Помехи и искажения в каналах связи. Помехи и шумы в каналах связи. Измерение напряжения помех при помощи псофометра

Новости 13.08.2019
Новости

Помеха — всякое постороннее воздействие на полезный сигнал, оказывающее мешающее действие при его приеме и проявляющее себя изменением его формы.

Классификация помех приведена на рисунке 1.

Аддитивной является сумма полезного сигнала Sм(t) и помехи N 0 (t):

Z(t)=Sм(t)+N 0 (t) (6)

Мультипликативной является произведение полезного сигнала и помехи:

Z(t)=Sм(t)?N 0 (t) (7)

Рисунок 1 - Классификация помех

Внешними являются помехи, возникающие вне канала, к ним относятся:

  • атмосферные возникают в атмосфере земли и могут быть вызваны грозовыми разрядами, осадками, пылевыми бурями, северным сиянием;
  • космические возникают в космическом пространстве и могут быть вызваны солнечной активностью, космическими телами;
  • промышленные могут быть вызваны промышленными установками: высокочастотными генераторами, высоковольтными линиями электропередачи, электрифицированным транспортом;
  • от других систем связи обуславливаются воздействием на полезный сигнал одной системы связи сигналов других систем, например, прослушивание радиопередач или другого разговора в телефонной трубке, прием на одной частоте срезу нескольких радиопередач.

Внутренними являются помехи, возникающие внутри канала, к ним относятся собственные шумы , которые, в свою очередь, подразделяются на:

  • тепловые — обусловлены хаотическим движением электрических зарядов в проводниках;
  • дробовые обусловлены неоднородной плотностью носителей заряда в проводниках.

Собственные шумы не могут быть устранены, т. к. они вызваны физикой процесса передачи электрической энергии.

Импульсными помехами являются сконцентрированные по времени скачки тока или напряжения (рисунок 2а).

Флуктуационные помехи вызваны флуктуациями (отклонением от среднего значения) тока и напряжения (рисунок 2б).

Периодические помехами являются периодические скачки тока или напряжения (рисунок 2в).

Рисунок 2 - Виды помех по форме: а) импульсные, б) флуктуационные, в) периодические

Собственные шумы канала являются флуктуационными помехами и имеют спектральную плотность мощности равномерно распределенную во всех диапазонах частот используемых для электросвязи (0…10 14 Гц). По аналогии с белым светом, имеющем в своем спектре составляющие на всех частотах, данные шумы называются белым шумом.

При прохождении сигнала через систему связи и при воздействии на него помехи его форма изменяется. Изменение формы сигнала называется искажением.

Различают нелинейные и линейные искажения.

Нелинейными являются искажения, при которых в спектре сигнала появляются новые составляющие. Такие искажения вызваны нелинейностью характеристик элементов и блоков, входящих в аппаратуру системы связи.

Линейными являются искажения, при которых в спектре сигнала не появляются новые составляющие. Такие искажения возникают из –за изменения соотношения между составляющими спектра сигнала. Линейные искажения бывают амплитудно-частотными (АЧИ), при которых изменяются амплитуды составляющих спектра сигнала и фазо-частотные (ФЧИ), при которых изменяются фазы составляющих спектра. На рисунке 3а приведен сигнал являющийся результатом сложения двух гармонических сигналов с одинаковыми амплитудами и фазами и отличающимися друг от друга частотами (обозначен толстой линией). Соответственно в спектре данного сигнала присутствует две гармонических составляющих на частотах w с и 2w с. На рисунке 3б уменьшилась амплитуда второй гармоники, в результате чего изменилась форма сигнала, т. е. произошли амплитудно-частотные искажения. На рисунке 3в изменилась фаза второй гармоники на 90°, в результате чего, опять произошло изменение формы сигнала, т. е. произошли фазо-частотные искажения. Как видно из диаграмм в спектре сигнала и в первом и во втором случае новые составляющие не появились, хотя форма сигнала изменилась.

Рисунок 3 - Линейные искажения: а) сигнал; б) амплитудно-частотные искажения; в) фазо-частотные искажения

АЧИ объясняются не равномерностью коэффициента передачи для различных составляющих спектра сигнала. При идеальной АЧХ коэффициент передачи одинаков для всех составляющих спектра сигнала и АЧИ отсутствуют. Реальная АЧХ четырехполюсника с увеличением частоты имеет спад (рисунок 4а), что приводит к уменьшению амплитуды высокочастотных составляющих спектра сигнала и соответственно к АЧИ.

ФЧИ вызваны неодинаковым временем задержки tз=j/w для составляющих различных частот.. При идеальной ФЧХ время задержки для всех составляющих одинаковое и ФЧИ отсутствуют. Реальная ФЧХ имеет подъем на высоких частотах, поэтому время задержки для высокочастотных составляющих меньше чем для никочастотных и появляются ФЧИ (рисунок 4б).

