Принцип работы регулятора напряжения. Советы по увеличению срока службы реле-регулятора. Модернизация схемы регулятора

Faq 29.06.2019
  • 2.7. Неисправности аккумуляторных батарей
  • 2. Быстрое снижение
  • 3. Выплескивание электролита через вентиляционные отверстия в пробках
  • 4. Аккумуляторная батарея не заряжается
  • 5. Амперметр показывает большой зарядный ток при нормальном уровне регулируемого напряжения
  • 6. Понижена емкость батареи
  • 3.1. Принцип действия вентильного генератора
  • 3.2. Принцип действия регулятора напряжения
  • 3.3. Электрические схемы генераторных установок
  • 3.4. Характеристики генераторных установок
  • Глава 1 5
  • Глава 10 534
  • Глава 11 556
  • 3.5. Конструкция генераторов
  • Глава 1 5
  • Глава 10 536
  • Глава 11 558
  • 3.6. Бесщеточные генераторы
  • 3.7. Схемное и конструктивное исполнение регуляторов напряжения
  • 3.8. Техническое обслуживание генераторных установок
  • 3.9. Характерные неисправности генераторных установок и методы их обнаружения
  • 3.10. Замена типа генераторной установки на автомобиле
  • Глава 4
  • 4.1. Пусковые качества автомобильных двигателей
  • На 4.1. Зависимость момента сопротивления от частоты вращения коленчатого вала при пуске бензинового двигателя 3m3-53:
  • 4.2. Системы электростартерного пуска
  • 4.3. Особенности работы электростартеров и требования к электростартерам
  • 4.4. Устройство электростартеров
  • 4.5. Характеристики электростартеров
  • 4.6. Схемы управления электростартерами
  • 4.7. Система стоп-старта
  • 4.8. Правила эксплуатации и техническое обслуживание электростартеров
  • 4.33. Схемы регулировки стартеров:
  • Глава 5
  • 5.1. Свечи накаливания и подогрева воздуха
  • 5.1.1. Свечи накаливания
  • 5.1.2. Свечи подогрева воздуха во впускном трубопроводе
  • 5.2. Электрофакельные подогреватели воздуха
  • 12.3741 (КамАз, Урал, газ, маз, КрАз)
  • 14.3741 (Зил-1эзвя, зил-1эзгя)
  • 5.3. Техническое обслуживание электрофакельных подогревателей
  • 5.4. Устройства для подачи пусковой жидкости
  • 5.5. Электрические подогреватели
  • Го управления подогревателей пжд-30
  • Глава 6
  • 6.1. Назначение и принцип действия
  • 6.2. Контактная система зажигания
  • 6.3. Контактно-транзисторная система зажигания
  • 6.4. Электронные системы зажигания
  • 6.4.3. Микропроцессорные системы зажигания
  • 6.5. Элементы систем зажигания
  • 6.5.2. Распределители зажигания
  • 6.5.3. Свечи зажигания
  • 6.5.4. Высоковольтные провода
  • 6.6. Применяемость элементов систем зажигания
  • Контактные системы зажигания
  • Контактно-транзисторные системы зажигания
  • 6.7. Техническое обслуживание систем зажигания
  • Двигатель работает с перебоями
  • Двигатель не развивает полной мощности
  • 7.1. Основные принципы управления двигателем
  • Глава 7Сигналы (импульсы) датчиков управления
  • 7.2. Системы автоматического управления
  • 7.3. Системы подачи топлива с электронным управлением
  • 7.3.1. Карбюраторы с электронным управлением
  • 7.3.2. Электронные системы впрыскивания топлива
  • 5 M в бортовой сети, в жидкости, °с в двигатель воздуха, °с
