Пробник бытовой пб 1 схема. Индикатор-пробник для поиска фазы и ноля. Пробник со стрелочным индикатором

Для Windows Phone 27.04.2019
Для Windows Phone

И промышленные приборы со светодиодами. Они сегодня встречаются практически всюду. Еще светодиоды начинают использовать вместо старых трубчатых люминесцентных ламп, ну а про лампы накаливания можно и вообще промолчать. В связи с тем, что существует огромное разнообразие диодов, для их проверки будет полезно заиметь тестер, ну или сделать его своими руками .

Конечно, некоторые светодиоды можно проверить и обычным мультиметром в режиме прозвонки. При этом светодиод должен засветиться. Но если он работает под большим напряжением, чем выдает мультиметр, свечение будет очень слабым, либо его не будет вовсе.
У некоторых светодиодов белого, желтого и синего цвета напряжение может достигать 3.3В.

В первую очередь при тестировании светодиода нужно определить, где у него катод, а где анод. Конечно, это можно определить, рассмотрев внутренности кристалла, но на это уходит время, силы, нервы, да и вообще это непрофессиональный подход.

Помимо всего прочего изготовленный пробник поможет определить, какое рабочее напряжение имеет светодиод, а ведь это очень важный параметр. Ну и наконец, прибор поможет банально определить исправность светодиода.

Схема устройства
По мнению автора, схема устройства очень простая. Самоделка представляет собой приставку, которая втыкается в гнездо мультиметра.


Материалы и инструменты для самоделки:

- соединительная колодка от батареи типа «Крона»;
- рабочая батарейка крона (нужна для питания пробника);
- миниатюрная кнопка без фиксации (подойдет также тактовая от телефона, планшета и пр.);
- один резистор 1 кОм на 0.25 Вт;
- быстросъемный разъем для транзисторов (сокет с шагом 2.54 мм, всего нужно будет 3 контакта);
- материал для создания корпуса устройству (подойдет пластиковая пластина и т.д.);
- четыре винта из латуни.



Процесс изготовления самоделки:

Шаг первый. Подготавливаем необходимые элементы
Сперва нужно подготовить контакты, которые будут подключаться к мультиметру. На фото видно, что штыри имеют резьбу, но лучше всего от нее избавиться. Резьба нужна лишь для того, чтобы прикрутить элементы с помощью гаек к пластиковому корпусу.

Для крепления штырей в пластине из пластмассы нужно просверлить четвертые отверстия. Два нужны для установки соединительной колодки, через которую подключается батарея "Крона". А вторые два нужны для монтажа контактов, с помощью которых приспособление подключается к мультиметру.


Чтобы закрепить микрокнопку и разъем для транзисторов, нужно будет вырезать плату из текстолита.


Шаг второй. Спаиваем схему
Теперь нужно спаять электронные детали, руководствуясь представленной выше схемой. Нужно припаять микрокнопку, транзисторный сокет и резистор на 1 кОм 0.25 Вт.


Шаг третий. Завершающий этап. Сборка самоделки
Теперь устройство собирается в общий корпус. Выведенные провода подключаются к колодке питания для батареи «Крона» и штепселям, с помощью которых пробник подключается к мультиметру. На плате текстолита возле разъема автор приклеил схемку, которая позволяет не запутаться при тестировании светодиода. Красный провод питания - это «плюс», то есть анод. Ну а черный с «минусом» - это катод.








Чтобы протестировать светодиод, его нужно воткнуть в разъем и подключить батарейку «Крона» к гнезду. Теперь мультиметр переключается в режим измерения напряжения в диапазоне 2-20В постоянного тока. Если диод исправен и включен верно, то она засветится.

Как было сказано в начале, с помощью мультиметра можно определять рабочее напряжение светодиода, но если это не нужно, мультиметр и вовсе не понадобится. Вот и все, маленький помощник готов, теперь собирать самоделки на светодиодах или что-то ремонтировать будет куда приятнее и быстрее.

Для проверки предохранителя, электрической лампочки накаливания, кипятильника, удлинителя и т.п. совсем необязательно покупать дорогой мультиметр. Можно самому за несколько минут собрать простейший пробник на одной батарейке.

Тестер электропроводности, состоящий из батарейки, электрической лампочки и двух проводов, показывает, годна ли лампочка или предохранитель, исправен ли выключатель или патрон лампы. Отключив элемент от основной цепи, вы просто присоединяете его к клеммам тестера. Если лампочка загорается, значит электрическая цепь есть. Если лампочка в пробнике не горит, значит нет контакта, неисправен проверяемый эл.прибор.

