Подключение несколько arduino по i2c. Библиотека Wire для Arduino для работы с шиной I2C

Возможности 10.07.2019
Возможности

Описание библиотеки Wire

Данная библиотека позволяет вам взаимодействовать с I2C / TWI устройствами. На платах Arduino с компоновкой R3 (распиновка 1.0) SDA (линия данных) и SCL (линия тактового сигнала) находятся на выводах около вывода AREF. Arduino Due имеет два I2C / TWI интерфейса: SDA1 и SCL1 находятся около вывода AREF, а дополнительные линии находятся на выводах 20 и 21.

В таблице ниже показано, где расположены TWI выводы на разных платах Arduino.

Начиная с Arduino 1.0, данная библиотека наследует функции Stream , что делает ее совместимой с другими библиотеками чтения/записи. Из-за этого send() и receive() были заменены на read() и write() .

Примечание

Существуют 7- и 8-битные версии адресов I2C. 7 битов идентифицируют устройство, а восьмой бит определяет, идет запись или чтение. Библиотека Wire использует 7 битные адреса. Если у вас есть техническое описание или пример кода, где используется 8-битный адрес, вам нужно откинуть младший бит (т.е. сдвинуть значение на один бит вправо), получив адрес от 0 до 127. Однако адреса от 0 до 7 не используются, так как зарезервированы, поэтому первым адресом, который может быть использован, является 8. Обратите внимание, что при подключении выводов SDA/SCL необходимы подтягивающие резисторы. Для более подробной информации смотрите примеры. На плате MEGA 2560 есть подтягивающие резисторы на выводах 20 и 21.

Описание методов

Wire.begin()

Описание

Инициализирует библиотеку Wire и подключается к шине I2C как ведущий (мастер) или ведомый. Как правило, должен вызываться только один раз.

Синтаксис

Wire.begin(address)

Параметры

address: 7-битный адрес ведомого устройства (необязательно); если не задан, плата подключается к шине как мастер.

Возвращаемое значение

Пример

Примеры для ведомого устройства смотрите в примерах к методам onReceive() и onRequest() . Примеры для ведущего устройства смотрите в примерах к остальным методам. .

Wire.requestFrom()

Описание

Используется мастером для запроса байтов от ведомого устройства. Эти байты могут быть получены с помощью методов available() и read() .

Если этот аргумент равен true , то requestFrom() после запроса посылает сообщение STOP, освобождая шину I2C.

Если этот аргумент равен false , то requestFrom() после запроса посылает сообщение RESTART. Шина не освобождается, что мешает другому устройству-мастеру влезть между сообщениями. Это позволяет одному ведущему устройству посылать несколько запросов, пока оно контролирует шину.

Синтаксис

Wire.requestFrom(address, quantity)

Wire.requestFrom(address, quantity, stop)

Параметры

  • address: 7-битный адрес устройства, у которого запрашиваются байты;
  • quantity: количество запрашиваемых байтов;
  • stop: boolean . true посылает сообщение STOP после запроса. false посылает сообщение RESTART после запроса, сохраняя соединение активным.
Возвращаемое значение

byte: количество байтов, возвращенных от ведомого устройства.

Пример

Wire.beginTransmission()

Описание

Начинает передачу на ведомое I2C устройство с заданным адресом. После него последовательность байтов для передачи ставится в очередь с помощью функции write() , и их передача с помощью вызова endTransmission() .

Синтаксис

Wire.beginTransmission(address)

Параметры

address: 7-битный адрес устройства, на которое необходимо передать данные.

Возвращаемое значение

Пример

Wire.endTransmission()

Описание

Завершает передачу на ведомое устройство, которая была начата методом beginTransmission() и передает байты, которые были поставлены в очередь методом write() .

Для совместимости с определенными I2C устройствами, начиная с Arduino 1.0.1, requestFrom() принимает аргумент логического типа данных, меняющий его поведение.

Если этот аргумент равен true , то requestFrom() после передачи посылает сообщение STOP, освобождая шину I2C.

Если этот аргумент равен false , то requestFrom() после передачи посылает сообщение RESTART. Шина не освобождается, что мешает другому устройству-мастеру влезть между сообщениями. Это позволяет одному ведущему устройству посылать несколько передач, пока оно контролирует шину.

По умолчанию этот аргумент равен true .