  • 7.4. Комплексные системы управления двигателем
  • 7.5. Датчики электронных систем управления двигателем
  • 7.5.1. Измерители расхода воздуха
  • 7.5.2. Измерители расхода топлива
  • 7.5.3. Датчики давления
  • 7.5.4. Датчики температуры
  • 7.5.6. Датчики детонации
  • Рчс. 7.40. Циркониевый датчик кислорода:
  • Лк. 7.41. Датчик кислорода на основе щ:
  • 7.6. Исполнительные устройства систем впрыска
  • 7.6.1. Электромагнитные форсунки
  • 7.6.2. Электромагнитные клапаны. Переключающие устройства
  • 7.6.3. Исполнительные устройства с электродвигателями
  • 7.7. Электронные системы управления автомобильными дизелями
  • 7.8. Эксплуатация систем управления двигателем
  • 7.8.1. Эксплуатация сауэпхх
  • J Стрелка тестера отклоияется]- I Нет
  • 7.8.3. Проверка и регулирование системы впрыскивания топлива «Motronic»
  • Глава 8
  • 8.1. Назначение и классификация световых приборов
  • 8.2. Международная система обозначений световых приборов
  • 8.3. Лампы световых приборов
  • 8.4. Фары головного освещения. Блок-фары. Прожекторы
  • 8.5. Противотуманные фары и фонари
  • 8.6. Приборы световой сигнализации
  • Вой оптической системой:
  • 8.7. Приборы внутреннего освещения и сигнализаторы
  • 8.8. Техническое обслуживание системы освещения и световой сигнализации
  • Не работают указатели поворота в режиме как маневрирования автомобиля, так и аварийной сигнализации
  • 8.9. Звуковые сигналы
  • Глава 9
  • 9.1. Датчики электрических приборов
  • 9.1.1. Реостатные датчики
  • 9.1.2. Терморезистивные датчики
  • 9.1.3. Термобиметаллические датчики
  • 9.1.4. Датчики давления
  • 9.1.5. Датчики электронных информационных систем
  • 9.2. Указатели автомобильных информационных измерительных систем
  • 9.2.1. Магнитоэлектрические указатели
  • 9.2.2. Электромагнитные указатели
  • 9.2.3. Указатели импульсной системы
  • 9.3. Термометры
  • 9.4. Измерители давления
  • 9.5. Измерители уровня топлива
  • 9.6. Измерители зарядного режима аккумуляторной батареи
  • 9.7. Спидометры и тахометры
  • 9.8. Эконометр
  • 9.9. Тахографы
  • 9.10. Электронные информационные системы
  • 9.11. Техническое обслуживание информационно- измерительной системы
  • Глава 10
  • Нын возбуждением:
  • 10.1. Электродвигатели
  • 10.2. Моторедукторы
  • Стителя заднего стекла:
  • 10.5. Техническое обслуживание электропривода
  • Лем (а) и реле стеклоомывателя (б) на микро­схемах кр1055гп2 и кр1055гп1
  • При включении системы электродвигатель привода не работает, предохранители срабатывают
  • Глава 11
  • 11.1. Автомобильные провода
  • 11.2. Защитная аппаратура
  • 11.3. Коммутационная аппаратура
  • 11.4. Мультиплексная система проводки
  • 11.5. Техническое обслуживание бортовой сети
  • Глава 1 5
  • Глава 10 536
  • Глава 11 558
  • Глава 8. С иста мы освещения, световой
  • Глава 9. Информационно-измерительная
  • Глава 10. Электропривод вспомогательного оборудования автомобиля
  • Глава 11. Схемы электрооборудования. Комму
  • 7.8.2. Проверка, регулирование и поиск неисправностей системы «l-Jetronic»
  • 3.2. Принцип действия регулятора напряжения

    Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора ге­нератора, электрической нагрузки, температуры окружающей среды.

    Кроме того, он может выполнять дополнительные функции - защищать эле­менты генераторной установки от аварийных режимов и перегрузки, автомати­чески включать в бортовую сеть цепь обмотки возбуждения или систему сигна­лизации аварийной работы генераторной установки.

    Все регуляторы напряжения работают по единому принципу. Напряжение ге­нератора определяется тремя факторами - частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, соз­даваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напря­жение генератора, снижение тока возбуждения уменьшает напряжение. Все ре­гуляторы напряжения, отечественные и зарубежные, стабилизируют напряже­ние изменением тока возбуждения. Если напряжение возрастает или уменьша­ется, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

    Блок-схема регулятора напряжения представлена на рис. 3.3.

    Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регу­лирующий элемент 4. Измерительный элемент воспринимает напряжение гене­ратора 2 Ujj и преобразует его в сигнал U M3M , который в элементе сравнения сравнивается с эталонным значением U 3T .

    Если величина U M3M отличается от эталонной величины и эт , на выходе изме­рительного элемента появляется сиг­нал U 0 , который активизирует регули­рующий элемент, изменяющий ток в обмотке возбуждения так, чтобы на­пряжение генератора вернулось в за­данные пределы.

    Ш

    Рис. 3.3. Блок-схема регулятора напряжения:

    1 - регулятор; 2 - генератор; 3 - элемент сравнения; 4 - регулирующий элемент; 5 -измерительный элемент

    Таким образом, к регулятору напря­жения обязательно должно быть под­ведено напряжение генератора или на­пряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбу­ждения генератора. Если функции ре­гулятора расширены, то и число подсо­единений его в схему растет.

    Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на эле­мент сравнения, г де роль эталонной величины играет обычно напряжение стабили­зации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через се­бя ток. если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным. Ток через стаби­литрон включает электронное реле, которое коммутирует цепь возбуждения таким образом что ток в обмотке возбуждения изменяется в нужную сторону. В вибраци­онных и контактно-транзисторных регуляторах чувствительный элемент представ­лен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина - это сила на­тяжения пружины, противодействующей силе притяжения электромагнита. Комму­тацию в цепи обмотки возбуждения осуществляют контакты реле или, в контакт- но-транзисторном регуляторе, полупроводниковая схема, управляемая этими кон­тактами. Особенностью автомобильных регуляторов напряжения является то. что они осуществляют дискретное регулирование напряжения путем включения и вы­ключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и кон­тактно-транзисторных регуляторах), при этом меняется относительная продолжи- т епьность включения обмотки или дополнительного резистора.

    Поскольку вибрационные и контактно-транзисторные регуляторы представ­ляют лишь исторический интерес, а в отечественных и зарубежных генератор­ных установках в настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы, близкой к отечественному регулятору напряжения Я112А1 и регулятору EE14V3 фирмы BOSCH (рис. 3.4).

    Регулятор 2 на схеме работает в комплекте с генератором 1. имеющим допол­нительный выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает j epe3 себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается, и по нему начинает протекать ток.

    Транзисторы же пропускают ток между коллектором и эмиттером, т.е. откры­ты. если в цепи база-змиттер ток протекает, и не пропускают этого тока. т.е. закрыты, если базовый ток прерывается.

    Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1 , R2. Пока напряжение генератора неве­лико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон за­крыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вы­вода Д поступает в базовую цепь транзистора VT2, он открывается, через его пе­реход эмиттер-коллектор начинает протекать ток в базе транзистора VT3, кото­рый открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер-коллектор VT3 подключена к цепи питания. Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а пи-

    1 - генератор; 2 - регулятор

    тание базовой цепи одного транзистора производится от эмиттера другого, на­зывается схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом уси­ления. Обычно такой транзистор и выполняется на одном кристалле кремния. Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1 .

    При достижении этим напряжением величины напряжения стабилизации ста­билитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1 , который открывается и своим переходом эмиттер-коллектор закорачивает вывод базы составного транзистора VT2, VT3 на «массу». Состав­ной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются ста­билитрон VD2, транзистор VT1, открывается составной транзистор VT2, VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генерато­ра возрастает и т.д., процесс повторяется.

    Таким образом регулировка напряжения генератора регулятором осуществ­ляется дискретно через изменение относительного времени включения обмот­ки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяет­ся так, как показано на рис. 3.5. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если

    частота вращения уменьшилась или нагрузка возросла - увеличивается.

    В схеме регулятора по рис. 3.4 име­ются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбужде­ния со значительной индуктивностью.

    В этом случае ток обмотки возбуж­дения может замыкаться через этот диод, и опасных всплесков напряже­ния не происходит. Поэтому диод VD2 называется гасящим. Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии состав­ного транзистора VT2, VT3 оно оказы­вается подключенным параллельно сопротивлению R2 делителя напряже­ния. При этом напряжение на стабили­троне VD2 резко уменьшается, что ус­коряет переключение схемы регулятора и повышает частоту этого переключе­ния. Это благотворно сказывается на качестве напряжения генераторной уста­новки. Конденсатор С1 является своеобразным фильтром, защищающим регу­лятор от влияния импульсов напряжения на его входе.

    Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочас­тотных помех на работу регулятора, либо ускоряют переключения транзисторов.

    В последнем случае конденсатор, заряжаясь в один момент времени, разря­жается на базовую цепь транзистора в другой момент, ускоряя броском разряд­ного тока переключение транзистора и, следовательно, снижая потери мощно­сти в нем и его нагрев.

    Из рис. 3.4 хорошо видна роль лампы контроля работоспособного состояния генераторной установки HL.

    При неработающем двигателе внутреннего сгорания замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA че­рез эту лампу поступать в обмотку возбуждения генератора. Этим обеспечива­ется первоначальное возбуждение генератора. Лампа при этом горит, сигнали­зируя, что в цепи обмотки возбуждения нет обрыва.

    Рис. 3.5. Изменение силы тока в обмотке воз­буждения te по времени t:

    *вкп и Ъыкп ~ соответственно время включения и выключения обмотки возбуждения генератора; П 1 и п 2 ~ частоты вращения ротора генератора, причем п 2 больше гу, 1в 1 и 1в 2 - среднее значе­ние тока в обмотке возбуждения

    После запуска двигателя, на выводах генератора Д и «+» появляется практи­чески одинаковое напряжение и лампа гаснет. Если генераторная установка при работающем двигателе автомобиля не развивает напряжения, то лампа HL про­должает гореть и в этом режиме, что является сигналом об отказе генератор­ной установки или обрыве приводного ремня.

    Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбу­ждения. то лампа HL загорится.

    Аккумуляторная батарея для своей надежной работы требует, чтобы с пониже­нием температуры электролита напряжение, подводимое к батарее от генератор­ной установки, несколько повышалось, а с повышением температуры - понижалось.

    Для автоматизации процессов изменения уровня поддерживаемого напряже­ния применяется датчик, помещенный в электролит аккумуляторной батареи и включаемый в схему регулятора напряжения. В простейшем случае термоком­пенсация в регуляторе подобрана таким образом, что в зависимости от темпе­ратуры поступающего в генератор охлаждающего воздуха напряжение генера­торной установки изменяется в заданных пределах.

    3 рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключений в цепи обмотки возбуждения изменя­ется по мере изменения режима работы генератора. Нижний предел этой час­тоты составляет 25-50 Гц.

    Однако имеется и другая разновидность схем электронных регуляторов, в ко­торых частота переключения строго задана. Регуляторы такого типа оборудо­ваны широтно-импульсным модулятором (ШИМ), который и обеспечивает за­данную частоту переключения. Применение ШИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.

    8 настоящее время все больше зарубежных фирм переходит на выпуск гене­раторных установок без дополнительного выпрямителя. Для автоматического предотвращения разряда аккумуляторной батареи пои неработающем двигате­ле автомобиля в регулятор такого типа заводится фаза генератора. Регулято­ры. как правило, оборудованы ШИМ, который, например, при неработающем двигателе переводит выходной транзистор в колебательный режим, при кото­ром ток в обмотке возбуждения невелик и составляет доли ампера.

    После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы.

    Схема регулятора осуществляет в этом случае и управление лампой контро­ля работоспособного состояния генераторной установки.

    Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

    Основные процессы автоматического регулирования

    Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

    Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

    Что такое генератор

    Любой автомобильный генератор состоит из нескольких частей:

    1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

    2. Статор с тремя обмотками, соединенными по схеме "звезда" (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

    3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 в системе впрыска) одинаков.

    Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

    Работа генератора

    Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

    При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

    Двухуровневые регуляторы

    Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

    Работа двухуровневого регулятора

    При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

    Электронный регулятор

    У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

    Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

    Трехуровневая система регулирования

    Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора ("Форд Сиерра" также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

    Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

    Современные системы регулирования напряжения

    Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

    Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

    Как снимать реле-регулятор

    Снять реле-регулятор напряжения генератора ("Ланос" или отечественная "девятка" у вас - не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

    Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения имеет устаревшую конструкцию - он монтируется в подкапотном пространстве, отдельно от щеточного узла.