Рисунок 4 - Характеристики четырехполюсника: а) АЧХ; б) ФЧХ

Компенсация АЧИ и ФЧИ осуществляется специальными устройствами — корректорами.

При передаче сигнала по линии связи он искажается и воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения сигналов в канале связи и помехи, воздействующие на сигнал .

Искажения часто обусловлены известными характеристиками линии связи и тогда могут быть устранены путем надлежащей коррекции.

Помехи заранее неизвестны и поэтому не могут быть полностью устранены. Они весьма разнообразны как по своему происхождению, так и по физическим свойствам. Можно дать следующую классификацию помех по месту их возникновения:

атмосферные помехи;

промышленные помехи (индустриальные помехи);

космические помехи;

электризационные помехи;

помехи посторонних каналов связи;

внутренние шумы.

Атмосферные помехи обусловлены электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области ДВ и СВ.

Промышленные помехи возникают из-за резких изменений тока в электрических цепях всевозможных электроустановок. К ним относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т.д.

Космические помехи создаются радиоизлучением внеземных источников. Они создают общий шумовой фон и в наибольшей степени проявляются на ультракоротких волнах.

Электризационные помехи, часто возникающие во время пурги или песчаной бури, создаются наэлектризованными снежными частицами или песчинками. Эти помехи возникают при скорости ветра свыше 5,5 м/с и ощутимы на частотах ниже 15 МГц.

Помехи посторонних каналов связи – обусловлены работой посторонних радиостанций. С учетом источника происхождения их называют также стационарными. Этот вид помех наиболее характерен для КВ диапазоне.

В зависимости от характера изменения во времени различают флуктуационные, импульсные (сосредоточенные во времени) и узкополосные (сосредоточенные по спектру) помехи.

Флуктуационная помеха представляет собой непрерывное колебание, меняющееся случайным образом. Часто она описывается нормальным законом распределения. Быстрое изменение во времени позволяет заменить реальные флюктуационные помехи так называемым белым шумом - процессом с постоянным спектром.

Импульсные помехи представляет собой случайную последовательность коротких сигналов обычно следующих редко, что реакция приемника на текущий импульс успевает уменьшится до нуля к моменту появления очередного импульса. Типичными примерами таких помех являются сигналы, создаваемые разрядами молний или искрением контактов в электрических двигателях.

Сосредоточенные по спектру помехи занимают сравнительно узкую полосу частот, существенно меньшую полосы частот сигнала. Чаще всего они обусловлены сигналами посторонних радиостанций, или излучениями промышленных или медицинских генераторов высокой частоты различного назначения.

В зависимости от характера воздействия различают аддитивную помеху суммирующуюся с полезным сигналом и мультипликативную помеху

,

где – переданный сигнал, – аддитивная помеха;

В реальном канале сигнал при передаче искажается, и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения ,вносимые самим кана­лом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала опреде­ляют так называемые линейные искажения . Кроме того, канал может вносить и нелинейные искажения , обусловленные нелинейностью тех или иных его звеньев. Как линейные, так и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отделять искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

Под помехами понимаются любые возмущения в канале передачи информации, вызывающие случайные отклонения принятого сообщения от переданного и затрудняющие его прием.

Откуда же берутся помехи и как они попадают в приемник? Приведем всем известный пример. В комнате прослушивается магнитофонная запись. Но слушатель воспринимает не только записанную музыку (полезное сообщение), но и разговоры сосе­дей, и шум транспорта с улицы, и звуки из соседней комнаты и т. д. Это все помехи. Точно так же и в любом канале электросвя­зи. Современный мир полон не только звуков, но и электромагнитных колебаний естественного и искусственного происхожде­ния. Они везде и всюду. Часть из них, конечно, теми или други­ми путями проникает на вход приемника, хотя мы и пытаемся этому препятствовать.

Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. Иногда помехи резко отличаются от сигнала, иногда даже трудно определить, где сигнал, а где помеха. Вдруг в телефоне слышно два разговора. Надо время, чтобы различить, где полезный сигнал, а где случайно подклю­чившаяся «помеха». В то же время эта «помеха» – полезный сиг­нал для другого абонента.

Классификацию помех можно провести по следующим приз­накам:



– по происхождению (месту возникновения);

– по физическим свойствам;

– по характеру воздействия на сигнал.

По происхождению в первую очередь надо отметить внутренние помехи, например, внутрен­ние шумы аппаратуры, входящей в канал связи, обусловленные хаотическим движением носителей заряда в усилительных прибо­рах, сопротивлениях и других элементах. Это так называемые тепловые шумы. Квадрат эффективного напряжения теплового шума на сопротивлении R определяется известной формулой Найквиста:

U 2 ш = 4×k ×T ×R ×F , (9.1)

где Т – абсолютная температура сопротивления R ;

F – полоса частот;

R =1,37*10 -23 В×с/град – постоянная Больцмана.

