Подключение драйверов шаговых двигателей. Драйвера шаговых двигателей

Прочие модели 05.04.2019
Прочие модели

Я часто сталкивался с запросами, каким образом к тому или иному 3D-принтеру, ЧПУ или координатному столу подключить более мощный лазер, если на самой плате либо не предусмотрено отдельное питание лазера, либо ток, который подается через контрольную плату, очень ограничен, например, 0.5А.

В основном на платах DIY engravers и MakeBlock подается 9-12 Вольт и не более 0.5-1 Ампера.
Для диодных лазеров мощностью от 1 Вт обычно требуется от 1 до 3 Ампер и 12 Вольт, а для лазеров мощность свыше 5 Вт требуется более 3 Ампер.

Например, на координатных столах (плоттерах типа MakeBlock XY plotter 2.0 KIT), необходимо организовать дополнительное питание, ровно как и на небольшом гравере Neje. Поэтому для того, чтобы поставить более мощный лазер – необходим отдельный блок питания и драйвер.

Предлагаемое описание схемы

Условно назовем её «Endurance circuit MO 1»:

Подключите управление лазером к пинам МК (МикроКонтроллер) и GND1. Подавайте напряжение не более 24В. Подключите контакт «+» вашего лазера к контакту «+12В», контакт «-» лазера к контакту «Сток» («Drain») полевого транзистора.

Не обязательно располагать контакты GND1 и GND2 на одной линии. Контакты «+12V» и «GND2» можно взять и со свинцово-кислотного аккумулятора.

Для размещения элементов достаточно иметь макетную плату размером 20х20 мм.

Данная схема позволяет питать более мощные лазеры 12 В и силой тока 5 ампер и более (согласно характеристикам используемого мосфета). В качестве питания лазера используйте источник питания DIY либо дополнительный блок питания.

Пример подключения данной схемы:

Вверху справа фотографии электронной платы гравера NEJE контакты Laser «+» и «-» являются управляющими, то есть соедините их с контактами Endurance circuit MO 1, соответственно с «МК» и «GND1».

Используйте коробку распределительную телефонную (пластмассовая), чтобы поместить плату Endurance circuit MO 1. Выбирая тип проводов, имейте ввиду, что через них пойдет ток 1-5 А в зависимости от мощности лазера. Например, лазер мощностью 5.6 Вт потребляет до 3.5А.

Пример подключения схемы Endurance circuit MO 1 к мини граверу Neje:

Пример того как выглядит схема Endurance на MakeBlock plotter XY 2.0:

При желании каждый из Вас может спаять схему самостоятельно согласно принципиальной схеме в начале статьи. Рад предоставлять сообществу любителей лазеров и лазерной гравировки полезные технологии!

Лайфхак

Однако если Вы хотите получить уже готовую плату Endurance circuit MO 1 – напишите [email protected] и они вышлют Вам её.

В этой статье мы расскажем как быстро и совсем несложно можно подготовить макет и нанести гравировку на кожу, дерево или картон с помощью и .

Шаг 1. Создание векторного изображения из простой/растровой картинки

Обращаем внимание, что векторизация растровой картинки дает не точную копию, а набор кривых , с которыми нужно работать дальше.

Для того чтобы сделать из растрового изображения векторные контуры, загрузите или импортируйте ваше растровое изображение в программу InkScape.

Затем выделите в поле программы растровое изображение, которое будете переводить в контуры, и выберите в главном меню команду «Контуры » — «Векторизовать растр…», либо используйте комбинацию клавиш Shift+Alt+B.

Рис. 1. Фильтры на вкладке «Режим»

В открывшейся вкладке «Режим » вы увидите три фильтра. Первый из них «Сокращение яркости «. Этот фильтр просто использует сумму красного, зелёного и синего компонентов пикселя (иначе говоря, оттенки серого) в качестве индикатора, и решает, воспринимать ли его как чёрный или как белый. Значение порога яркости может быть задано в диапазоне от 0,0 (чёрный) до 1,0 (белый). Чем выше значение, тем меньше пикселей будет воспринято как «белые» и тем больше черного станет на изображении.


Рис. 2. Предпросмотр в результате применения фильтра «Сокращение яркости».