    Проверка устройства

    Проверяется реле-регулятор напряжения генератора ВАЗ 2106, "копеек", иномарок одинаково. Как только произведете снятие, посмотрите на щетки - у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

    Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

    Выводы

    В системе электрооборудования автомобиля реле-регулятор напряжения генератора "Бош" (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

    Выход из строя реле-регулятора – наиболее частая причина неисправности автомобильных генераторов. Именно поэтому с проверки регулятора обычно начинают контроль работоспособности узлов генератора.

    В большинстве случаев это можно сделать самостоятельно даже без его снятия.

    Принцип работы регулятора напряжения генератора

    Генератор – один из наиболее консервативных узлов автомобилей. Разработанная в середине 60-х годов схема осталась практически неизменной вплоть до наших дней за исключением элементной базы.

    Схема

    В общем виде схему автомобильного генератора можно изобразить так:

    Она содержит следующие основные узлы:

    • выпрямительный мост 5 и 6;
    • выпрямительный мост питания реле-регулятора 7;
    • щетки обмотки возбуждения 10;
    • обмотка возбуждения (якорь) 9;
    • обмотка статора 8;
    • индикаторная лампа 4;
    • аккумуляторная батарея 3;
    • контактная группа замка зажигания 1;
    • конденсатор 2 (может отсутствовать).

    Общий принцип работы генераторов переменного тока придумал гениальный Тесла. Постоянный ток через обмотку возбуждения индуцирует магнитное поле. Во время вращения катушки возбуждения (якоря) внутри обмотки статора в последних генерируется переменное напряжение.

    Это напряжение преобразуется в постоянное выпрямителем, выполненным на диодном мосте 5 и 6. Выпрямленное напряжение .

    Чем выше ток в обмотке возбуждения, тем будет выше напряжение генератора.

    Какую функцию выполняет реле-регулятор? По существу, он является усилителем с обратной связью. То есть, как только повышается напряжение, его схема уменьшает ток через обмотку возбуждения.

    Соответственно, напряжение генератора уменьшается. Тогда он повышает ток обмотки, напряжение генератора увеличивается. И так до бесконечности. В конечном счете, напряжение генератора стабилизируется на определенном уровне. Весь этот процесс стабилизации длится доли секунды.

    Виды

    Реле-регуляторы классифицируют по элементной базе исполнения :

    • релейные;
    • транзисторно-релейные;
    • транзисторные (в автомобилях до 90-х годов);
    • интегральные (в современных автомобилях);
    • микропроцессорные с программным управлением (Audi, BMW).

    По конструктивному исполнению :

    • внешние, закрепляемые на элементах кузова;
    • встроенные;
    • встроенные, совмещенные со щетками.

    В современных автомобилях чаще всего используют устройства, совмещенные со щетками. В этом есть свой недостаток: когда изнашиваются щетки, приходится менять и реле-регулятор. И наоборот, отказ реле-регулятора может привести к замене здоровых щеток.

    Некоторые специалисты меняют только щетки, расположенные совместно с реле-регулятором. Это не лучший вариант из соображений надежности, тем более стоимость реле-регуляторов распространенных автомобилей не так велика и может быть даже ниже стоимости замены щеток.

    Возможные причины неисправности

    В качестве основных причин неисправностей реле-регуляторов напряжения генераторов рассматриваются:

    • межвитковое замыкание обмотки возбуждения. Наиболее опасная причина неисправности. После замены реле-регулятора генератор определенное время работает без проблем. Но регулятор работает при повышенных токах и через пару месяцев вновь перегорает. В этом случае необходимо снимать генератор и везти его на тестирование;
    • выход из строя выпрямительного моста (пробой диодов). Менее опасен, тем более данная неисправность вызывает перегрев генератора, и диоды меняются в первую очередь;
    • переполюсовка или перепутывание полюсов аккумулятора. В этом случае выходят из строя и выпрямительные диоды;
    • разрушение щеток;
    • короткое замыкание на управляющем выводе реле-регулятора;
    • естественный износ.

    Последствия неисправного реле-регулятора могут быть существенны:

    • повышенное напряжение генератора может привести к выходу из строя электронных блоков автомобиля, поэтому нельзя при заведенном двигателе;
    • внутреннее замыкание реле-регулятора приводит к перегреву обмотки возбуждения и, в конечном счете, более дорогостоящему ремонту;
    • разрушение щеток реле-регулятора может вызвать окончательную поломку генератора, его заклиниванию, обрыву ремня и более серьезным последствиям.

