CM3X2G2000C8GT, (2000 МГц, 9-9-9-24-2T, напряжение питания 1,65 В);
Видеокарта -ATI Radeon HD 4890 (RV790, 55 нм, 900/3600 МГц, 256-битная GDDR5 1024 МБ);
Дисковая подсистема - два Western Digital VelociRaptor WD3000HLFS (300 ГБ, SATA II, 10 000 об./мин, 16 МБ);
Оптические накопители - DVD±RW Sony NEC Optiarc AD-7173A;
Система охлаждения - Scythe Zipang 2 (120-мм вентилятор Crown AGE12025F12J, PWM, максимум 2200 оборотов в минуту);
Термопаста - Zalman CSL 850;
Блок питания - OCZ GameXStream OCZGXS700 (700 Вт) с вентилятором Zalman ZM-F3;
Корпус - Antec Skeleton .

В качестве операционной системы использовалась Microsoft Windows 7 Ultimate (Microsoft Windows, Version 6.1, Build 7600), комплект драйверов для набора микросхем Intel Chipset Software Installation Utility 9.1.1.1019, драйвер видеокарты - ATI Catalyst 9.8.

Конкретные примеры разгона

Алгоритмы, блок-схемы - всё это звучит современно и очень заманчиво, однако нередко за деревьями не видно леса, из последовательности отдельных действий не складывается общая картина. Поэтому мы решили рассказать о разгоне процессоров Lynnfield чуть более подробно, чем обычно. Возможно, конкретные примеры окажутся нагляднее схематичного руководства, помогут понять суть и принципы разгона.

Итак, в нашем распоряжении имеется процессор Intel Core i7-860. Его номинальная частота работы 2,8 ГГц, то есть при штатной базовой частоте 133 МГц коэффициент умножения равен 21. На самом же деле, мы практически не видели, чтобы процессор работал на своей номинальной частоте. По умолчанию включена статическая реализация технологии Turbo Boost и при любом уровне нагрузки множитель процессора повышается до 22, что в итоге даёт частоту работы 2,93 ГГц. Если включить динамический вариант, то такой же коэффициент умножения мы увидим при загрузке четырёх или трёх ядер. Когда нагрузка приходится лишь на два ядра, процессор работает на частоте 3,33 ГГц с множителем 25, а при нагрузке лишь на одно ядро коэффициент умножения увеличивается до 26 и частота становится максимальной - 3,46 ГГц.

Предварительно было определено, что материнская плата Asus P7P55D Deluxe работает при увеличении базовой частоты до 210 МГц, для чего нужно увеличить напряжение IMC до 1,2 В. На памяти было установлено напряжение 1,65 В, частота не снижалась, был оставлен множитель x10, поскольку номинальная частота Corsair Dominator GT CM3X2G2000C8GT составляет 2000 МГц, а в принципе память способна на большее. Тайминги были заданы на уровне 8-8-8-22-1T. Все остальные напряжения были зафиксированы на своих штатных значениях, а напряжение на процессоре увеличено на 0,13125 В при включенной защите от падения напряжения «Load-Line Calibration». Такое «некруглое» значение легко объяснимо - номинальное напряжение нашего экземпляра процессора составляет 1,16875 В, и в сумме мы получим уже вполне «круглые» 1,3 В.

Для начала выясним возможности платы и процессора при статической реализации технологии Turbo Boost, когда его коэффициент умножения повышается лишь до x22. В качестве стартовой была выбрана базовая частота 175 МГц, что в итоге даёт частоту процессора 3,85 ГГц. Это гораздо выше, чем рекомендованные методикой 3,5-3,7 ГГц, но в начале статьи упоминалось, что тесты новых процессоров проводились и на плате Gigabyte GA-P55-UD3. Так что всё это мы уже проходили и примерно знали возможности нашего экземпляра процессора.