Фильтр второй — «Определение краев «. Этот фильтр создает картинку, еще меньше похожую на оригинал, чем обработанная первым фильтром, но предоставляет информацию о кривых, которая при использовании других фильтров игнорируется. Значения порога от 0,0 до 1,0 регулируют порог яркости между смежными пикселями, в зависимости от которого смежные пиксели станут или не станут частью контрастного края и, соответственно, попадут или не попадут в контур.

Фактически, этот параметр определяет выраженность (толщину) края.

Рис. 3. Предпросмотр в результате применения фильтра «Определение краев».

Третий фильтр - «Квантование цветов «. Изображение, обработанное этим фильтром, заметно отличается от результата работы двух предыдущих фильтров, но при этом тоже бывает полезным. Вместо того чтобы показывать изоклины яркости или контраста, этот фильтр ищет края, где меняется цвет, даже если смежные пиксели имеют одинаковую яркость и контраст. Параметр этого фильтра (количество цветов) определяет количество цветов на выходе, как если бы растровое изображение было цветным. После этого фильтр определяет чёрный это пиксель или белый в зависимости от чётности индекса цвета.


Рис. 4. Предпросмотр в результате применения фильтра «Квантование цветов».

Вкладка «Параметры » даёт дополнительные возможности в получении вектора требуемого качества. Например, при гравировке мелкого изображения рекомендуется убрать галочку в окошке «Сгладить углы », чтобы мелкие детали остались четкими.


Рис. 5. Вкладка «Параметры».

Обращаем внимание начинающих пользователей, что обработанное фильтром изображение лежит поверх исходного растрового рисунка и является отдельным объектом контуров . Этот объект по определению является выделенным, и его можно переместить мышкой или стрелочками клавиатуры, чтобы убедиться в его самостоятельности. Узлы объекта можно редактировать с помощью инструмента управления узлами.

Стоит попробовать все три фильтра и внимательно рассмотреть, в чем состоит суть различий разных изображений, полученных после обработки каждым из фильтров. Все изображения индивидуальны, и фильтры в каждом случае выдают различные по качеству результаты, т.е. для достижения наилучшего эффекта нужно выбрать из трех фильтров тот, который позволит получить контур оптимального качества.

После векторизации рекомендуется воспользоваться функцией упрощения контуров, чтобы уменьшить количество узлов. Эта функция находится в главном меню «Контуры» — «Упростить» или выполняется нажатием комбинации клавиш Ctrl+L. Уменьшение количества узлов значительно облегчает редактирование полученного векторного рисунка.

Рис. 6. Исходное векторное изображение и результат применения функции «упрощения» контуров. Узлы в исходном и «упрощенном» контуре изображения.

  1. Как сделать контуры из растрового изображения http://inkscape.paint-net.ru/?id=30
  2. Gcodetools — расширение для Incscape http://www.cnc-club.ru/gcodetools
  3. Уроки Inkscape tutorial https://inkscape.org/ko/doc/advanced/tutorial-advanced.ru.html

Примечания:

1. Gcodetools и Inkscape распространяются под лицензией GNU GPL, т.е. бесплатно, в т.ч. для коммерческого использования. Обе программы кросплатформенные, есть дистрибутивы под Windows, Linux и MacOS.

Шаг 2: Крепление образца к столу 3D принтера и расположение в координатах в программе InkScape относительно маркерной точки крепления.

Перед гравировкой лазером на образце необходимо знать следующее:

1. Гравируемый образец необходимо закрепить на рабочем столе 3D-принтера (или гравера), чтобы не смещался в процессе гравирования при излишне интенсивных движениях стола 3D-принтера. Это можно сделать, используя следующие приспособления:

1.1. Канцелярский зажим - одно из самых простых и легкодоступных креплений для образца;

1.2. Двустороннюю клейкую ленту, липкие с двух сторон коврики (например, автомобильные для мобильных устройств и мелочей);

1.3. Обычные (канцелярские, аптечные) резинки.

1.4. Хомуты пластиковые разной длины.

1.5. Пару магнитов: один ставят на образец сверху, второй - снизу (под столом 3D-принтера), либо можно подпереть образец с нескольких сторон.

