Параметры транзистора с общим эмиттером. Полевые транзисторы с управляющим p-n переходом. Режимы работы биполярного транзистора

Скачать на Телефон 03.06.2019
Скачать на Телефон

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Усилители содержат транзисторы, а также такие элементы, как резисторы, конденсаторы и катушки индуктивности. Пара­метры используемых элементов (их номиналы и напряжения) зависят от требований, предъявляемых к усилителю, а также от типа применяемых транзисторов. С появлением транзисторов различных типов стали возможны новые конфигурации схем усилителей. В биополярном р - n - р- или n - р - n -транзисторе создаются чередующиеся в определенном порядке области с различным видом проводимости, образующие базу, эмиттер и коллектор. Транзистор называется биполярным, поскольку пе­ренос зарядов в нем осуществляется как электронами, так и дырками. В полевых же (униполярных) транзисторах заряды переносятся носителями одного вида: либо электронами, либо дырками. Полевые транзисторы (ПТ) имеют три области, на­зываемые затвором, истоком и стоком, В зависимости от вида используемых носителей различают два типа полевых транзи­сторов: р- и я-канальные. Разным типам транзисторов соответ­ствуют различные характеристики, описываемые более подроб­но в этом разделе.

Наиболее распространенная схема построения усилителя на биполярном транзисторе - схема с общим (заземленным) эмит­тером (ОЭ); варианты таких схем показаны на рис. 11.1. Термин «общий эмиттер» указывает на то, что в соответствующей схе­ме сопротивление между выводом эмиттера и землей для сиг­нала мало, но из этого не следует, что оно во всех случаях ма­ло и для постоянного тока. Так, например, в схемах показан­ных на рис. 1.1, а и б, эмиттеры непосредственно заземлены, а в схеме на рис. 1.1, в между эмиттером и землей включено сопро­тивление, зашунтированное конденсатором. Поэтому, если ре­активное сопротивление этого конденсатора для сигнала мало, можно считать, что для сигнала эмиттер практически заземлен.

Для работы в классе А (разд. 1.4) напряжение смещения между базой и эмиттером должно быть прямым (отпирающим), а между коллектором и эмиттером - обратным (запирающим). Для получения такого смещения полярности источников пита­ния выбирают в зависимости от типа используемого транзисто­ра. Для транзистора р - n - р-типа (рис. 11 Л, а) плюс источника смещения должен быть подключен к эмиттеру р-типа, а ми­нус - к базе я-типа. Таким образом, прямое смещение получа­ется при отрицательном потенциале базы относительно эмитте­ра. Для обратного смещения коллектора р-типа его потенциал должен быть отрицательным. Для этого источник питания под­ключается положительным полюсом к эмиттеру, а отрицатель­ным к коллектору.

Входной сигнал создает на резисторе R 1 падение напряже­ния, которое алгебраически складывается с постоянным смещающим напряжением. В результате этого суммарный потенци­ал базы изменяется в соответствии с сигналом. С изменением потенциала базы меняется ток коллектора, а следовательно, и напряжение на резисторе R 2. При положительной полуволне входного напряжения прямое смещение уменьшается и ток че­рез R 2 соответственно уменьшается. Падение напряжения на R 2 также уменьшается, в результате чего между входным и вы­ходным сигналами образуется сдвиг фаз в 180°.

Если используется транзистор n - р - n-типа (рис. 1.1,6), то полярность обоих источников питания меняется на обратную. При этом базовый переход также оказывается смещенным в прямом направлении, а коллекторный - в обратном. Как и в предыдущем случае, между входным и выходным сигналами образуется сдвиг фаз в 180°.

На рис. 1.1,а и б изображены основные элементы усилителя, а схема усилителя, применяемая на практике, приведена на рис. 1.1,6. Здесь конденсатор С 1 не пропускает постоянной со­ставляющей входного сигнала, но имеет малое реактивное со­противление для его переменной составляющей, которая таким образом поступает на резистор R 2 . (Это так называемая RC -связь; более подробно она описана в разд. 1.5). Напряжение прямого смещения базы поступает с делителя напряжения Ri - R2, который подключен к источнику питания. Нужная вели­чина прямого смещения базы транзистора получается при над­лежащем выборе отношения величин сопротивлений R 1 и R 2 . При этом в транзисторе n - р - n-типа потенциал базы устанав­ливают более положительным, чем эмиттер. Коллекторный ре­зистор, на котором образуется выходной сигнал, обычно назы­вают резистором нагрузки и обозначают R н. Через разделитель­ный конденсатор С 3 сигнал поступает на следующий каскад. Входные и выходные цепи должны иметь общую заземленную точку (рис. 1.1, а).