    Основные признаки неисправности

    Самый первый признак неисправности — отсутствие свечения контрольной лампочки (индикатора) на приборной панели при включении зажигания.

    В возрастных машинах, где схема заряда аккумулятора аналогична, показанной на первом рисунке, автолюбителям еще рано паниковать. Возможно, это просто перегорела лампочка или нарушился контакт, и эти случаи довольно часты. Автовладельцы снимают генератор, везут на тестирование, а зря.

    Второй признак – индикатор «аккумулятор» не гаснет после запуска двигателя. Это уже свидетельствует о нарушении процесса заряда и возможной неисправности генератора.

    Еще один признак неисправности – яркость ближнего-дальнего света зависит от оборотов двигателя. Кстати, такую проверку рекомендуется производить регулярно. Для этого необходимо в темное время суток остановиться в неоживленном месте напротив какого-нибудь здания и на нейтралке погазовать, включив дальний свет. Изменение яркости свидетельствует о возможных проблемах с системой заряда.

    Запах горелой обмотки в салоне также признак неисправности генератора, но его можно не почувствовать.

    Как самостоятельно проверить реле-регулятор генератора мультиметром или лампой

    В случае подозрения на неисправность системы заряда аккумулятора проверку следует начинать с контроля напряжения на АКБ при заведенном двигателе. Оно должно быть в пределах 13,3 – 14,5 Вольт. Напряжение более 15 Вольт – верный признак неисправности реле-регулятора.

    Видео — как проверить реле-регулятор без регулируемого источника питания:

    Иногда есть еще один для управления тахометром. Следует прозвонить управляющий провод на массу. Сопротивление ниже 10 Ом также будет свидетельствовать о неисправности реле-регулятора.

    Следующие проверки следует производить на снятом с генератора реле-регуляторе. В большинстве случаев это можно и следует делать, не демонтируя генератор. Реле-регулятор обычно крепится на генераторе двумя-тремя болтиками или винтами.

    После этого необходимо собрать простенькую схему.

    или другой ее вариант

    В качестве лампочки можно взять обычную салонную лампу. Ее свечение будет свидетельствовать об исправности реле-регулятора. На снятом реле также следует проверить состояние щеток.

    В интернете можно найти схемы проверки практически для любого вида реле-регуляторов напряжения генераторов.

    В том случае, если результаты проверки оказались отрицательными, следует менять регулятор. Обычно его стоимость не превышает 2000 рублей для распространенных марок.

    При малейшем подозрении на неисправность системы заряда аккумулятора (изменении яркости свечения ламп, моргании индикаторной лампы, трудности запуска двигателя, перегреве устройства и других) следует немедленно проверить работоспособность генератора, особенно в холодное время года.

    Для того, чтобы генератор прослужил дольше, соблюдайте следующие простые правила:

    • не допускайте чрезмерного загрязнения генератора (он имеет технологические отверстия для проветривания, туда может попадать грязь), производите очистку его поверхности;
    • периодически производите проверку натяжения ремня;
    • следите за состоянием обмоток статора, это можно сделать через технологические отверстия, они должны быть не потемневшими;
    • плохой контакт управляющего провода может привести к выходу из строя реле-регулятора;
    • для предотвращения перезаряда аккумулятора и выхода из строя электронных систем автомобиля периодически проверяйте напряжение на аккумуляторе при заведенном двигателе (напряжение заряда).

    И пусть ваш генератор прослужит дольше!

    Видео — как проверить регулятор напряжения генератора VALEO в автомобилях РЕНО:

    Может заинтересовать:


    Уникальный автомобильный сканер Scan Tool Pro

    Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Все регуляторы напряжения имеют измерительные элементы, являющиеся датчиками напряжения, и исполнительные элементы, осуществляющие его регулирование.

    На современных автомобилях применяют полупроводниковые бесконтактные электронные регуляторы, которые, как правило, встроены в генератор и объединены со щеточным узлом. Они изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть. Эти регуляторы не подвержены разрегулировке и не требуют никакого обслуживания, кроме контроля надежности контактов.