Синтаксис

Wire.endTransmission()

Wire.endTransmission(stop)

Параметры

stop: boolean . true посылает сообщение STOP после передачи. false посылает сообщение RESTART после передачи, сохраняя соединение активным.

Возвращаемое значение

byte , который указывает на состояние передачи:

  • 0: успех;
  • 1: данные слишком длинны для заполнения буфера передачи;
  • 2: принят NACK при передаче адреса;
  • 3: принят NACK при передаче данных;
  • 4: остальные ошибки.
Пример

Смотрите пример к методу write() .

Wire.write()

Описание

Записывает данные от ведомого устройства в отклик на запрос от ведущего устройства, или ставит в очередь байты для передачи от мастера к ведомому устройству (между вызовами beginTransmission() и endTransmission()).

Синтаксис

Wire.write(value)

Wire.write(string)

Wire.write(data, length)

Параметры

  • value: значение для передачи, один байт.
  • string: строка для передачи, последовательность байтов.
  • data: массив данных для передачи, байты.
  • length: количество байтов для передачи.
Возвращаемое значение

byte: write() возвращает количество записанных байтов, хотя чтение этого количества не обязательно.

Пример #include byte val = 0; void setup() { Wire.begin(); // подключиться к шине i2c } void loop() { Wire.beginTransmission(44); // передача на устройство #44 (0x2c) // адрес устройства задан в техническом описании Wire.write(val); // отправить байт значения Wire.endTransmission(); // остановить передачу val++; // увеличить значение if(val == 64) // если дошли до 64-го значения (max) { val = 0; // начать с начала } delay(500); }

Wire.available()

Описание

Возвращает количество байтов, доступных для получения с помощью read() . Этот метод должен вызываться на ведущем устройстве после вызова requestFrom() или на ведомом устройстве внутри обработчика onReceive() .

Синтаксис

Wire.available()

Параметры

Возвращаемое значение

Количество байтов, доступных для чтения.

Пример

Смотрите пример к методу read() .

Wire.read()

Описание

Считывает байт, который был передан от ведомого устройства к ведущему после вызова requestFrom() , или который был передан от ведущего устройства к ведомому.

Синтаксис

Параметры

Возвращаемое значение

byte: очередной принятый байт.

Пример #include byte val = 0; void setup() { Wire.begin(); // подключиться к шине i2c (адрес для мастера не обязателен) Serial.begin(9600); // настроить последовательный порт для вывода } void loop() { Wire.requestFrom(2, 6); // запросить 6 байтов от ведомого устройства #2 while(Wire.available()) // ведомое устройство может послать меньше, чем запрошено { char c = Wire.read(); // принять байт как символ Serial.print(c); // напечатать символ } delay(500); }

Wire.setClock()

Описание

Изменяет тактовую частоту для связи по шине I2C. У ведомых I2C устройств нет минимальной рабочей тактовой частоты, однако обычно используется 100 кГц.

Синтаксис

Wire.setClock(clockFrequency)

Параметры

clockFrequency: значение частоты (в герцах) тактового сигнала. Принимаются значения 100000 (стандартный режим) и 400000 (быстрый режим). Некоторые процессоры также поддерживают 10000 (низкоскоростной режим), 1000000 (быстрый режим плюс) и 3400000 (высокоскоростной режим). Чтобы убедиться, что необходимый режим поддерживается, обращайтесь к технической документации на конкретный процессор.

Возвращаемое значение

Wire.onReceive()

Описание

Регистрирует функцию, которая будет вызываться, когда ведомое устройство принимает передачу от мастера.

Синтаксис

Wire.onReceive(handler)

Параметры

handler: функция, которая должна будет вызываться, когда ведомое устройство принимает данные; она должна принимать один параметр int (количество байтов, прочитанных от мастера) и ничего не возвращать, т.е.:

void myHandler(int numBytes)

Возвращаемое значение

Пример

#include void setup() { Wire.begin(8); // подключиться к i2c шине с адресом #8 Wire.onReceive(receiveEvent); // зарегистрировать обработчик события Serial.begin(9600); // настроить последовательный порт для вывода } void loop() { delay(100); } // функция, которая будет выполняться всякий раз, когда от мастера принимаются данные // данная функция регистрируется как обработчик события, смотрите setup() void receiveEvent(int howMany) { while (1 < Wire.available()) // пройтись по всем до последнего { char c = Wire.read(); // принять байт как символ Serial.print(c); // напечатать символ } int x = Wire.read(); // принять байт как целое число Serial.println(x); // напечатать число }

Wire.onRequest()

Описание

Регистрирует функцию, которая будет вызываться, когда мастер запрашивает данные от ведомого устройства.