Как следует из (9.1), эти шумы принципиально устранимы только при абсолютном нуле (T = 0 К).

Среди внешних помех, то есть помех от посторонних источников, находящихся вне канала связи, можно назвать:

· атмосферные помехи (грозовые разряды, полярные сияния и др.), обусловленные электрическими процессами в атмосфере;

· индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, медицинские установки, системы зажигания двигателей и др.);

· помехи от посторонних станций и каналов, возникающие от различных нарушений режима их работы и свойств каналов;

· космические помехи, связанные с электромагнитными процес­сами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам различают флуктуационные и со­средоточенные помехи.

Флуктуационными называют помехи, обусловленные флукту­ациями тех или иных физических величин. Название происходит от физического понятия флуктуации (от лат. fluctuation – колеба­ние) – случайные отклонения физических величин от среднего значения.

Для такой помехи ха­рактерно очень малое число выбросов, превышающее средний уровень более чем в 3–4 раза. Но большие (в принципе, беско­нечные) выбросы всегда имеются. Спектр помехи весьма широ­кий. Флуктуационные помехи проникают в систему связи не толь­ко извне, они зарождаются также внутри самой системы в раз­личных ее звеньях.

Причинами внутренних флуктуационных помех являются в ос­новном тепловой шум в проводниках и дробовый эффект в элек­тронных приборах. К внешним флуктуационным помехам приня­то относить помехи космического происхождения, помехи, выз­ванные взаимными влияниями цепей в линиях связи (линейные и нелинейные переходы, попутный поток и некоторые другие). Хо­тя эти помехи по своему происхождению и не являются строго флуктуационными, но они обладают схожими признаками.

Мешающее воздействие флуктуационных помех зависит от ха­рактера передаваемого сообщения. В телефоне при речевом сиг­нале эта помеха прослушивается как звуковой шум, поэтому ча­сто флуктуационную помеху называют флуктуационным шумом. На экране телевизора флуктуационные помехи вызывают размы­тость контуров и понижение контраста изображения, при теле­графной передаче – ошибочное принятие знаков. Характерной особенностью флуктуационных помех является то, что явления, порождающие эти помехи, лежат в физической природе вещей (дискретное строение вещества, дискретная природа электромаг­нитного поля) и принципиально не могут быть устранены.

К сосредоточенным по времени (импульсным) помехам отно­сятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих один за другим через случайные достаточно большие промежутки времени.

Причина­ми импульсных помех являются: грозовые разряды; радиостан­ции, работающие в импульсном режиме; линии электропередачи и другие энергоустановки; система зажигания и энергообеспече­ния транспорта; перегрузки усилителей; плохие контакты в обо­рудовании и питании; недостатки разработки и изготовления оборудования; эксплуатационные работы (реконструкция, про­филактика, подключение к действующему каналу измерительных приборов, ошибочная коммутация и т. п.).

К сосредоточенным по спектру помехам относятся помехи по­сторонних радиостанций, генераторов высокой частоты различно­го назначения (медицинские, промышленные, бытовые и др.), пе­реходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с ши­риной спектра меньшей или соизмеримой с шириной спектра по­лезного сигнала. В диапазоне декаметровых волн, например, они являются основными видами помех.

По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи.

Аддитивной является помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействуют на прием­ное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Ме­шающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. Мультипликативные помехи непосредственно связаны с процес­сом прохождения сигнала в среде распространения и поэтому ощущаются только при наличии сигнала в системе связи. Про­стейший пример – телефонная или радиотрансляционная линия с плохими контактами. Другим примером мультипликативной по­мехи являются интерференционные замирания сигнала при при­еме на декаметровых волнах.

В реальных каналах электросвязи обычно имеет место не од­на, а совокупность помех. Но все же основными можно считать флуктуационные помехи, воздействующие на сигнал как адди­тивные.

Под искажениями понимают такие изменения формы сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигна­ла – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные, возника­ющие в линейных цепях; нелинейные, возникающие в нелиней­ных цепях. В общем случае искажения отрицательно сказывают­ся на качестве воспроизведения сообщений и не должны превы­шать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. А дальше измерение фор­мы сигнала можно скомпенсировать корректирующими цепями или просто учесть при дальнейшей обработке в приемнике. Это уже дело техники. Другое дело помехи – они заранее неизвестны и поэтому не могут быть устранены полностью.

Борьба с помехами – основная задача теории и техники свя­зи. Любые теоретические и технические решения о выполнении кодера и декодера, передатчика и приемника системы связи дол­жны приниматься с учетом того, что в линии связи имеются по­мехи.