Такой пробник-индикатор очень легко сделать самому. Возьмите лампочку напряжением в 6,3 в. и патрон.

Соедините гибким проводом положительную клемму патрона с положительной клеммой батарейки.

Присоедините свободный конец другого гибкого провода к зажиму типа «крокодильчик».

Отведите третий кусок гибкого провода от отрицательной клеммы батарейки ко второму зажиму типа «крокодильчик» и присоедините оба зажима к прибору или элементу цепи, который вы хотите проверить.

Всё! Пробник готов!

Как проверить предохранитель, лампочку, удлинитель, эл.цепь?

Когда перегорает, например, предохранитель, бывает, что и невидно следов, особенно если он керамический. В этом случае нам пригодится наш пробник электрической цепи. Подключаем проверяемый предохранитель к зажимам типа «крокодильчик». Если лампочка загорится, предохранитель исправен и причину следует искать в другом месте. Если лампочка не загорается, предохранитель перегорел — замените его на новый. Так же проверяем лампочку, кипятильник, ТЭН, выключатель, новогоднюю гирлянду на эл. лампочках, удлинитель. Этот список можно долго продолжать. Такой простой приборчик всегда нужен в доме.

Давайте рассмотрим несколько схем простых пробников, найденных в Интернет.

Простой пробник на светодиодах

Усовершенствованный пробник. Использование светодиодов уменьшают потребление тока у батареи. Способен проверять направление тока.

Пробник на одном транзисторе.

Подойдёт любой маломощный транзистор прямой проводимости. Этот пробник уже может проверять более высокоомные цепи. Например, обмотки трансформатора.

Простой пробник для проверки напряжения в эл.цепях автомобиля

Пробник со стрелочным индикатором.

Этот пробник может проверять более высокоомные цепи. Например, обмотки трансформатора, проводимость диодов, транзисторов.


П О П У Л Я Р Н О Е:

    Иногда бывает при переезде, транспортировки или при мытье микроволновой печи разбивается тарелка. Такая тарелка сейчас в магазинах стоит не дёшево, но её можно заменить своим вариантом.

    Предлагаем два варианта замены заводской тарелки для СВЧ печи.

Самые простые работы, связанные с электричеством, сложно выполнять без измерительных инструментов.
Совсем необязательно измерять параметры электрической цепи тестером, во многих случаях удобнее обойтись универсальным пробником, инфицирующим наличие этих параметров посредством световых сигналов. Этого вполне достаточно для удобной и безопасной работы с электрическими цепями.
Рассматриваемая схема пробника-индикатора не содержит элементов питания. Вместо энергии обычно применяемых в пробниках батареек, здесь используется энергия заряженного конденсатора.

Функциональные возможности.
Пробник позволяет контролировать наличие переменного и постоянного напряжения в пределах от 24 до 220 В, осуществлять прозвонку электрической цепи сопротивлением до 60 кОм и определять полярность в цепях постоянного тока.
При подключении щупов ХР1 и ХР2 к источнику постоянного тока в соответствии с полярностью входа, загорается зеленый светодиод HL1, указывая не только на наличие в контролируемой цепи именно постоянного напряжения, но и на присутствие плюса в точке касания щупа XP1.
Изменение полярности на щупах на противоположную вызывает загорание красного светодиода HL2, что кроме наличия напряжения, указывает на контакт с плюсом щупа HP2.
При контроле переменного напряжения одновременно загораются оба светодиода.
О целостности цепи при прозвонке свидетельствует загорание красного светодиода HL2.
Вот такую информацию можно получить с помощью всего двух светодиодов, встроенных в этот простой пробник-индикатор.

Конструкция пробника.

Радиокомпоненты. Для реализации устройства необходимо приобрести или найти в своих запасах следующие детали:
Резисторы R1-220 кОм и R2-20 кОм, мощностью 2Вт, R3-6,8 кOм;
Светодиоды HL1 – АЛ 307Г, HL2 – АЛ 307Б;
Диоды KD2 – VD5 – KD103 (возможная замена КД 102);
Стабилитрон VD1 – КС222Ж (возможная замена КС220Ж, КС522А);
Конденсатор С1 - К50-6 1000х25.

Корпус. Выбору корпуса следует уделить особое внимание – от его конфигурации и габаритов зависит удобство работы с пробником. Рассмотрим два варианта корпусов. В первом варианте используется крышка реле, во втором – корпус неизвестного гаджета.