    Регуляторы напряжения обладают свойством термокомпенсации - изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С.

    Принцип действия регулятора напряжения

    Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

    Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить - увеличивается.

    Принцип работы электронного регулятора удобно продемонстрировать на достаточно простой схеме регулятора типа ЕЕ 14V3 фирмы Bosch, представленной на рис. 5.6:

    Датчиком напряжения является стабилитрон VD2. При достижении заданной величины напряжения, стабилитрон "пробивается" и по нему начинает протекать ток. Напряжение к стабилитрону VD2 подводится от вывода генератора "D+" через делитель напряжения на резисторах R1(R3 и диод VD1, осуществляющий температурную компенсацию. Когда напряжение низкое, стабилитрон не пропускает электрический ток и через лампочкуHLток проходит к обмотке возбуждения генератора. Когда напряжение достигает максимальной величины, стабилитрон пробивается и электронный блок прекращает подаче тока в обмотку возбуждения (рис. 5.7).

    Из рис. 5.6 хорошо видна роль лампы HL контроля работоспособного состояния генераторной установки (лампа контроля заряда на панели приборов автомобиля). При неработающем двигателе автомобиля замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA через эту лампу поступать в обмотку возбуждения генератора. Этим обеспечивается первоначальное возбуждение генератора. Лампа при этом горит, сигнализируя, что в цепи обмотки возбуждения нет обрыва. После запуска двигателя, на выводах генератора "D+" и "В+" появляется практически одинаковое напряжение и лампа гаснет. Если генератор при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генератора или обрыве приводного ремня. Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора в случае обрыва цепи обмотки возбуждения при работающем двигателе автомобиля лампа HL загорается.

    В настоящее время все больше фирм переходит на выпуск генераторных установок без дополнительного выпрямителя обмотки возбуждения. В этом случае в регулятор заводится вывод фазы генератора. При неработающем двигателе автомобиля, напряжение на выводе фазы генератора отсутствует и регулятор напряжения в этом случае переходит в режим, препятствующий разряду аккумуляторной батареи на обмотку возбуждения. Например, при включении выключателя зажигания схема регулятора переводит его выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера. После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы. Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.

    Электрическая сеть любого автомобиля питается за счет генератора, который приводится во вращение двигателем при помощи ременной передачи. Его обороты постоянно меняются, начиная от 900 и заканчивая несколькими тысячами, вызывая соответствующее вращение ротора. Для нормальной работы всех электроприборов и зарядки аккумулятора, в бортовой сети напряжение должно быть стабильным, что обеспечивает реле-регулятор. Являясь самым слабым звеном в системе электроснабжения, устройство в первую очередь нуждается в проверке при обнаружении неполадок зарядки АКБ и других поломках электросети автомобиля.

    Принцип работы

    Регулятор напряжения автогенератора предназначен для поддержания напряжения бортовой сети в необходимых пределах при любом режиме работы и различной частоте вращения генератора, изменении нагрузки и перепадах внешней температуры. Также он способен выполнять дополнительные функции – защищать генератор от перегрузок и аварийного режима работы, автоматически подключать к бортовой цепи обмотки возбуждения или систему сигнализации аварии генератора.

    Работа любого регулятора напряжения основана на одном и том же принципе, и определяется следующими факторами:

    1. Частотой оборотов ротора.
    2. Силой тока, которую генератор отдает в нагрузку.
    3. Показателем магнитного потока, которую создает ток обмотки возбуждения.

    Более высокие обороты ротора определяют повышение напряжения генератора. Рост силы тока на обмотке возбуждения делает сильнее магнитный поток, и одновременно напряжение. Любой регулятор напряжения стабилизирует его за счет изменения тока возбуждения. При росте или снижении напряжения, регулятор понижает или повышает ток возбуждения, регулируя напряжение в необходимых пределах.

    Сам реле-регулятор представляет собой электронную схему с выходами к графитным щеткам. Его устанавливают как в самом корпусе генератора рядом со щетками, так и вне его, и тогда щетки крепятся к щеткодержателю.