Коэффициент усиления тока базы для схемы с ОЭ задается следующим соотношением:

где р - коэффициент усиления тока базы;

ДI б - приращение тока базы; ДI к - соответствующее приращение тока коллектора при-

Рис. 1.1. Схемы с общим эмиттером.

Таким образом, р равно отношению приращения коллектор­ного тока к соответствующему приращению базового тока прк постоянном коллекторном напряжении. Коэффициент усиление сигнального тока также называют коэффициентом прямой пере­дачи тока [ При достаточно большой величине сопротивления R 2 переменная состав­ляющая сигнального тока практически равна переменной составляющей тока базы. - Прим. ред. ]

Резистор R 3 (рис. 1.1,5) оказывает стабилизирующее дейст­вие на ток транзистора при изменении температуры. Падение напряжения на R 3 создает обратное (запирающее) смещение эмиттерного перехода транзистора, так как оно повышает по­тенциал эмиттера. Следовательно, оно уменьшает положитель­ное прямое смещение базы на величину этого падения напря­жения. Присутствие переменной составляющей напряжения на Rз вызвало бы уменьшение выходного сигнала и, следователь­но, коэффициента усиления усилителя (см. разд. 1.8). Для устранения этого эффекта резистор Rз шунтируют конденсато­ром С 2 .

При нагреве транзистора постоянная составляющая тока коллектора возрастает. Соответственно возрастает и падение напряжения на R z , что приводит к уменьшению прямого смеще­ния базы, а также тока коллектора. В результате осуществля­ется частичная компенсация температурного дрейфа тока.

Рис. 1.2. Схемы с общим истоком

На рис. 1.2 показана схема усилителя на полевом транзи­сторе, эквивалентная схеме с ОЭ, которая называется схемой с общим истоком. В этой схеме затвор соответствует базе би­полярного транзистора, исток - эмиттеру, а сток - коллектору. На схеме 1.2, а показан ПТ с каналом n-типа. Для транзистора с каналом р-типа стрелка на затворе будет направлена в про­тивоположную сторону. На рис. 1.2, б также показан транзи­стор с каналом д-типа, а на рис. 1.2, в - с каналом р-типа.

Цепи смещения ПТ отличаются от цепей смещения бипо­лярных транзисторов вследствие существенного различия ха­рактеристик этих приборов. Биполярные транзисторы являются усилителями сигнального тока и воспроизводят на выходе уси­ленный входной сигнальный ток, в то время как в полевых транзисторах выходным сигнальным током управляет приложен­ное ко входу напряжение сигнала.

Существуют два типа ПТ: с управляющим р - n-переходом и металл - окисел - полупроводник (МОП). (МОП-транзи­сторы называют также полевыми транзисторами с изолирован­ным затвором.) Полевые транзисторы обоих типов изготовляют с nи р-каналами.

В схеме на рис. 1.2, а используется ПТ с управляющим р - я-переходом, а в схеме на рис. 1.2, б - МОП-транзистор, ра­ботающий в режиме обогащения. На рис. 1.2, в изображен МОП-транзистор, работающий в режиме обеднения. У МОП-транзисторов затвор изображается как бы в виде обкладки конденсатора, что символизирует емкость, возникающую в ре­зультате формирования очень тонкого слоя окисла, изолирую­щего металлический контакт вывода затвора от канала. (От этого способа производства и произошел термин «МОП-тран­зистор».)