В корпусах выполняются отверстия для вывода провода со щупом XP2, устанавливаются светодиоды, (только для первого варианта) и крепятся щупы XP1.
Плата. Размеры корпуса определяют геометрию платы. Монтаж может быть навесным, но его не трудно сделать и на печатной плате. Все радиокомпоненты (кроме светодиодов в первом варианте) монтируются на плате, которая крепится внутри корпуса.


После установки платы в корпус и подпайки проводников к щупам XP1и XP2 пробники – индикаторы готовы к работе. В налаживании устройство не нуждается.
Время заряда конденсатора пробника при напряжении в сети в пределах 220-24В составляет 3-25сек. Время разряда конденсатора при коротком замыкании щупов пробника не менее 2 мин.


Все вы неоднократно сталкивались с поиском случайно замкнутых при пайке проводников на платах, между ножками микросхем в корпусах поверхностного монтажа или под ними. Или же наоборот для проверки соединения, нахождения обрывов или поиска проводников, подключенных в одну точку, так называемый "металлический" контакт. Для этого многие пользуются обычным тестером с режимом прозвонки. Но тестер неудобен тем, что зачастую порог срабатывания прибора высокий, порой несколько сотен Ом. Да и p-n переходы тоже влияют на прозвонку. Для повышения удобства таких поисков я уже много лет применяю специальный пробник, порог срабатывания которого настроен на сопротивление измеряемой цепи менее 10 Ом. Пробник не реагирует на p-n переходы.
Идея взята мной из журнала Радио, но изначально она мне не понравилась по нескольким пунктам:
1. Напряжение питания составляет 5В. Автор говорит о применении внешнего питания;
2. Достаточно большой ток потребления, чтоб всерьез рассматривать таблеточные элементы в качестве источников питания;
3. Применены громоздкие элементы, включая микросхему и излучатель ЗП-3.

Исходная схема из журнала приведена ниже:

Сразу оговорюсь, что данная статья посвящена уже второй доработке данной схемы для снижения габаритов, потребляемого тока и полным отказом от звукового сигнала. Надоел он мне жутко. В первой доработке, собранной в 2000 году, обвязка VT1 - VT3 осталась без изменений. Вместо генератора на микросхеме использовался мультивибратор на транзисторах КТ315, причем в одно плечо мультивибратора была включена цепочка из светодиода, диаметром 3мм и динамического излучателя от китайского будильника. Получилась и световая, и звуковая сигнализация. Достоинством данной схемы была возможность подбора более приятного для ушей звука, чем писк пищалки со встроенным генератором. Минусом - разве что сложность подбора элементов мультивибратора при макетировании для получения устойчивой генерации. Питание осуществлялось от трех последовательно соединенных элементов AG13 (таблетка). Хватало их не сильно надолго ввиду прожорливости схемы, о чем я выше уже написал.
В итоге мне это надоело, и я решил переработать данную схему в пользу снижения потребления, снижения напряжения питания, применение более удобного литиевого элемента питания CR2032 и отказа от звуковой сигнализации. Пробник получился миниатюрным и благодаря своей конструкции при использовании световой сигнал всегда виден.
Собственно сама схема.

и фотографии получившегося пробника

Практически все элементы расположены за кнопкой, размеры которой 12х12 мм.
Второй щуп - от китайского тестера. Заменил только саму иглу на такую же, как на фото выше. Фото второго щупа не привожу, ничего интересного нет. Длина провода 0,5м.
Дополнительного корпуса не предусматривалось, хотя в планах было покрыть лаком проводники идущие к разъему питания для избежания возможного КЗ. Чего пока так и не сделал. Видимо жду КЗ. В данном виде пробник эксплуатируется уже полгода.
Размещение компонентов на плате. Светодиод желательно поставить SMD.

В ходе проведения различных ремонтных и электромонтажных операций нередко возникают ситуации, связанные с необходимостью определения наличия напряжения на отдельных участках электрической цепи. Кроме того, нередки и такие случаи, когда нужно оперативно убедиться в наличии или отсутствии контакта между различными элементами исследуемых цепей. Во всех таких случаях наиболее подходящим для работы инструментом являются индикаторные приборы, объединённые в группу устройств под общим названием пробник электрика.

Это понятие включает в себя ряд приборов и инструментов следующих наименований:

  • так называемые индикаторы фазы или, проще говоря – индикаторные отвёртки;
  • двухполюсные индикаторы напряжения;
  • универсальные пробники;
  • контрольные приборы (типа «Аркашка»).