Запускаем утилиту LinX, восемь вычислительных потоков которой всего за три цикла поднимают температуру ядер до 90 градусов - это слишком много. Останавливаем проверку, добавляем на процессор уже не 0,13125 В, а лишь 0,125 В и вновь запускаем тест. Опять достигаем 90 градусов, лишь к десятому циклу, но это всё равно много. Теперь добавляем только 0,11875 В, но одновременно повышаем базовую частоту до 177 МГц. Тест пройден, но опять при росте температуры до 90. Снижаем добавляемое напряжение до 0,1125 В и на этот раз проверка завершается при 87 градусах. Уже лучше, а нельзя ли при том же напряжении повысить базовую частоту до 179 МГц? Нельзя, утилита начинает выдавать ошибки, возвращаемся к частоте 177 МГц. Может быть тогда получится ещё больше уменьшить напряжение? Не получится, опять появляются ошибки в тестах. Вот мы и определили максимально возможное напряжение на процессоре и максимально доступную частоту при этом напряжении.

На завершающем этапе оптимизируем остальные параметры работы системы. Повышаем частоту работы памяти, для верности ещё раз запускаем утилиту LinX, а потом часовое тестирование утилитой Prime95 в режиме Blend. Таким образом, добавив на процессор 0,1125 В, мы разогнали его до частоты 3,9 ГГц. Память тоже не подвела, согласившись работать на частоте 2124 МГц с таймингами 8-8-8-22-1T. Материнская плата Asus P7P55D Deluxe чуть завышает базовую частоту, поэтому реальные цифры оказались даже немного выше.



Неплохой результат, как мне кажется. Прирост частоты относительно номинала составил 1,1 ГГц. При этом мы сохранили работу энергосберегающих технологий, в состоянии покоя коэффициент умножения процессора и подаваемое на него напряжение будут снижаться.



Теперь попробуем разогнать процессор, используя все преимущества динамической реализации технологии Турбо. Очевидно, что мы не можем просто так взять и перейти к динамике, при базовой частоте 177 МГц с множителем 26 частота процессора возрастёт до 4,6 ГГц, а в наших условиях стабильная работа на такой частоте выглядит невероятной. Поэтому снижаем базовую частоту до 161 МГц, зато напряжение опять повышаем до 1,3 В, добавляя 0,13125 В к номинальному. Проверка показывает, что при максимальной нагрузке утилитой LinX температура остаётся в пределах допустимого, поэтому переходим к тестам лишь одним-двумя потоками, когда коэффициент умножения процессора увеличивается до максимального x26.

Предварительные тесты пройдены успешно, повышаем базовую частоту сразу до 165 МГц, но встречаем ошибки. Добавляем на процессор 0,14, потом 0,15 В, но ошибки не исчезают, поэтому снижаем частоту до 163 МГц. К сожалению, и на этой частоте не удалось добиться стабильности, поэтому возвращаемся к 161 МГц. После ряда тестов выясняем, что для надёжной работы с множителем 26 на процессор надо добавить 0,1375 В. Вновь запускаем LinX при максимальной нагрузке - температура ядер едва переваливает за 80 градусов, с этой точки зрения напряжение вполне приемлемое. Теперь повышаем частоту работы памяти, снижаем тайминги и запускаем часовое тестирование в Prime95 при полной нагрузке процессора в восемь потоков. Проверка пройдена успешно при максимальной температуре 77 градусов. Затем повторяем проверку лишь при одном вычислительном потоке - ошибок нет, температура 60 градусов.

В результате при максимальной нагрузке на процессор он будет работать с коэффициентом умножения 22 на частоте 3,55 ГГц.



В тех случаях, когда загружено лишь одно ядро, его частота будет увеличиваться до максимальных 4,2 ГГц.



В покое множитель и напряжение снижаются, благодаря работе энергосберегающих технологий.



Сразу хотел бы ответить на несколько возможных вопросов. Достаточно ли проверки с помощью двух утилит для утверждений о стабильности работы разогнанной системы?