Синтаксис

Wire.onRequest(handler)

Параметры

handler: функция, которая должна будет вызываться, она не принимает параметров и ничего не возвращает, т.е.:

void myHandler()

Возвращаемое значение

Пример

Код для платы Arduino, работающей в качестве ведомого устройства:

#include void setup() { Wire.begin(8); // подключиться к i2c шине с адресом #8 Wire.onRequest(requestEvent); // зарегистрировать обработчик события } void loop() { delay(100); } // функция, которая будет выполняться всякий раз, когда мастером будут // запрошены данные // данная функция регистрируется как обработчик события, смотрите setup() void requestEvent() { Wire.write("hello "); // ответить сообщением }

Решил я сделать текстовую панель оператора(HMI) и подключить ее по «квадратной» шине I2C к Arduino. Для этого разработал на основе микросхемы PCF8574P плату клавиатуры из 5 кнопок.

PCF8574P это расширитель портов, корпус DIP, работает по шине I2C. Приобрел я партию из двух таких микросхем за 0.94$ с бесплатной доставкой из Китая, таким образом одна штука стоит 0.47$. Покупка выгодная, так как в местных магазинах эти же микросхемы стоят больше 2 долларов за штуку.

Дисплеем HMI будет стандартный экранчик 1602, так же через платку FC-113 работающий по квадратной шине.

PCF8574P выслали, дали трек-номер и через 2 недели я их уже получил на почте.


Извлекаем из пластиковой трубки, вроде бы все нормально.


Однако, снизу на корпусе одной из микросхем есть следы загадочных термомеханических воздействий.


Природа этих повреждений мне не ясна, но очевидно, что во время пересылки они появиться не могли.

Долго думал над этой загадкой, пока меня не осенило.
Просто на склад продавца пробрался Люк Скайуокер, вдруг уменьшившийся до микроскопических размеров. Там он приметил один из расширителей портов, спутал с имперским шагоходом и принялся рубить его световым мечем. Тут зашла комплектовальщица, увидела эту картину и такая говорит: «Прекрати, Люк Скайуокер! Это не имперский шагоход, это микросхема PCF8574P, за которую уже уплочено из Запорожья».

Хорошо хоть, обе микросхемы при проверке оказались рабочими.

Приступаем к созданию самой клавиатуры по такой схеме.


В Layout 6.0 нарисовал одностороннюю плату.


Скачать файл с платой можно .

Плату травил перекисью водорода и лимонной кислотой.

В сети много рецептов травления платы перекисью.
Я делал такой раствор: 100 мл перекиси водорода 3%, 50 г лимонной кислоты, 3 чайные ложки соли. Баночку с перекисью подогрел в кастрюле с водой.

Погружаем плату в раствор рисунком вниз, как рекомендуют при травлении перекисью.

Пшшшшшш! Сначала процесс идет бурно.


Пс… Потом заметно стихает. Переворачиваем, смотрим на рисунок.


Красота.


Готовая плата выглядит так.




Адресные ножки микросхемы подключены на GND, поэтому адрес платы на шине будет 0x20.

Пишем программу для Ардуино.

#include
#include

#define led 13
#define ADDR_KBRD 0x20
#define ADDR_LCD 0x27

String str;
byte dio_in;
bool b;
bool key;

LiquidCrystal_I2C lcd(ADDR_LCD,16,2); // Устанавливаем дисплей

Void setup()
{
pinMode(13, OUTPUT);
lcd.init();
lcd.backlight();// Включаем подсветку дисплея
Wire.begin();

Wire.beginTransmission(ADDR_KBRD);
Wire.write(B11111111);
Wire.endTransmission();
Serial.begin(9600);
}
void loop()
{
Wire.requestFrom(ADDR_KBRD,1);
while (!Wire.available());
byte dio_in = Wire.read(); //читаем состояние портов PCF8574P
byte mask=1;
for(int i=0; i<5;i++)
{
key[i]=!(dio_in & mask);
mask=mask<<1;
}

Str=String(dio_in, BIN); //
Serial.println(str);

B=!b;
digitalWrite(led, b);

//
lcd.setCursor(0, 0);
lcd.print(String(key)+" "+
String(key)+" "+
String(key)+" "+
String(key)+" "+
String(key)+" "
);
delay(100);
}


Загружаем программу в Ардуино и подключаем его к созданной клавиатурной плате и дисплею.