Примечание : крепежные приспособления не должны попадать в поле гравирования.

2. Если образец прозрачный или полупрозрачный , то необходимо использовать подложку, например, подложить под образец кусок фанеры, иначе лазерный луч будет проходить сквозь прозрачный образец и воздействовать на стол 3D-принтера. Подкладка под образец нужна и при работе в режиме резки для защиты поверхности стола 3D-принтера от повреждения на финальной стадии.

3. Чтобы векторное изображение нанести в точно обозначенное место образца, следует:

Соотнести координаты расположения изображения и гравируемого образца с машинными координатами 3 D-принтера;
. правильно расположить изображение в координатах в программе InkScape.

Итак, по порядку:

1.1. Для определения расположения изображения и гравируемого образца в машинных координатах 3D-принтера нужно выбрать маркерную точку и измерить её точные координаты, чтобы в дальнейшем использовать для определения координат рабочей зоны и места расположения гравируемого образца на столе 3D-принтера.

1.2. В качестве маркерной точки при работе с 3D-принтером Wanhao мы рекомендуем использовать правый нижний (ближайший к вам справа) угол стола 3D-принтера.

1.3.1. Включаем 3D принтер.

1.3.2. Выполняем автоопределение начала координат для всех осей: заходим в настройки принтера поворотом кнопки на блоке управления принтером, выбираем «Quick Settings » и «Home All ». Здесь и далее все команды приведены для 3D-принтера Wanhao Duplicator i3.

1.3.3. Поднимаем лазер по оси Z на необходимую для гравирования высоту (определяемую фокусным расстоянием лазера. Подробно см. инструкцию по настройке фокусного расстояния лазера.) Для начала, координату Z можно установить на высоту 40 см. Перемещение по координатам осуществляем через блок управления принтером, в настройках находим «Position » — «X Pos. Fast », или «Y Pos. Fast», или «Z Pos. Fast», и поворотной кнопкой и изменяем значение координаты.

1.3.4. Методом последовательных приближений перемещаем лазер по осям X и Y, пока не сориентируем его луч на правый нижний угол стола, нашу маркерную точку. Координаты маркерной точки отобразятся на экране. Чтобы убедиться в правильности фокусировки, необходимо включить лазер. Надеваем защитные очки. Соблюдайте технику безопасности при работе с лазером! При включенном лазере работать необходимо ТОЛЬКО В ЗАЩИТНЫХ ОЧКАХ! Включаем лазер через блок управления: переходим в настройки, — «Fan speed » — «Set Fan Full ». При необходимости производим дополнительную подстройку фокуса.

Для выключения лазера используем «Turn Fan Off ». (Дополнительно на верхней раме 3D-принтера Wanhao отдельно установлена страховочная красная кнопка включения и выключения лазера).

1.3.5. Записываем с экрана полученные координаты маркерной точки.

1.4. Пример . Предположим, что координаты маркерной точки: X=200, Y=75. Крепим образец в правом нижнем углу стола принтера край в край. Если размер нашего образца 100х100мм, а гравировки — 60х60мм, и мы хотим расположить гравировку посередине образца, то координаты нижнего левого угла гравировки (самого изображения) будут равны X=120 и Y=95. Вычисления: X= 200 — (100-60)/2 — 60, а Y= 75 + (100-60)/2. Эти координаты понадобятся далее в п.2.2.2. Рекомендуем нарисовать и вычислить самостоятельно.

2.1. Установливаем размер страницы (т.е. рабочего поля 3D-принтера) в рабочем поле документа:

2.1.1. Находим «Файл» - «Свойства документа» - «Размер страницы» (или сочетанием клавиш Shift+Ctrl+D).

2.1.2. В разделе «Общие» обозначаем «Единицу измерения» в «mm ».

2.1.3. В разделе «Размер страницы» в подразделе «Другой размер» - «Единицы» меняем на « mm », «Ширина»: 200 , «Высота»: 200 .

Примечание: 200х200мм - это координатный диапазон работы головки в 3D-принтере Wanhao.