Программа LinX отлично разогревает процессор, а утилита Prime95 в режиме Blend тестирует не только его, но и память, но 100-процентной гарантии они, конечно, не дают. Однако наш опыт показывает, что успешное прохождение проверки в этих двух приложениях, позволит системе выдержать тесты и в любых других программах. К тому же мы получили только предварительные итоги разгона. Вскоре мы сменим систему охлаждения процессора, и результаты изменятся, если не разгон, то температура. У нас на очереди ещё много материнских плат и много тестов в самых различных приложениях. При необходимости мы сможем скорректировать полученные данные, как в сторону увеличения, так и уменьшения.

Не слишком ли высока максимальная температура разогнанного процессора 87 градусов?

Достаточно высока. Однако не стоит забывать, что получена она во время проверки с помощью специализированной утилиты LinX, создающей экстремально высокую нагрузку на процессор. При работе обычных программ вряд ли удастся даже приблизиться к этому значению.

Если программа LinX создаёт нереально высокую нагрузку, то зачем при разгоне ориентироваться на полученную при её использовании температуру?

Совершенно верно, для определения максимально допустимого напряжения вы можете применять любую другую самую «тяжёлую» программу, из числа тех, что используете постоянно или время от времени. Скорее всего, максимальная температура будет ниже, чем при использовании LinX, и процессор можно будет гнать дальше. Однако этот путь годится только для вас, но не для меня. Я не могу знать, какие именно задачи будет решать ваш компьютер, поэтому обеспечиваю некоторый запас надёжности, максимально нагружая систему. Следуя приведённым методикам, вы почти наверняка получите разогнанный компьютер, стабильно работающий при любой нагрузке, но это всего лишь рекомендации. Вы вправе действовать по собственному усмотрению, но и на свой же страх и риск.

В тестах участвовал и процессор Intel Core i5-750. Его номинальная частота 2,66 ГГц, напряжение питания 1,225 В. Не будем утомлять вас описанием процедуры его разгона, которая проходила по той же методике, что и для процессора Intel Core i7-860. При статической реализации технологии Турбо и повышении напряжения на 0,1125 В процессор удалось разогнать до 4 ГГц.



При динамическом варианте процессор при полной загрузке смог заработать на частоте 3,73 ГГц при добавлении 0,1375 В. У процессора Intel Core i5-750 отсутствует повышающий множитель для памяти x12, максимальным является x10, поэтому увеличить частоту памяти невозможно, но получилось снизить тайминги.



При однопоточной нагрузке частота процессора будет повышаться до 4,26 ГГц.



Только сейчас, систематизируя полученные данные для статьи, заметил, что оба процессора потребовали совершенно одинакового повышения напряжения для разгона. При статической реализации технологии Турбо напряжение понадобилось повысить на 0,1125 В, при динамической на 0,1375 В. Интересное совпадение, потом посмотрим, сохранится ли оно на других материнских платах, а пока давайте подытожим наши знания о способностях Asus P7P55D Deluxe к разгону.

Измерение производительности

Материнская плата Asus P7P55D Deluxe пока первая из ожидаемого длинного списка плат LGA1156, которая полностью прошла проверку в нашей Лаборатории. У неё ещё нет соперниц для сравнения, поэтому давайте посмотрим, какой прирост производительности мы получаем при разгоне процессора Intel Core i7-860. При работе в номинальном режиме плата самостоятельно устанавливала все параметры, вручную была включена лишь динамическая реализация технологии Турбо. Для начала сравним с разгоном, когда коэффициент умножения тоже динамически меняется.



Цифры весьма впечатляют. Если не считать тех случаев, когда скорость ограничена видеокартой, то прирост составляет 20–30 %. А теперь посмотрим на прирост производительности по сравнению с разгоном при статической реализации технологии Турбо.



На этот раз в отдельных случаях прирост скорости достигает уже 40 %. И, наконец, сравниваем производительность между разгоном при динамической и статической реализации технологии Турбо.