Включаем, работает!


Мой HMI будет работать не просто с Arduino, а с ардуино-совместимым ПЛК . Если будет вдохновение и интерес читателей, напишу и про него как-нибудь.

Плюсы PCF8574P:
1. Минимальная обвязка.
2. Прост в работе.

Минусы PCF8574P:
У самой микросхемы не обнаружил, хотя и советую покупать у другого продавца.

На этом обзор микросхемы PCF8574P заканчиваю.
Но как опытный уже обозреватель, заранее отвечу на вопросы, которые обязательно зададут:

Почему в DIP корпусе? SOIC лучше.
При прочих равных, я предпочитаю DIP, мне с ними проще.

DIP и выводные элементы ставят только ламеры, все специалисты используют SOIC и SMD. Вот я паяю исключительно SMD и вообще я молодец.
Вы молодец.

Почему бы просто не купить на алиэкспрессе готовый модуль с дисплеем 1602 и клавиатурой 5 кнопок? Он тоже работает по I2C.
Его цена от 11 $.
Я же потратил:
Дисплей 1602 - 1.3 $
Плата FC-113 - 0.55 $
Микросхема PCF8574P - 0.47 $
Кнопки и колпачки - 0.7 $
Реактивы для травления платы - 0.3 $
Текстолит, резисторы и прочая мелочевка - бесплатно, из старых запасов.
Итого: 3.32 $
Но главное- на своей плате я поставил кнопки с квадратным толкателем что бы одеть на них красивые цветные колпачки.

Ого, всего одна микросхема PCF8574P стоит почти как целая плата FC-113!
Да уж…

Вы сделали все неправильно. Неправильно рисовали, неправильно травили в неправильном растворе и поставили неправильные кнопки. Я бы на вашем месте сделал все правильно.
Вы молодец.

Почему пятая кнопка так далеко от остальных?
Это специально так, они функционально различны. Те четыре это влево, вправо, отмена, ввод, а пятая будет SETUP.

Я ждал более захватывающую историю про Люка Скайуокера, вы меня обманули!
Я молодец.

LCD дисплей Arduino позволяет визуально отображать данные с датчиков. Расскажем, как правильно подключить LCD монитор к Arduino по I2C и рассмотрим основные команды инициализации и управления LCD 1602. Также рассмотрим различные функции в языке программирования C++, для вывода текстовой информации на дисплее, который часто требуется использовать в проектах на Ардуино.

Видео. Arduino LCD Display I2C 1602

LCD 1602 I2C подключение к Arduino

I2C - последовательная двухпроводная шина для связи интегральных схем внутри электронных приборов, известна, как I²C или IIC (англ. Inter-Integrated Circuit). I²C была разработана фирмой Philips в начале 1980-х годов, как простая 8-битная шина для внутренней связи между схемами в управляющей электронике (например, в компьютерах на материнских платах, в мобильных телефонах и т.д.).

В простой системе I²C может быть несколько ведомых устройств и одно ведущее устройство, которое инициирует передачу данных и синхронизирует сигнал. К линиям SDA (линия данных) и SCL (линия синхронизации) можно подключить несколько ведомых устройств. Часто ведущим устройством является контроллер Ардуино, а ведомыми устройствами: часы реального времени или LCD Display.

Как подключить LCD 1602 к Ардуино по I2C

Жидкокристаллический дисплей 1602 с I2C модулем подключается к плате Ардуино всего 4 проводами — 2 провода данных и 2 провода питания. Подключение дисплея 1602 проводится стандартно для шины I2C: вывод SDA подключается к порту A4, вывод SCL – к порту A5. Питание LCD дисплея осуществляется от порта +5V на Arduino. Смотрите подробнее схему подключения жк монитора 1602 на фото ниже.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • LCD монитор 1602;
  • 4 провода «папа-мама».

После подключения LCD монитора к Ардуино через I2C вам потребуется установить библиотеку LiquidCrystal_I2C.h для работы с LCD дисплеем по интерфейсу I2C и библиотека Wire.h (имеется в стандартной программе Arduino IDE). Скачать рабочую библиотеку LiquidCrystal_I2C.h для LCD 1602 с модулем I2C можно на странице Библиотеки для Ардуино на нашем сайте по прямой ссылке с Google Drive.