Необходимо отметить также, что большинство из приведённых в перечне приборов не занимают, как правило, много места в ремонтном комплекте. Отдельные их образцы вообще переносятся прямо в карманах рабочего снаряжения, где они находятся, образно выражаясь, «всегда под рукой». Последнее утверждение особо касается таких известных приспособлений, какими являются индикаторная отвертка и самодельный контрольный прибор. Особо следует подчеркнуть то обстоятельство, что все эти приборы достаточно надёжны и просты в работе и неплохо замещают (дополняют) относительно габаритный и не всегда удобный в обращении тестер. С их помощью всегда можно разобраться с .

Работать с прибором “Аркашка” очень просто

Индикаторы фазы

Индикатор фазы изготавливается обычно в виде небольшой отвёртки, выступающей при необходимости и в роли щупа.

Электрическая схема электрического тестера этого типа состоит из двух последовательно соединённых элементов – неоновой лампочки и резистора с очень низкой проводимостью. В процессе проверки цепи на наличие напряжения оператору необходимо прикоснуться любым пальцем руки к специальному металлическому контакту, размещённому на верхней части отвёртки. Таким образом, для успешной работы индикатора в исследуемую цепь должно включаться также и тело человека, проводящего операцию. Встроенный высокоомный резистор, играющий в измерительной цепи роль ограничителя напряжения, снижает протекающий по ней ток (в том числе и через человека) до абсолютно безопасного значения (обычно – менее 0,3 мА).

Отдельных пояснений требуют некоторые особенности работы с индикаторной отвёрткой, состоящие в следующем:

Поскольку тело оператора также участвует в процессе электрических измерений – необходимо наличие надёжного контакта человека с землёй и отвёрткой, что выполнимо лишь при отсутствии в рабочей цепи каких-либо изоляторов (резиновых ковриков и подставок, а также резиновых перчаток).

Индикатор фазы способен определять лишь наличие или отсутствие потенциала в контрольной точке, что никоим образом не свидетельствует о наличии напряжения в измеряемой цепи. В случае обрыва нулевого провода, например, напряжение в сети отсутствует, но щуп, тем не менее, будет показывать наличие «фазы» на одном из контактов. В том случае, когда вам нужно убедиться именно в наличии напряжения – измерения следует проводить с помощью мультиметра (ампервольтметра или тестера).

В случае неисправности измерительной цепи индикатора (при выходе из строя неоновой лампочки, например) последний покажет вам отсутствие напряжения в контрольной точке. Во избежание серьёзных неприятностей обязательно проверяйте работоспособность индикаторной отвёртки путём контрольной проверки её в цепи, заведомо находящейся под напряжением.

Следует быть очень внимательным при работе с индикатором в условиях яркого солнечного освещения, при котором свечение неоновой лампочки практически незаметно для глаза, что также может привести к ошибке в определении наличия фазы.

Простейшие измерительные приборы

Под понятием «универсальный электрический пробник» подпадает также целая группа измерительных приборов, используемых, как правило, для «прозвонки» исследуемой цепи, а если проще – для определения её целостности.

Более развитой по своему функционалу разновидностью прибора считается двухполюсный индикатор наличия напряжения ПИН-90, позволяющий определять наличие или отсутствие такового между , а также между контрольной точкой и «землёй». От обычного индикатора фазы он отличается тем, что имеет ещё один щуп, который соединён с основным узлом посредством специального шнура и позволяет определять наличие напряжения в цепи. Ещё большей функциональностью отличаются двухполюсные индикаторы типа ЭЛИН-1СЗ ИП, оснащаемые двумя встроенными светодиодными индикаторами, позволяющими регистрировать различные уровни напряжения в сети.
В настоящее время разработано множество вариантов универсальных тестеров для электрических работ, как зарубежного, так и отечественного производства (в это число входят и различные самодельные устройства). Такие приборы отличаются довольно широкими возможностями и позволяют производить различные операции и способны:

  • определить наличие, вид и полярность исследуемого напряжения;
  • обнаружить обрыв в цепи;
  • оценить сопротивление этой цепи;
  • проверить конденсаторы определённой ёмкости на предмет обрыва и тока утечки;
  • проверять полупроводниковые приборы;
  • контролировать состояние встроенных аккумуляторов.

На рисунке приведена электрическая схема прибора «Ратон», позволяющего контролировать основные из перечисленных ранее величин. Отсутствие питания и универсальность – большие плюсы данного изделия.



Рекомендуем почитать

Наверх