Полученные данные серьёзно обескураживают. Если нас лимитирует видеокарта, то скорости примерно равны, а почти во всех остальных случаях мы наблюдаем 5–10 процентное отставание динамики от статики. И хотя в среднем отставание составляет лишь примерно 4,5 %, это ничуть не успокаивает, мы же ожидали превосходства динамического режима! Формально ничего удивительного в этом нет. Наш набор тестовых приложений предназначен для сравнения материнских плат, а не процессоров. Причём специально подбирались в основном многопоточные программы, способные использовать возможности многоядерных процессоров. О каком же равенстве может идти речь в таком случае, когда при динамическом варианте процессор работает на частоте 3,55 ГГц, а при статическом на 3,9 ГГц? Естественно, что статика выигрывает. Единственным однопоточным приложением, которое мы когда-то добавили в набор тестовых программ, чтобы оценить возможный прирост от динамической реализации технологии Турбо, является SuperPI. И именно здесь мы видим закономерное преимущество динамического варианта.

Начался лихорадочный поиск современных однопоточных приложений, которые смогли бы убедительно продемонстрировать превосходство динамики над статикой. К своему удивлению, ничего подобного мы не нашли. Конечно, можно провести тесты в Cinebench или Fritz при использовании лишь одного потока и получить желаемый результат, но он совершенно нежизнеспособен, не имеет никакого отношения к реальности. Вряд ли кто-то станет отказываться от многопоточности в ущерб производительности, лишь для того, чтобы повысилась частота процессора. Нам важна лишь максимальная скорость и безразличен способ, которым она достигается, увеличением частоты или количеством одновременно исполняемых потоков вычислений. Если второй вариант намного быстрее, то никто не станет прибегать к первому. Напрашивается парадоксальный, на первый взгляд, вывод - статическая реализация технологии Турбо при разгоне заметно производительнее, чем динамическая.

На самом же деле ничего удивительного нет, динамическая реализация технологии Турбо проявляет все свои достоинства лишь при работе процессора в номинальном режиме, но не при разгоне. Что изменяется, когда при штатном режиме работы системы мы переходим от статики к динамике? Ничего, кроме того, что в определённых случаях мы позволяем процессору повысить собственную частоту. У нас та же самая базовая частота 133 МГц, а потому точно такие же частоты всех связанных шин, таких как частота работы памяти, к примеру. Совершенно естественно, что в этом случае динамический вариант предпочтительнее, что и доказывает сравнение. Мы видим убедительное и закономерное превосходство динамического варианта при работе процессора в номинальном режиме.



А когда мы при разгоне переходим от статики к динамике, то меняется всё. Нам пришлось понизить базовую частоту, а вместе с ней снизились и все связанные частоты - уменьшение базовой частоты со 177 до 161 МГц одновременно снижает частоту памяти с 2124 до 1932 МГц. Конечно, отчасти это снижение мы компенсируем более агрессивными таймингами, но уменьшение частоты работы процессора при высокой нагрузке ничем замаскировать не получится. Да, иногда частота процессора будет повышаться до 4,2 ГГц, что выше, чем 3,9 ГГц при статической реализации технологии Турбо, но нередко она будет составлять лишь 3,55 ГГц вместо всё тех же 3,9 ГГц. Учитывая, что современных однопоточных вычислений практически не существует, в любом случае процессору нужно «отвлекаться», отвечая на запросы операционной системы и других программ, получается, что максимальную производительность при разгоне мы получаем лишь при статической реализации технологии Турбо. Можно, конечно, время от времени посчитывать число Пи для самоутверждения при использовании динамического варианта технологии Турбо при разгоне, но вряд ли это можно назвать полезным с практической точки зрения. Наверно можно найти и старые однопоточные игры, где мы тоже увидим прирост скорости, но для старых игр, как правило, и без технологии Турбо достаточно производительности современных процессоров и видеокарт. В целом получается, что при разгоне процессора динамическая реализация Турбо менее полезна, чем статическая.