Поскольку ПТ управляются напряжением входного сигнала, а не током, как биполярные транзисторы, параметр «коэффи­циент усиления» сигнального тока заменяется передаточной проводимостью g m . Передаточная проводимость является мерой качества полевого транзистора и характеризует способность на­пряжения затвора управлять током стока. Выражение для пе­редаточной проводимости выглядит следующим образом:

Единица измерения g m , называемая сименсом, есть величина, обратная единице измерения сопротивления (1 См=1/Ом). Как следует из выражения (1.2), параметр g m для ПТ есть отноше­ние приращения тока стока к приращению напряжения затвора при постоянной величине напряжения между истоком и стоком.

В полевом транзисторе с управляющим р - n-переходом и ка­налом n-типа (рис. 1.2,а) при поступлении отрицательного на­пряжения на затвор происходит обеднение канала носителями зарядов и проводимость канала уменьшается. (Для ПТ с кана­лом р-типа проводимость уменьшается при действии положи­тельного напряжения на затвор.) Поскольку однопереходный по­левой транзистор имеет только две зоны с разными типами прово­димости (выводы истока и стока подключены к одной зоне, а вы­вод затвора - к другой), проводимость между истоком и стоком того же типа, что и проводимость канала. Следовательно, в отли­чие от биполярного транзистора, у которого при U Q 3 = 0 ток кол­лектора равен 0, ток канала может протекать даже при нулевом напряжении затвор - исток. Поскольку ток канала это функция напряжения U зи, канал полевого транзистора с управляющим р - n-переходом может проводить ток в обоих направлениях: от истока к стоку и в обратном направлении (у биполярного транзистора ток коллектора в рабочем режиме имеет всегда одно направление). При этом рабочая точка (например, для схем класса А) для таких транзисторов устанавливается путем подачи напряжения обратного смещения затвора в отличие от прямого смещения базового перехода в биполярных транзи­сторах [В транзисторе с управляющим р - n-переходом обычно подается запи­рающее напряжение U 8и на переход (отрицательное для n-канала) и макси­мальный ток в канале получается при U 3 и = 0. Направление тока в канале за­висит от полярности источника питания, подключенного к каналу; при изме­нении полярности источника питания вывод, бывший стоком, становится исто­ком и наоборот. - Прим. ред. ].

Как было отмечено выше, затвор в МОП-транзисторах изо­лирован от канала диэлектриком, например двуокисью крем­ния (SiO 2). При этом затвор имеет очень высокое входное со­противление и на него может подаваться как прямое смещение для обогащения канала носителями (что будет увеличивать про­ходящий ток), так и обратное смещение для обеднения канала носителями (что уменьшает ток канал а). Поэтому возможно из­готовление двух различных типов МОП-транзисторов: для ра­боты в обогащенном и обедненном режимах (здесь имеются в виду МОП-транзисторы с встроенным каналом).

В МОП-транзисторе обедненного типа имеется ток стока при нулевом смещении на входе. Напряжением обратного сме­щения ток стока уменьшают до некоторой величины, зависящей от требуемого динамического диапазона входного сигнала. Как показано на рис. 1.2,6, у транзисторов обедненного типа линия, изображающая канал, непрерывная, что означает наличие замк­нутой цепи и протекание тока в канале (тока стока) при нуле­вом смещении затвора.

В МОП-транзисторах обогащенного типа ток стока при ну­левом смещении мал. Напряжением смещения ток стока увели­чивают до некоторой величины, зависящей от динамического диапазона входного сигнала. У МОП-транзисторов обогащен­ного типа линия, изображающая канал, прерывистая, что сим­волизирует как бы разрыв цепи при нулевом смещении. Для того чтобы увеличить ток до величины, необходимой для нор­мальной работы такой схемы, как усилитель, нужно использо­вать соответствующее смещение.

Рабочие характеристики схем, изображенных на рис. 1.Д аналогичны характеристикам схем, представленных на рис. 1.11. Схема на рис. 1.2, в наиболее пригодна для практического ис­пользования. Как и в ранее рассмотренном случае, имеет место инверсия фазы между входным и выходным сигналами. Напря­жение источника питания обычно обозначают Е с. Для того что­бы уменьшить падение напряжения сигнала на внутреннем со­противлении источников питания и смещения, их шунтируют емкостями соответствующей величины (рис. 11.2, а). Через эти емкости замыкаются токи сигнала цепей затвора и стока.