Рисунок 2.1. Вклада «Страница» в свойствах документа

2.2. В InkScape необходимо расположить и выставить требуемые размеры изображения (будущей гравировки). Для этого делаем следующее:

2.2.1. Вносим размер в поля «Ш:» и «В:» (ширина и высота, соответственно). ОБЯЗАТЕЛЬНО указываем единицу измерения - mm. Значок с изображением замка (при включенном режиме) сохраняет пропорции при изменении изображения.

2.2.2. Вносим координаты нижнего левого угла векторного изображения в поля «X: » и «Y: ». Эти координаты должны учитывать расположение маркерной точки. (См. пример в п. 1.3.)

2.2.3. Для получения требуемых координат можно перемещать изображение мышкой или клавишами со стрелками.

Шаг 3: Подготовка файла Gcode из векторного изображения (вектора)

Работа с этой инструкцией подразумевает, что у нас имеется подготовленный векторный вариант гравировки. Вот несколько важных требований к векторному изображению, чтобы получить гравировку наилучшего качества:

Объект должен содержать только один слой изображения (бывает наложение нескольких слоев одного и того же изображения с разными деталями).
. В векторном изображении не должно быть слишком мелких (менее 0,5 мм) деталей из картинки (иначе лазер просто прожжет образец, т.к. будет работать в одной точке над мелкой деталью).
. В векторном изображении не должно быть слишком много узлов , иначе генерация Gcode будет продолжаться часами. Для уменьшения количества узлов используйте функцию упрощения контуров или отредактируйте изображение вручную.

1. Сначала:

1.1. Инструментом выделения и трансформации (в окне инструментов первый сверху в виде черной стрелочки) или нажатием клавиши S или F1 выделяем векторный рисунок, подготовленный для гравировки.

Вокруг выделенного объекта появится черная или пунктирная рамка.

1.2. С помощью мышки или клавиш со стрелками выделенный объект располагаем в оси координат (Х, У) в соответствии с координатами расположения на рабочем столе гравируемого образца. Задать координаты можно также, указав их цифровые значения в верхней строке команд с помощью полей «X» и «Y»:

2. Для генерации Gкода используем первый плагин InkScape: «J Tech Photonics Laser Tool ».

2.1. Для этого в каталоге программы C:\Program Files\Inkscape\share\extensions» должны присутствовать файлы данного плагина («laser.inx», «laser.py»). Для удобства мы прикладываем к инструкции данные файлы для скачивания.

2.3. Указываем в диалоговом окне необходимые параметры для генерации кода:

2.3.1. Команды включения и выключения лазера, используемые для нашего принтера (например, для 3D-принтера Wanhao это команды M106 и M107, соответственно, а для гравера DIY - команды M03 и M05, соответственно).

2.3.2. Скорость перемещения (когда лазер выключен).

2.3.3. Скорость прожига (когда лазер включен).

2.3.4. Время задержки перед движением (прожигом) в миллисекундах после момента включения лазера в точке начала каждого контура.

2.3.5. Количество проходов по гравируемому рисунку

2.3.6. Глубину в миллиметрах за один проход. Этот параметр учитывается в коде при количестве проходов более одного. После каждого прохода добавляется команда, опускающая лазер вниз на данную величину (для сохранения фокусировки).

2.4. Указываем каталог для сохранения файла с нашим кодом. Программа сохранит его, и в следующий раз его не надо будет снова вводить.

2.5. Для запуска работы плагина щелкаем «Применить».

2.5.1. При появлении уведомление о возникновении программной ошибки в результате работы плагина необходимо дополнительно (незначительно) отредактировать вектор и заново запустить плагин. Или использовать другой плагин, например: «GcodeTools ».

2.5.2. Рекомендуем для удобства добавить в сгенерированный код несколько полезных команд. Для этого полученный код открываем в программе Notepad++ (https://notepad-plus-plus.org/).

2.5.2.1. В начало кода вставляем строку «G28 X Y» (Go to origin only on the X and Y axis). Это важно при механическом смещении головки принтера. Команда «G28» (Go to origin on all axes) вернет в ноль все оси.

3. В случае неудовлетворительной работы первого плагина используем плагин: «GcodeTools ».