    Неисправности

    Чаще всего реле-регулятор выходит из строя по следующим причинам:

    1. При исправном АКБ отсутствует ток зарядки, из-за чего он не заряжается. Это происходит при плохом присоединении проводов к зажимам реле или при обрыве цепи от генератора к батарее. Устраняется закреплением провода в цепи, проверкой и регулировкой регулятора напряжения и реле-регулятора.
    2. Недостаточный ток зарядки при разряженной АКБ или большой при полностью заряженном аккумуляторе вызваны нарушением регулировки регулятора напряжения. Устраняется регулировкой устройства или его заменой.
    3. Горение и перегорание ламп с чрезмерным накалом происходит при нарушении регулировки реле-регулятора или замыкании контактов. Устраняется разъединением и зачисткой замкнувших контактов, регулировкой или заменой регулятора напряжения.
    4. Большой ток разряда после остановки мотора. Происходит при замыкании контактов реле-регулятора (спекании контактов, поломке пружины якоря) или коротком замыкании электропровода. Ремонтируется нахождением и устранением короткого замыкания при отключенном аккумуляторе, проверкой и регулировкой ограничителя тока, размыканием и зачисткой контактов, заменой пружины с регулировкой ее зазора и натяжения.

    Как проверить реле регулятор

    Поломка реле-регулятора проявляется в систематическом недозаряде или перезаряде аккумулятора. Простейшая проверка устройства проводится тестером в режиме вольтметра на постоянном токе в пределах от 0 до 20В. Щупы прибора при неработающем двигателе подсоединяются к клеммам АКБ и фиксируют показания вольтметра, которые от состояния батареи варьируются в пределах 12-12,8 В.

    После двигатель запускают и смотрят на показания прибора: напряжение должно повыситься до 13-13,8 В, в зависимости от оборотов коленвала. Дальнейшее повышение оборотов должно соответственно увеличивать напряжение. Так, на средней частоте вращения оно составляет 13,5-14 В, а при максимальных достигает 14-14,5 В. Отсутствие повышения напряжения после запуска мотора свидетельствует о неисправности реле-регулятора.

    Существует вероятность, зарядка аккумулятора отсутствует по другой причине, к примеру, из-за неисправности в самом генераторе. С целью установки диагноза, реле-регулятор снимается для более точной проверки при помощи тестера и 12-вольтовой лампы. Дополнительно понадобятся провода с клеммами, блок питания или зарядное устройство, в котором можно регулировать ток.

    После подключения реле к схеме и включении блока питания лампа загорится. Регулятором напряжения постепенно увеличивают ток и следят за показаниями вольтметра или шкалой подключенного тестера. При показаниях до 14,5 В лампа должна гореть, а после превышения гаснуть. Если после уменьшения ниже 14,5 она загорается снова, значит реле-регулятор исправен. При отклонениях работы в ту или иную сторону реле будет давать перезаряд или не выдавать необходимый ток для заряда, что является поводом для его замены.

    Подобным образом проверяются интегральные реле, которые в народе называют «шоколадки», применяемые на более старых моделях отечественных машин. Схема также подключается к блоку питания или зарядному устройству через лампочку, которая должна гаснуть при достижении необходимого предела напряжения. При этом нужно обратить внимание на состояние клемм, которые при загрязнении или окислении могут создать дополнительное сопротивление и при исправном реле вызывать потерю напряжения.

    Замена реле регулятора генератора

    Замена реле необходима в следующих случаях:

    1. Износ щеток, при котором контакт с реле-регулятором пропадает и генератор не работает.
    2. Пробой в схеме устройства, который вызывает в системе увеличение напряжения.
    3. Поломка креплений или корпуса, которое может привести к замыканию.

    Процесс замены устройства рассмотрен на примере генератора Лада-Калина. Замена реле-регулятора связан с демонтажем генератора, и осуществляется в следующем порядке:

    1. Снятие с генератора клеммы «минус».
    2. Демонтаж генератора.

    3. Отщелкивание на крышке генератора пластиковых фиксаторов и ее снятие.

    4. Отключение разъема диодного моста.

    5. Откручивание гайки и демонтаж втулки контактной группы.

    6. Выкручивание пары винтов, удерживающих реле-регулятор.

    7. Демонтаж самого реле.

    8. Сборку проводят в обратном порядке.



    Рекомендуем почитать

    Наверх