При всем многообразии методов борьбы с помехами их мож­но свести к трем направлениям:

1. Подавление помех в месте их возникновения. Это достаточ­но эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источник помех, на которые воздействовать нельзя (грозовые разряды, шумы Солн­ца и др.).

2. Уменьшение помех на путях их проникновения в приемник. Следует отметить, что помехи обычно воздействуют на сигнал в среде распространения. Поэтому как проводные, так и радиоли­нии строятся так, чтобы обеспечить заданный уровень помех.

3. Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Это возможно за счет применения специальных методов преобразования сигнала на передающей стороне и анализа принимаемого сигнала. Для цифровых систем передачи основным способом ослабления воздействия помех является помехоустойчивое кодирование.

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора С n 11 , включенного параллельно приемнику сигнала и имеющего входной импеданс Z вх1 (рис. 2.55). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех U вн1 такого вида включено последовательно с Z вх1. Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему Z общ.

Токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; – напряжение помехи, наводимой из второго канала связи в первый; – напряжение помехи, наводимой из первого канала связи во второй;

Потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно Zвх соответствующего канала: Zвх1 и Zвх2. Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи верно равенство

где – изображение тока во втором канале (канале, создающем помеху). В соответствии со схемой

В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Если линейные и нелинейные искажения обусловлены известными характеристиками канала, то они, по крайней мере, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отличать искажения от помех, имеющих случайный характер. Помехи заранее не известны и поэтому не могут быть полностью устранены.

Под помехой понимается любое воздействие на полезный сигнал, затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустановок. Сюда относятся помехи от электротранспорта, электрических двигателей, медицинских установок, систем зажигания двигателей и т. п.

Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Они обусловлены нарушением регламента распределения рабочих частот, недостаточной стабильностью частот и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушения контактов в реле.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн, где другие помехи невелики. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

В общем виде влияние помехи n(t) на передаваемый сигнал u(t) можно выразить оператором

z =ψ(u , n ). (1.5)

В частном случае, когда оператор ψ вырождается в сумму

z =u +n , (1.6)

помеха называется аддитивной . Если же оператор может быть представлен в виде произведения

z =ku , (1.7)

то помеху называют мультипликативной . Здесь k(t) – случайный процесс. 1 В реальных каналах обычно имеют место и аддитивные и мультипликативные помехи, и поэтому

z =ku +n =s +n . (1.8)

Среди аддитивных помех различного происхождения особое место занимает флуктуационная помеха (флуктуационный шум), представляющая собой случайный процесс с нормальным распределением (гауссовский процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах.

С физической точки зрения такие помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи при прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Тепловой шум на входе приемника представляет собой нормальный случайный процесс с нулевым средним и энергетическим спектром:

, (1.9)

где h  6,6·10 -34 Дж·с – постоянная Планка; k  1,38·10 -23 Дж/град. – постоянная Больцмана; Т – абсолютная температура источника шума; f – текущая частота.

В диапазоне звуковых и радиочастот hf <<kT , и поэтому спектральная плотность постоянна и равна

. (1.10)

Величину N 0 = kT называют односторонней спектральной плотностью шума. При ширине полосы пропускания приемника F мощность шума равна P ш =N 0 F , Вт.

В диапазоне оптических частот, который с развитием квантовой электроники становится весьма перспективным для связи, наоборот, hf >>kT и тепловой шум оказывается очень слабым. Однако в этом диапазоне существенное значение получает «квантовый шум», вызванный дискретной природой излучения сигнала. Сущность квантового шума связана с соотношением неопределенности, согласно которому средние квадратичные ошибки при измерении энергии фотона σ Е и времени его прихода σ t подчиняются неравенству σ Е σ t h . Поэтому даже при отсутствия аддитивных помех сигнал не может быть принят абсолютно точно. В первом приближении можно рассматривать квантовый шум как помеху со спектральной плотностью, равной энергии фотона hf . В оптическом диапазоне частота f выше 10 15 Гц, поэтому квантовый шум весьма ощутим.

К импульсным, или сосредоточенным по времени, помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в приемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются понятиями относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приёмник с широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания. Импульсные помехи представляют собой случайный процесс, состоящий из отдельных редких, случайно распределенных во времени и по амплитуде, импульсов. Статистические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

К сосредоточенным по спектру помехам принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленных, медицинских) и т.п. В общем случае это модулированные колебания, т. е. квазигармонические колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, ширина спектра сосредоточенной помехи в большинстве случаев не превышает полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим качество связи.

1 Строгие определения случайного процесса и его энергетического спектра будут даны позже.



Рекомендуем почитать

Наверх