Замеры энергопотребления

Измерение энергопотребления проводилось с помощью прибора Extech Power Analyzer 380803 . Прибор включается перед блоком питания компьютера, то есть измеряет потребление всей системы «от розетки», за исключением монитора, но включая потери в самом блоке питания. При замере потребления в покое система бездействует, мы дожидаемся полного прекращения послестартовой деятельности и отсутствия обращений к жёстким дискам. Нагрузка на процессор Intel Core i7-860 создаётся с помощью программы «LinX». Для большей наглядности был построен график роста энергопотребления в зависимости от роста уровня нагрузки на процессор при изменении количества вычислительных потоков утилиты «LinX».



Энергопотребление системы при работе процессора Intel Core i7-860 в номинальном режиме слабо отличается, как при статической, так и при динамической реализации технологии Турбо. Разве что можно заметить чуть более высокое потребление в покое, когда работает статика. При разгоне процессора эта разница становится ещё более явной.



Вне зависимости от варианта реализации технологии Турбо под нагрузкой энергопотребление систем довольно близко. Однако при динамической реализации в покое потребление практически равно энергопотреблению при работе процессора без разгона, а при статическом варианте намного выше. Дело в том, что, разрешая состояния C3-C7 для динамического варианта, мы тем самым позволяем процессору при отсутствии нагрузки переходить в более глубокие энергосберегающие режимы, отключать больше блоков. Поэтому разница между динамическим и статическим вариантами в покое вполне объяснима, однако я не ожидал, что она окажется столь значительной. С учётом того, что обычно более 90 % времени компьютер работает при отсутствии нагрузки, тем пользователям, кто выбирает статический разгон, следует знать, что в покое их система будет заметно более энергоёмкой.

Ещё более впечатляет сравнение энергопотребления платформ LGA1156 и LGA1366. К двум вариантам разгона процессора Intel Core i7-860 мы добавили результаты, полученные при разгоне до 3,8 ГГц процессора Intel Core i7-920 на материнской плате Gigabyte GA-EX58-UD3R.



При разгоне процессоров, впрочем, при работе платформ в номинальном режиме тоже, хотя на графике показан лишь разгон, разница простирается от 30 до 60 Вт. Причём нужно заметить, что Gigabyte GA-EX58-UD3R - это весьма экономичная плата по меркам LGA1366. У неё эффективный преобразователь питания процессора, отсутствуют дополнительные контроллеры шины PCI Express, к тому же Intel Core i7-920 разгонялся без повышения напряжения, в отличие от Intel Core i7-860. В общем, по энергопотреблению платформы LGA1156 и LGA1366 просто несравнимы.

Послесловие

В обзоре мы затронули сразу несколько тем для обсуждения, поэтому и заключение будет чуть более обширным, чем обычно. Для начала можно сказать, что платформа LGA1156 в целом оставляет очень благоприятное впечатление, а вот процессор Intel Core i5-750 откровенно разочаровал. Мало того, что он изначально не поддерживает технологию Hyper-Threading, мало того, что у него отсутствует повышающий множитель для памяти x12, так и разгон, вопреки ожиданиям, у него оказался лишь незначительно выше, чем у процессора Intel Core i7-860. Получается, что Core i5-750 в состоянии конкурировать лишь со старыми процессорами Intel Core 2 Quad и с четырёхъядерными процессорами AMD. А вот Intel Core i7-860 - это уже полноценный, высокопроизводительный и неплохо разгоняющийся процессор. Однако тут возникает интересный вопрос - какой процессор лучше брать: Intel Core i7-860 или Intel Core i7-920? Ответ будет зависеть от того, в каких условиях планируется эксплуатировать процессоры, и какие параметры имеют для вас приоритетное значение.