3.1. Иногда требуется перед вызовом функции «Path to Gcode» запустить последовательно функции: «Orientation points…», «Tools library…», «Площадь…» (eng: «Area…»), подробнее см. уроки на странице разработчиков плагина http://www.cnc-club.ru/gcodetools

3.2. Переходим на третью вкладку: «Параметры…».

3.2.1. Указываем каталог для сохранения файла с нашим кодом в программе, чтобы не вводить его в следующий раз.

3.3. Возвращаемся на первую вкладку «Path to Gcode». Запускаем «Применить».

3.4. Полученный код открываем в программе Notepad++ и далее производим несколько замен по всему коду:

3.4.1. Удаляем все верхние строки до слов « (Start cutting path id:…»

3.4.2. В начало кода вставляем строку «G28 X Y» (Go to origin only on the X and Y axis). Это важно, если вы по каким-либо причинам механически смещали головку принтера.

Примечание: Команда «G28» (Go to origin on all axes) вернет в ноль все оси.

3.4.3. Помещаем курсор в начало файла и нажимаем комбинацию клавиш Ctrl + H. В диалоговом окне «Replace» в настройках «Режим поиска» должно быть выбрано «Расширенный (\r, \n…».

3.4.4. Заменяем везде «(» на «;(»

3.4.5. Заменяем везде «G00 Z5.000000» на «G4 P1 \n M107;»

3.4.6. Заменяем везде «G01 Z-0.125000» на «G4 P1 \n M106;»

3.4.7. Заменяем везде «Z-0.125000» на «» (т.е. везде удаляем «Z-0.125000»).

3.4.8. Заменяем везде «F400» на «F1111» (т.е. выбираем правильную скорость гравировки, например, 1111, что является достаточно быстрой скоростью).

3.4.9. Обращаем внимание, что в этом Gкоде мы не указываем координату Z (высота лазера), т.к. выставим её непосредственно перед запуском лазера.

3.5.Отредактированный Gкод выглядит так:

4. Наш Gкод почти готов для использования в 3D-принтере или гравере с установленным лазером L-Cheapo.

В работе любых программ случаются сбои и ошибки. Вот несколько рекомендаций по преодолению этих проблем:

3.1. Плагин «J Tech Photonics Laser Tool » иногда не ставит пробел в какой-либо строке файла с Gкодом перед «F», например: «G0 X167.747 Y97.2462F500.000000». Для устранения этой ошибки нужно вручную заменить везде «F500» (без пробела) на « F500» (с пробелом перед F).

3.2. Плагин «GcodeTools » иногда выдает пустой файл на выходе. Тогда надо войти в меню «Контур », далее «Оконтурить объект » и повторить генерацию Gcode.

4.1. Использовать программу для визуализации Gcode: Basic CNC Viewer .

Шаг 4: Печатание и прожиг.

После включения принтера выполняем автоопределение начала координат для всех осей (см. Шаг 2 п.1.2.2).

Перед запуском гравировки необходимо выставить высоту лазера Z вручную на принтере, если это не предусмотрено сгенерированным Gкодом.

Оптимальной высотой Z будет та, на которой лазерный луч находится в фокусе на поверхности гравируемого образца.

На верхней раме 3D-принтера Wanhao отдельно установлена специальная красная кнопка включения и выключения лазера.

ОБЯЗАТЕЛЬНО СОБЛЮДАЙТЕ ТЕХНИКУ БЕЗОПАСНОСТИ при работе с лазером. Работайте ТОЛЬКО В ЗАЩИТНЫХ ОЧКАХ при включенном лазере.

Обязательно надевайте защитные очки перед включением этой кнопки!
Защитные очки можно снимать только после выключения этой кнопки!

Полезное:

1. Команда M18 (Disable all stepper motors) освобождает столик от блокировки моторами. (При блокировке столик нельзя придвинуть к себе руками). Эта команда полезна в конце выполнения Gкода, чтобы вручную придвинуть к себе столик и снять гравируемый образец.

Я часто сталкивался с запросами, каким образом к тому или иному 3D-принтеру, ЧПУ или координатному столу подключить более мощный лазер, если на самой плате либо не предусмотрено отдельное питание лазера, либо ток, который подается через контрольную плату, очень ограничен, например, 0.5А.

