Основные UI паттерны разработки Android приложений. Почему преобразование является обязательным? Intent и фильтры Intent

Для Windows 30.04.2019
Для Windows

Следует начать с того что все приложения для ОС Android распространяются в виде инсталляционных пакетов - файлов с расширением APK.

APK (Android Package) -- формат архивных исполняемых файлов-приложений для Android.

Каждое приложение Android скомпилировано и упаковано в один файл, который включает в себя весь код приложения (.DEX файлы), ресурсы, активы и файл manifest. Файл приложения может иметь любое имя, но расширение должно быть.APK. Например: myAppFile.apk.

Файлы с данным расширением хранятся в магазине Google Play, и загружаются с его помощью в смартфон для их использования, либо устанавливаются пользователем вручную на устройстве.

Файлы этого формата не шифруются, являются подмножеством формата архива ZIP.

Каждый.APK файл -- это сжатый архив для исполнения в DalvikVM (виртуальная машина), который может быть установлен не только на операционной системе Android.

APK файл как архив обычно содержит следующие директории:

· META-INF:

§ MANIFEST.MF: манифест файл

§ CERT.RSA: сертификат приложения

§ CERT.SF: список ресурсов и их SHA1 хеш-сумма например на Рисунке 6:

· Signature-Version: 1.0

· Created-By: 1.0 (Android)

· SHA1-Digest-Manifest: wxqnEAI0UA5nO5QJ8CGMwjkGGWE=

· Name: res/layout/exchange_component_back_bottom.xml

· SHA1-Digest: eACjMjESj7Zkf0cBFTZ0nqWrt7w=

· Name: res/drawable-hdpi/icon.png

· SHA1-Digest: DGEqylP8W0n0iV/ZzBx3MW0WGCA=

Рисунок 6. Структура файла со списком ресурсов и их хеш-сумм.

· Директория lib: содержит скомпилированный исполняемый код адаптированный под различные типы процессоров, обычно разделена на следующие директории:

Ш armeabi: код только для ARM процессоров

Ш armeabi-v7a: код для для процессоров ARMv7 и ниже только.

Ш x86: скомпилированный код только для архитектуры x86

Ш mips: скомпилированный код только для архитектуры MIPS

· Директория res: директория содержит файлы ресурсы не вошедшие в файл resources.arsc(см. ниже)

· Директория assets: содержит активы которые могут получены с помощью AssetManager

· Файл AndroidManifest.xml: дополнительный манифест файл, описывающий версию приложения, разрешения, используемые библиотеки. Как правило это файл идёт в формате binary XML, это формат файлов можно привести к читаемому виду с помощью сторонних утилит таких как AXMLPrinter2, apktool, или Androguard.

· Файл classes.dex: исполняемый файл виртуальной машины Dalvik, полученный путём преобразования скомпилированных JAVA классов с помощью утилиты DX. Утилита входит в состав Android SDK.

· Файл resources.arsc: файл содержит пре-компилированные ресурсы, например в виде бинарных XML файлов.

Из всего выше обозначенного в данной работе при анализе уровня опасности будут использоваться только два файла это AndroidManifest.xml и classes.dex. Ни их структуре остановимся более подробно.

AndroidManifest.xml

Данный файл, как уже говорилось ранее, содержит информацию о приложении, в том числе список требуемых разрешений приложения. В том числе на основе этих данных можно ранжировать уровень опасности приложения. Обратимся как его структуре: в первую очередь необходимо отметить что в установочном пакете androidmanifest.xml имеет бинарный вид, то есть преобразованный xml, хотя в оригинальном состоянии этот файл имеет структуру, обозначенную на Рисунке 7:

Рисунок 7. Подтверждение установки приложения из стороннего источника.

Следует отметить, что нас особенно интересуют поля обозначенные . Эти полня показывают системе какие разрешения хочет получить приложения для своей работы. На их основе можно выставлять уровень опасности приложению.

В Таблице 1 приведены некоторые разрешения которые представляют наибольшую опасность:

Таблица 1. Описание некоторых опасных разрешений в ОС Android.

ACCESS_COARSE_LOCATION

Приложение сможет получить доступ к приблизительному местоположению, полученному из сетевого расположения источников, таких как вышки сотовой связи и Wi-Fi.

ACCESS_FINE_LOCATION

Приложение сможет получить доступ к точному местоположению от места расположения источников, таких как GPS, вышек сотовой связи и Wi-Fi.

CALL_PHONE

Приложение сможет инициировать телефонный звонок, минуя пользовательский интерфейс Dialer для пользователя.

Приложение сможет сделать снимок встроенной камерой

DELETE_PACKAGES

Позволяет приложению удалять пакеты.