Скетч для дисплея 1602 с I2C

#include // библиотека для управления устройствами по I2C #include // подключаем библиотеку для LCD 1602 LiquidCrystal_I2C lcd(0x27,20,2); // присваиваем имя lcd для дисплея 20х2 void setup () // процедура setup { lcd.init (); // инициализация LCD дисплея lcd.backlight (); // включение подсветки дисплея lcd.setCursor (0,0); // ставим курсор на 1 символ первой строки lcd.print ("I LOVE"); // печатаем сообщение на первой строке lcd.setCursor (0,1); // ставим курсор на 1 символ второй строки lcd.print ("ARDUINO"); // печатаем сообщение на второй строке } void loop () // процедура loop { /* это многострочный комментарий // изначально процедура void loop() в скетче не используется lcd.noDisplay(); // выключаем подсветку LCD дисплея delay(500); // ставим паузу lcd.display(); // включаем подсветку LCD дисплея delay(500); // ставим паузу */ }

Пояснения к коду:

  1. библиотека LiquidCrystal_I2C.h содержит множество команд для управления LCD дисплея по шине I²C и позволяет значительно упростить скетч;
  2. скетч содержит многострочный комментарий /* ... */ , который позволяет закомментировать сразу несколько строк в программе.
  3. перед выводом информации на дисплей, необходимо задать положение курсора командой setCursor(0,1) , где 0 — номер символа в строке, 1 — номер строки.

Как расширить функциональность разрабатываемой системы на основе микроконтроллера? Да, этот вопрос интересует многих схемотехников, работающими над прототипами электронных устройств. Удивительно, но добавить к системе новые блоки, не изменяя схемы, позволит шина, разработанная инженерами Philips более 30 лет назад.

Благодаря интерфейсу I2C можно превратить микроконтроллер в простой конструктор, к которому можно подключить несколько сотен микросхем. Сразу стоит отметить, что их количество ограничивается емкостью шины в 400 пФ, но это один из немногих недостатков I2C.

Схема внутренней связи – так можно расшифровать название шины, которую сегодня можно встретить практически в каждом электронном устройстве. Стоит отметить, что в Philips запатентовали столь удачное в практическом плане решение и другие производители дублировали I2C под другими названиями.

Именно эта шина устанавливается для связи с внешним миром дисплеев, камер, сотовых телефонов. Количество периферических устройств, подключаемых к устройствам с помощью I2C, вообще не поддается учету. В чем же преимущества интерфейса?

Основные достоинства и недостатки I2C

I2C – последовательная асимметричная шина для связи между интегральными схемами внутри электронных приборов. Использует две двунаправленные линии связи (SDA и SCL).

Шина представляет собой два проводника, а для управления интерфейсом достаточно одного микроконтроллера. Удивительно, но подобная простота позволяет производить отключение микросхем в процессе работы. Специальный встроенный фильтр способен справляться с всплесками, гарантируя сохранность обрабатываемой информации.

Среди недостатков I2C, кроме ограниченной емкости, сложность программирования и трудность с определением неисправности в ситуации с состоянием низкого уровня.

Изначально скорость шины была всего 100 кбит, а подключить к ней было можно всего 120 устройств. В 90-х годах стандарты изменились и скорость передачи данных увеличилась в 4 раза и появилась возможность подключения до 1000 микросхем.

Однако большинство производителей интерфейса зациклились на 400 кбит с подключением 120 устройств.

Принцип подключения и работы

Проводники шины подсоединены к плюсу резисторами 1-10к, один из проводников является шиной данных, другой – тактирование. Работает такая схема просто: на линии есть одно ведущее устройство (микроконтроллер) и несколько периферийных устройств. Так как линии запитаны на плюсе, то подключенному слейву (ведомому элементу) достаточно прижать провод к земле и передать тем самым 0.

Когда периферическое устройство отпускает провод, по проводнику передается 1. Все элементарно, но если при совместной работе один из слейвов выдал 0, то остальным подключенным к шине устройствам придется подождать. Осуществляет тактирование и передачу микроконтроллер, предварительно уточнив, свободна ли линия. Для этого передается 1 на SCL и SDA, после чего создается старт-условие – прижимается линия SDA при значении SCL равном 1.

Следующим этапом работы является передача адреса того устройства, к которому нужно обратиться.