В основном на платах DIY engravers и MakeBlock подается 9-12 Вольт и не более 0.5-1 Ампера.
Для диодных лазеров мощностью от 1 Вт обычно требуется от 1 до 3 Ампер и 12 Вольт, а для лазеров мощность свыше 5 Вт требуется более 3 Ампер.

Например, на координатных столах (плоттерах типа MakeBlock XY plotter 2.0 KIT), необходимо организовать дополнительное питание, ровно как и на небольшом гравере Neje. Поэтому для того, чтобы поставить более мощный лазер – необходим отдельный блок питания и драйвер.

Описание предлагаемой схемы

Условно назовем её «Endurance circuit MO 1»:

Подключите управление лазером к пинам МК (МикроКонтроллер) и GND1. Подавайте напряжение не более 24В. Подключите контакт «+» вашего лазера к контакту «+12В», контакт «-» лазера к контакту «Сток» («Drain») полевого транзистора.

Не обязательно располагать контакты GND1 и GND2 на одной линии. Контакты «+12V» и «GND2» можно взять и со свинцово-кислотного аккумулятора.

Для размещения элементов достаточно иметь макетную плату размером 20х20 мм.

Данная схема позволяет питать более мощные лазеры 12 В и силой тока 5 ампер и более (согласно характеристикам используемого мосфета). В качестве питания лазера используйте источник питания DIY либо дополнительный блок питания.

Пример подключения данной схемы:

Вверху справа фотографии электронной платы гравера NEJE контакты Laser «+» и «-» являются управляющими, то есть соедините их с контактами Endurance circuit MO 1, соответственно с «МК» и «GND1».

Используйте коробку распределительную телефонную (пластмассовая), чтобы поместить плату Endurance circuit MO 1. Выбирая тип проводов, имейте ввиду, что через них пойдет ток 1-5 А в зависимости от мощности лазера. Например, лазер мощностью 5.6 Вт потребляет до 3.5А.

Пример подключения схемы Endurance circuit MO 1 к мини граверу Neje:

Пример того как выглядит схема Endurance на MakeBlock plotter XY 2.0:

При желании каждый из Вас может спаять схему самостоятельно согласно принципиальной схеме в начале статьи. Рад предоставлять сообществу любителей лазеров и лазерной гравировки полезные технологии!

Я решил его переосмыслить и дополнить. Основная идея - установить лазер не вместо, а вместе с экструдером и заставить все это работать без перестановок железа, создания отдельного координатного стола и без модификаций оригинальной прошивки принтера.

В этой части опишу все железо, необходимое для подобной модификации, нюансы выбора, установки и настройки, но прежде всего:

И помните, что очки защищают только от отраженного света, так что не направляйте лазерный луч себе в глаз. Для синего лазера нужны красные очки. Например, такие .

Лазерный диод

Начну с самого дорогого компонента. Опустим бесчисленное множество параметров, приведенных в даташите и обратим внимание лишь на некоторые:

Мощность. Самый главный параметр. Чем больше мощность - тем быстрее можно резать/выжигать. тем больше глубина реза за проход и прочее. Для себя я решил, что меньше 1,6Вт рассматривать не стоит, ибо всегда должен быть запас, и чем больше - тем лучше.

Длина волны. Для самодельных резаков чаще всего используются лазеры с длиной волны в 445-450нм. Для них полно линз, и их свечение находится в видимом спектре. От выбора цвета зависит то, как хорошо лазер будет резать материалы определенных цветов. Например, синий лазер не очень хорошо справляется с синим оргстеклом и прочими синими поверхностями, т.к. его излучение не поглощается материалом.

Номинальный рабочий ток. Обычно пропорционален мощности. Для 1,6вт-диодов характерен ток 1,2А. У 3,5Вт номинальный ток 2,3А. Этот параметр важен при выборе драйвера. За более точной информацией стоит нужно посмотреть datasheet конкретного лазерного диода.

Тип корпуса. Наиболее распространенные - TO-5 (9мм), TO-18 (5,6мм - его иногда называют To-56). Влияет на подбор лазерного модуля.