DEVICE_POWER

Позволяет приложению отключить питание устройства

Как видно из описаний некоторые разрешения можно группировать, выставив при этом уровень опасности целой группе функций, например разрешения READ_SMS, BRICK являются очень опасными и им можно присвоить уровень опасности 10(максимальный). Это вызвано тем, что под разрешением READ_SMS понимается чтение личных данных пользователей, что является потенциально опасным для пользователя действием со стороны приложения. Под BRICK понимается отключение устройства в целом - что тоже очень опасно для пользователя потому что устройство полностью прекращает свою работу.

Исходя из всего выше сказанного, для ранжирования уровня опасности необходимо проанализировать все разрешения, выставить им уровни, так же можно группировать разрешения в составные при этом выставив общий уровень опасности приложению.

Данный файл носит в себе основной функционал приложения, содержит байт-код, понятный виртуальной машине Dalvik. Имеет следующую внутреннюю структуру, представленную в Таблице 2:

Таблица 2. Структура Dex файла.

На самом деле это файл, содержащий в себе программный код для виртуальной машины Dalvik. Приложения для Android пишутся на языке Java, но после компиляции кода в.class-файлы, вызывается утилита dx, которая транслирует их в один файл classes.dex, являющийся основной составляющей APK файла. Общий алгоритм формирования dex представлен на Рисунке 8.


Рисунок 8. Механизм формирования файла classes.dex.

Следует отметить, что функционирование данного файла абсолютно связано с использованием API операционной системы. При этом исходный код приложения написан на объектно-ориентированном языке программирования JAVA. И является своего рода компиляцией в компиляции. Как следствие состоит из большего числа строк, содержащих имена методов API, имена различных констант. Вся эта информация может явным образом служить для понимания функционала приложения и как следствие ранжирования его уровня опасности, опираясь на использованные наборы API функций.

Так нужно понимать, что файл имеет четкую устоявшуюся структуру, которая позволяет получить из файла путём статического анализа необходимую информацию для понимания функционала. Для этого необходимо разобрать формат файла и научится извлекать строки, имена методов.

Есть четыре стандартных блока приложения Android:

- Activity .

- Intent Receiver .

- Service .

- Content Provider .

Не у каждого приложения должны быть все четыре блока, но Ваше приложение будет написано с их некоторой комбинацией.

Как только Вы решили, в каких компонентах Вы нуждаетесь для своего приложения, Вы должны перечислить их в файле по имени AndroidManifest.xml. Это - файл XML, где Вы объявляете компоненты своего приложения и каковы их возможности и требования. Мы скоро обсудим, за что AndroidManifest.xml ответственен.

(Это могло быть написано ОЧЕНЬ криво. Тут много текста и никаких картинок примеров. Рекомендую потерпеть и прочесть эту теорию, зато потом Вам будет понятней. Потом все написано гораздо глаже, не волнуйтесь)

Activity

Activity – самый распространенный из четырех стандартных блоков Андроид. Activity обычно - единственный экран в Вашем приложении. Каждый Activity осуществлен как единственный класс, который расширяет базовый класс Activity. Ваш класс отобразит пользовательский интерфейс, составленный из Views, и ответит на события. Большинство приложений состоит из множественных экранов. Например, у приложения обмена сообщениями мог бы быть один экран, который показывает список контактов, второй экран, чтобы написать сообщение выбранному контакту, и другие экраны, чтобы делать обзор старых сообщений или изменить настройку. Каждый из этих экранов был бы осуществлен как Activity. Перемещение в другой экран достигнуто стартом нового Activity. В некоторых случаях Activity может возвратить значение предыдущего Activity - например Activity, которая позволяет пользователю выбирать фотографию, возвратил бы выбранную фотографию вызывающей программе. Когда новый экран открывается, предыдущий экран приостановлен и помещен на стек хронологии. Пользователь может переместиться назад через ранее открытые экраны в хронологии. Экраны могут также хотеть быть удаленными от стека хронологии, когда было бы неуместно для них остаться. Андроид сохраняет стеки хронологии для каждого приложения, начатого от начала экрана.

Intent и фильтры Intent

Андроид использует специальный класс под названием Intent, чтобы двигаться от экрана к экрану. Intent описывает то, что приложение собирается сделать. Две самых важных части структуры Intent - действие и данные к действию. Типичные значения для действия – MAIN (главный экран приложения), VIEW, PICK, EDIT, и т.д. Данные выражены как Uniform Resource Indicator (URI). Например, чтобы рассмотреть веб сайт в браузере, Вы создали бы Intent с действием VIEW и набором данных – адресом сайта.

new Intent(android.content.Intent.VIEW_ACTION , ContentURI.create ("http://anddev.org"));

Есть связанный класс, названный IntentFilter. В то время как Intent - запрос сделать кое-что, IntentFilter - описание того, что Intent Activity (или intent receiver, см. ниже), способен к обработке. Activity, который в состоянии отобразить информацию для человека, издала бы IntentFilter, который сказал, что знает, как обработать VIEW действия. Activity издает свой IntentFilters в файле AndroidManifest.xml.