При этом нужно помнить, что считывание данных осуществляется при SCL =1, а передача идет вперед старшим битом.

Первые 7 бит – адрес устройства, 8 – команда записать (0) или читать (1).

Слейв получит все восемь сигналов, прижмет линию SDA на девятом такте SCL если ему все понятно. Если нет – то формируется сигнал стоп и передача данных осуществляется снова. При завершении работы отпускается линия SDA, при этом SCL не трогают.

Даже в том случае, если подключенная микросхема медленно обрабатывает сигнал, все равно она придержит SCL.

Режим работы multi-master

Вопросы демократии в схемотехнике регламентируются . В его основе лежит способность ведущего устройства контролировать результат работы. Обязательно перепроверяется – отпущена линия или нет, если она отпустилась – то мастер на данный момент ведущий, если нет – то что-то более важное пока держит линию. В этом случае нужно подождать просвет и сделать свою работу, когда таковой появится.

Однако, вполне возможно что все ведущие устройства решать заняться делом одновременно. В этом случае первенство будет за тем мастером, который первым начал тактирование и сделал это быстро. Если два устройства будут работать сверхсинхронно, то первым победит то из них, которое сгенерирует 0 чуть быстрее оппонента.

Протокол обмена данными I2C в свое время был разработан компанией Philips. Название I2C произошло от английского Iner-IC управления или по другому межмикросхемного управления, Inter-IC,IIC (I2C) -название одного и того же протокола.

Данный протокол или интерфейс обеспечивате качественный прием и передачу информации (данных) от нескольких различных устройств, к примеру можно измерять температуру и одновременно управлять цифровым потенциометром. Общение происходит програмно, алгоритм общения с датчиком по протоколу I2С записывается в программу Arduino (скетч).

Существуют специальные переходники которые позволяют подключать другие устройства, к примеру имея переходник можно по двум проводом подключить arduino дисплей 1602 (16x2) LCD по протоколу i2c. По запросу LCD i2c на просторах интернета куча информации, вот пример того как должен выглядить переходник под дисплей http://www.ebay.com/itm/310565362720

При работе по этому интерфейсу, одно устройство является ведущим а другое ведомым. Ведущее устройство инициализирует передачу и генерирует сигналы необходимые для синхронизации.

Вемое в свою очередь зависит от ведущего, и начинает передачу данных только после получения команды от ведущего устройства.

Устройство подключенное к шине I2C имеет свой уникальный адрес. Именно по этому адресу осуществляется обращения ведущего устройства.

Пример подключения датчиков по протоколу I2C

Подключение осуществляется по двум проводам: SCL- сигнала тактирования или тактового сигнала и SDA - сигнала данных. При этом к шине I2C можно подключать любое количество различных датчиков (ведомых устройств), имеющие свои уникальные id.

Знакомство начинается со специально написанной для этих целей библиотеки, имя которой Wire. Перед началом работы ее необходимо импортировать в проект,она имеет специальные команды или методы для "общения" с устройствами.

Для обмена данными с устройствами нужно знать их id. Различные устройства могут иметь разную длину адреса (id) 8 или 7 бит.В библиотеке Wire используется 7-ми битная адресация.

Подключение ведомых устройств осуществляется к выводам на плате Arduino. Каждая версия Arduino имеет свои выводы I2C

  • UNO - A4(SDA), A5(SCL);
  • Mega - 20(SDA), 21(SCL);
  • Leonardo- 2(SDA), 3(SCL);
  • Due - 20(SDA), 21(SCL),SDA1,SCL1;

Пример код программы для управления цифровым потенциометром при помощи библиотеки Wire

Данный пример показывает как устанавливать определенное значение сопротивление в цифровом потенциометре при помощи библиотеки Wire. Установка определенного значения осуществляется при помощи переменной val.

#include void setup() { Wire.begin(); // join i2c bus (address optional for master) } byte val = 0; void loop() { Wire.beginTransmission(44); // transmit to device #44 (0x2c) // device address is specified in datasheet Wire.write(byte(0x00)); // sends instruction byte Wire.write(val); // sends potentiometer value byte Wire.endTransmission(); // stop transmitting val++; // increment value if (val == 64) // if reached 64th position (max) { val = 0; // start over from lowest value } delay(500); }

Видео работы I2C и Arduino. Часть 1



Рекомендуем почитать

Наверх