Сибирская государственная автомобильно-дорожная академия

Кафедра АПП и Э

КУРСОВОЙ ПРОЕКТ

“РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ”

по дисциплине: “Электротехника ”

Вариант-17

Выполнил: ст. гр. 31АП

Цигулев С.В.

Проверил: Денисов В.П.

1. Основные понятия

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

3. Задание на работу

4. Порядок расчета транзисторного усилителя по схеме с ОЭ

Библиографический список

1. Основные понятия

Усилители являются одним из самых распространенных электронных устройств, применяемых в системах автоматики и радиосхемах. Усилители подразделяются на усилители предварительные (усилители напряжения) и усилители мощности. Предварительные транзисторные усилители, как и ламповые, состоят из одного или нескольких каскадов усиления. При этом все каскады усилителя обладают общими свойствами, различие между ними может быть только количественное: разные токи, напряжения, различные значения резисторов, конденсаторов и т. п.

Для каскадов предварительного усилителя наиболее распространены резистивныесхемы (с реостатно-емкостной связью). В зависимости от способа подачи входного сигнала и получения выходного сигнала усилительные схемы получили следующие названия:

1) с общей базой ОБ (рис. 1, а);

2) с общим коллектором ОК (эмиттерный повторитель) (рис. 1, б);

3) с общим эмиттером - ОЭ (рис. 1, в).


Наиболее распространенной является схема с ОЭ. Схема с ОБ в предварительных усилителях встречается редко. Эмиттерный повторитель обладает наибольшим из всех трех схем входным и наименьший выходным сопротивлениями, поэтому его применяют при работе с высокоомными преобразователями в качестве первого каскада усилителя, а также для согласования с низкоомным нагрузочным резистором. В табл. 1 дается сопоставление различных схем включения транзисторов.


Таблица 1

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

Существует множество вариантов выполнения схемы усилительного каскада на транзисторе ОЭ. Это обусловлено главным образом особенностями задания режима покоя каскада. Особенности усилительных каскадов и рассмотрим на примере схемы рисунок 2, получившей наибольшее применение при реализации каскада на дискретных компонентах.

Основными элементами схемы являются источник питания

, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными. Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Резисторы

и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток ) создается заданием соответствующей величины тока базы покоя . Резистор предназначен для создания цепи протекания тока . Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор

является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента . Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока , его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток

Название полупроводникового прибора транзистор образовано из двух слов: transfer – передача + resist – сопротивление. Потому что его действительно можно представить в виде некоторого сопротивления, которое будет регулироваться напряжением одного электрода. Транзистор иногда еще называют полупроводниковым триодом.

Создан первый биполярный транзистор был в 1947 году, а в 1956 году за его изобретение трое ученых были удостоены нобелевской премии по физике.

Биполярный транзистор – это полупроводниковый прибор, который состоит из трех полупроводников с чередующимся типом примесной проводимости. К каждому слою подключен и выведен электрод. В биполярном транзисторе используются одновременно заряды, носители которых электроны ( n - “ negative ”) и дырки (p – “ positive ”), то есть носители двух типов, отсюда и образование приставки названия «би» - два.

Транзисторы различаются по типу чередования слоев:

P n p -транзистор (прямая проводимость);

Npn- транзистор (обратная проводимость).

База (Б) – это электрод, который подключен к центральному слою биполярного транзистора. Электроды от внешних слоев именуются эмиттер (Э) и коллектор (К).

Рисунок 1 – Устройство биполярного транзистора

На схемах обозначаются « VT », в старой русскоязычной документации можно встретить обозначения «Т», «ПП» и «ПТ». Изображаются биполярные транзисторы на электрических схемах, в зависимости от чередования проводимости полупроводников, следующим образом:


Рисунок 2 – Обозначение биполярных транзисторов

На рисунке 1, изображенном выше, отличие между коллектором и эмиттером не видны. Если посмотреть на упрощенное представление транзистора в разрезе, то видно, что площадь p - n перехода коллектора больше чем у эмиттера.


Рисунок 3 – Транзистор в разрезе

База изготовляется из полупроводника со слабой проводимостью, то есть сопротивление материала велико. Обязательное условие – тонкий слой базы для возможности возникновения транзисторного эффекта. Так как площадь контакта p - n перехода у коллектора и эмиттера разные, то менять полярность подключения нельзя. Эта характерность относит транзистор к несимметричным устройствам.