Если мы говорим о производительности, а вы не сторонник разгона или вмешательства в настройки BIOS, то ваш выбор - Intel Core i7-860. Он будет быстрее в номинальном режиме за счёт более высокой собственной частоты и частоты работы памяти, к тому же не стоит забывать о более гибкой технологии Турбо. Однако процессор Intel Core i7-920 будет быстрее при разгоне. Разгоняются процессоры примерно до одинаковой частоты, но базовая частота и все связанные с ней частоты, такие, как частота памяти, при равном разгоне у Intel Core i7-920 будет выше, за счёт более низкого коэффициента умножения. Кроме того, не следует забывать, что Intel Core i7-920 работает с трёхканальной памятью, к тому же при использовании высокочастотной памяти DDR3 частота встроенного в процессор контроллера памяти будет выше, чем у Intel Core i7-860. Если говорить о сравнении цен, то на процессоры они одинаковы, но суммарная стоимость платформы для Intel Core i7-860 будет ниже, за счёт меньшего количества модулей памяти и не таких дорогих материнских плат. Что касается энергопотребления, то платформы LGA1156 и LGA1366 несравнимы, последняя гораздо прожорливее.

В целом лично мой выбор - конечно Intel Core i7-860. Лишь после знакомства с этим процессором я впервые задумался о том, что пора бы, пожалуй, перейти на четырёхъядерник. Причём, несмотря на полученные нами результаты сравнения, вам вовсе не обязательно отказываться от динамической реализации технологии Турбо при разгоне. Статический вариант в целом более производителен, тут не поспоришь, ведь при переходе к динамике нам приходится снижать разгон, зато взамен мы получаем более гибкую и экономичную систему, что тоже немаловажно. Ведь и раньше далеко не все по тем или иным причинам использовали оверклокерский потенциал процессора на все 100 %. Кто-то разгонял с использованием систем фазового перехода (фреонки), чтобы выжать максимум. Кто-то специально для разгона подбирал оптимальные компоненты системы, чтобы получить существенный прирост скорости без значительных финансовых и прочих издержек. Многие же просто немного разгоняли процессор, насколько получится, насколько позволит плата, система охлаждения и прочие компоненты компьютера. С появлением процессоров Lynnfield ничего не изменилось - кто-то выберет статический вариант, а кто-то динамический.

Вернёмся к тому, с чего мы начали эту статью - к материнской плате Asus P7P55D Deluxe. Она, не побоюсь этого слова, просто великолепна. Сама компания Asus в основном делает упор на появление новых функций, таких, например, как возможность автоматического разгона процессора «OC Tuner Utility». Я же, по понятным причинам, достаточно равнодушен к таким возможностям. На сегодняшний день ни одна утилита не в состоянии добиться таких же результатов, как при разгоне вручную, хотя нельзя не признать, что подобные технологии в состоянии оказать существенное подспорье для начинающего оверклокера. Мне больше всего нравится, что при изменении процессорного множителя и напряжения на процессоре продолжают работать технологии энергосбережения. Теперь мы ограничены только возможностями процессора и его системы охлаждения, а больше ничто не мешает нам установить оптимальный с точки зрения производительности и энергопотребления режим работы системы. Ну и конечно, не стоит забывать о характерных достоинствах материнских плат Asus - это неплохая комплектация, продуманный дизайн, качественная элементная база, множество фирменных функций и технологий, отличные способности к разгону, длительные сроки гарантийного обслуживания. Наше изучение материнских плат LGA1156 только начинается, но я не представляю, как какая-то другая плата сможет опередить Asus P7P55D Deluxe. В лучшем случае, полагаю, сопернице удастся с ней сравниться. Впервые за долгое время, я в полном восторге от материнской платы Asus и надеюсь, что и в дальнейшем компания будет только радовать своей продукцией.

">Уточнить наличие и стоимость ASUS P7P55D Deluxe

Другие материалы по данной теме


AMD против Intel: интегрированные платформы
Foxconn A7DA 3.0 - Socket AM3 плата на чипсете AMD 790GX
EVGA X58 SLI LE - лёгкое обаяние недорогой системной платы


Рекомендуем почитать

Наверх