Приведу несколько типичных лазерных диодов:

Крепление. Оно же - радиатор. С обдувом даже для 3,5Вт-лазера такого радиатора достаточно, он греется где-то до 50 градусов.

Установка

Вариантов установки крепления для лазера великое множество. Тут стоит даль волю инженерной мысли и чего-нибудь придумать. Обязательно предусмотрите вентилятор над лазером, он нужен как для его охлаждения, так и для того, чтобы сдувать дым из рабочей области. О подключении и управлении доп.вентиляторами читайте .
Можно примотать стяжками, но лучше сделать жесткое болтовое крепление с переходной пластиной, наподобие того, как это сделал я:

Универсального варианта тут нет, но есть несколько критичных моментов, которые нужно соблюсти:
1. Нужно закрепить модуль как можно ниже, на уровне сопла, точнее, чуть выше его, оставив место для регулировки линзы (около 1см). Это связано с фокусным расстоянием - отдалить модуль по Z мы можем всегда, а вот приблизить будет проблемой, если регулировки не хватит. Я об этом не знал, и регулировки хватило едва-едва.
2. Лучше всего закрепить модуль соосно с экструдером - тогда пострадает размер рабочего хода только одной из осей. И чем ближе к экструдеру - тем меньше "штраф".

С подключением все просто, питание на драйвер согласно полярности, подключение диода согласно полярности. Соблюдайте полярность , в общем. Управляющий TTL провод - к контакту D4, D5, или D6 в случае, если у вас RAMPS. Покажу на примере, как это выглядит у меня (TTL-управление на D6):

Настройка тока лазерного диода

После того, как все установлено и подключено, можно заняться настройкой тока. Для этого выкрутите линзу у лазера и/или подложите под него кусок кафельной плитки, чтобы он чего-нибудь не прожег. Также нужно включить в разрыв "минусового" провода лазерного диода амперметр (см. схему выше). Можно временно подключить мультиметр, а можно поставить отдельную измерительную головку, как это сделал я. И не забудьте одеть защитные очки. Алгоритм такой:
1. Включаем принтер.
2. В Pronterface пишем M42 P* S255 , где * - номер контакта, к которому подключен управляющий TTL провод драйвера
3. Берем отвертку и начинаем медленно вращать маленький подстроечный резистор на плате драйвера, попутно поглядывая на показания амперметра. Если это этот драйвер, то ток до включения лучше выкрутить в 0 (против часовой стрелки до щелчков), т.к. в нем по умолчанию выставлено 2А, что может спалить 1,6Вт-диод.
4. Выставляем по амперметру номинальный ток своего диода и пишем M42 P* S0 для его отключения. (* - см. выше)
5. Отключаем мультиметр от цепи (опционально).

Настройка фокуса лазера

Тут все достаточно индивидуально. Фокус можно настраивать как перед каждой операцией резки, так и единожды, потом просто передвигая каретку по Z в зависимости от толщины обрабатываемого материала. Также есть разные подходы к настройке фокуса по детали: можно выставлять фокус по верху заготовки, а можно по середине. Я выставляю по верху, т.к. редко что-либо режу и меня не беспокоит расфокусировка при опускании луча в материал.
Настраивается так:
1. Загоняем все оси в home (G28).
2. Поднимаем каретку. Величина поднятия зависит от толщины обрабатываемого листа. Я не предполагал на своем принтере обрабатывать ничего толще 6мм (по фанере выжигать), поэтому поднял каретку чуть выше - на 8мм. Команда для поднятия - G1 Z8, ну или просто потыкайте стрелочки в Pronterface.
3. Кладем заготовку, закрепляем канцелярскими зажимами, наводим лазер на нее.
4. Включаем лазер. Много мощности на этом этапе не требуется, должна быть четко видна точка. M42 P* S1
5. Крутим линзу до тех пор, пока луч не сфокусируется в маленькую точку. Если не хватает регулировки - поднимите каретку еще где-нибудь на 5-10мм, и снова покрутите линзу.

Итого сборка, подключение и настройка завершены. В следующей статье будет руководство по подготовительным командам и обзор софта для работы с лазером.



Рекомендуем почитать

Наверх