Биполярный транзистор имеет две ВАХ (вольт амперные характеристики): входную и выходную.

Входная ВАХ – это зависимость тока базы ( I Б ) от напряжения база-эмиттер ( U БЭ ).



Рисунок 4 – Входная вольтамперная характеристика биполярного транзистора

Выходная ВАХ – это зависимость тока коллектора ( I К ) от напряжения коллектор-эмиттер ( U КЭ ).



Рисунок 5 – Выходная ВАХ транзистора

Принцип работы биполярного транзистора рассмотрим на npn типе, для pnp аналогично, только рассматриваются не электроны, а дырки. Транзистор имеет два p-n перехода . В активном режиме работы один из них подключен с прямым смещением, а другой – обратным. Когда переход ЭБ открыт, то электроны с эмиттера легко перемещаются в базу (происходит рекомбинация). Но, как говорилось ранее, слой базы тонкий и проводимость ее мала, по этому часть электронов успевает переместиться к переходу база-коллектор. Электрическое поле помогает преодолеть (усиливает) барьер перехода слоев, так как электроны здесь неосновные носители. При увеличении тока базы, переход эмиттер-база откроется больше и с эмиттера в коллектор сможет проскочить больше электронов. Ток коллектора пропорционален току базы и при малом изменении последнего (управляющий), коллекторный ток значительно меняется. Именно так происходит усиления сигнала в биполярном транзисторе.



Рисунок 6 – Активный режим работы транзистора

Смотря на рисунок можно объяснить принцип действия транзистора чуть проще. Представьте себе, что КЭ – это водопроводная труба, а Б – кран, с помощью которого Вы можете управлять потоком воды. То есть, чем больше ток вы подадите на базу, тем больше получите на выходе.

Значение коллекторного тока почти равно току эмиттера, исключая потери при рекомбинации в базе, которая и образовывает ток базы, таким образом справедлива формула:

І Э =І Б +І К.

Основные параметры транзистора:

Коэффициент усиления по току – отношение действующего значения коллекторного тока к току базы.

Входное сопротивление – следуя закону Ома оно будет равно отношению напряжения эмиттер-база U ЭБ к управляющему току I Б .

Коэффициент усиления напряжения – параметр находится отношением выходного напряжения U ЭК к входному U БЭ .

Частотная характеристика описывает способность работы транзистора до определенной, граничной частоты входного сигнала. После превышения предельной частоты физические процессы в транзисторе не будут успевать происходить и его усилительные способности сведутся на нет.

Схемы включения биполярных транзисторов

Для подключения транзистора нам доступны только его три вывода (электрода). По этому для его нормальной работы требуются два источника питания. Один электрод транзистора будет подключаться к двум источникам одновременно. Следовательно, существуют 3 схемы подключения биполярного транзистора: ОЭ – с общим эмиттером, ОБ – общей базой, ОК – общим коллектором. Каждая обладает как преимуществами, так и недостатками, в зависимости от области применения и требуемых характеристик делают выбор подключения.

Схема включения с общим эмиттером (ОЭ) характеризуется наибольшим усилением тока и напряжения, соответственно и мощности. При данном подключении происходит смещение выходного переменного напряжения на 180 электрических градусов относительно входного. Основной недостаток – это низкая частотная характеристика, то есть малое значение граничной частоты, что не дает возможность использовать при высокочастотном входном сигнале.

(ОБ) обеспечивает отличную частотную характеристику. Но не дает такого большого усиления сигнала по напряжению как с ОЭ. А усиление по току не происходит совсем, поэтому данную схему часто называют токовый повторитель, потому что она имеет свойство стабилизации тока.

Схема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе ( U ЭБ ) соответствуют входному напряжению.

Применение транзисторов:

Усилительные схемы;

Генераторы сигналов;

Электронные ключи.

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры , собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:

(1)

Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб" .

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Дата последнего обновления файла 31.05.2018

Литература:

Вместе со статьей "Схема с общим эмиттером (каскад с общим эмиттером)" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/



Рекомендуем почитать

Наверх