Навигация от экрана к экрану достигнута достигается с помощью Intent. Чтобы переместиться вперед, Activity вызывает startActivity (myIntent). Система тогда смотрит на IntentFilter для всех установленных приложений и выбирает Activity, Intent которого фильтрует myIntent. Новому Activity сообщают о Intent, которое заставляет его начаться. Процесс решения Intent происходит, когда startActivity вызывают. Процесс предлагает две ключевых льготы:

Действия могут многократно использовать функциональные возможности от других компонентов, просто делая запрос в форме Intent.

Действия могут быть заменены в любое время новым Activity с эквивалентным IntentFilter.

Intent Receiver

Вы можете использовать IntentReceiver, когда Вы хотите, чтобы код в своем приложении выполнился в реакции на внешнее событие, например, когда телефон звонит, или когда сеть передачи данных доступна, или когда это - полночь. Intent Receiver не отображают UI, хотя они могут отобразить Уведомления, чтобы привести пользователя в готовность, если кое-что интересное случилось. Поглощенные получатели также регистрированы в AndroidManifest.xml, но Вы можете также регистрировать их в коде, используя Context.registerReceiver(). Ваше приложение не должно работать для его Intent Receiver, которые вызываются; система запустит Ваше приложение, в случае необходимости, когда Intent Receiver будет вызван. Приложения могут также послать свои собственные Intent Receiver другим с Context.broadcastIntent().

Service

Service - код, который долговечен и выполняется без UI. Хороший пример этого - универсальный проигрыватель, запускающий песни из плейлиста. В приложении универсального проигрывателя, вероятно, были бы одно или более Activity, которые позволяют пользователю выбирать песни и запускать их. Однако, воспроизведение самой музыки не должно быть обработано Activity, потому что пользователь будет ожидать, что музыка продолжит играть даже после сворачивания проигрывателя. В этом случае, деятельность универсального проигрывателя могла запустить Service, используя Context.startService(), чтобы работать на заднем плане и сохранить воспроизведение музыки. Тогда система сохранит воспроизведение музыки, пока оно не закроется само. (Вы можете узнать больше о приоритете, данном службам в системе, читая Цикл Жизни Приложения Андроид). Отметьте, что Вы можете соединиться с Service (и запустить его, если он уже не работает) с методом Context.bindService(). Когда есть подключение с Service, Вы можете общаться с этим через интерфейс, выставленный Service. Для Service музыки это могло бы позволить Вам приостанавливать, перематывать, и т.д.

Content Provider

Приложения могут хранить свои данные в файлах, базе данных SQLite, персональных настройках или любом другом механизме, который имеет смысл. Content Provider, однако, полезен, если Вы хотите, чтобы данные Вашего приложения были разделены с другими приложениями. Content Provider - класс, который осуществляет стандартный набор методов, чтобы позволить другим приложениям сохранять и восстанавливать тип данных, которые обработаны другим(that) Content Provider.

Пользовательские интерфейсы Андроид

Пользовательские интерфейсы (UI) в Андроид могут быть созданы двумя путями, через XML-код или в java-коде. Создание структуры графического интерфейса пользователя в XML очень предпочтительно, потому что по принципу Образцового управления средства просмотра, UI должен всегда отделяться от логики программы. К тому же, приспосабливание программы от одной разрешающей способности экрана до другой намного более просто. Определение UI в XML очень похоже к созданию общего документа HTML, где Вы имеете то есть такой простой файл:

Page Title

The content of the body element.

Все равно как в Андроидовских XML-Layouts. Все хорошо структурировано и может быть выражено древовидными структурами:

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello World"/>

Иерархия Элементов Экрана

Основной функциональный модуль приложения Android - Activity - объект класса android.app.activity. Activity может сделать много вещей, но отдельно у него нет присутствия на экране. Чтобы дать Вашему Activity присутствие на экрана и проектировать его UI, Вы работаете с Views и Viewgroups - основными единицами выражения пользовательского интерфейса на платформе Андроид.

Views

View - объект, расширяющий базовый класс android.view.view . Это - структура данных, свойства которой сохраняют Layouts и информационное наполнение для определенной прямоугольной области экрана. Объект View обрабатывает измерение, его схему размещения, рисунок, изменения центра, прокрутку, и клавиши/знаки для области экрана, которую он представляет. Класс View служит базовым классом для всех графических фрагментов - ряд полностью осуществленных подклассов, которые рисуют интерактивные элементы экрана. Графические фрагменты обрабатывают свое собственное измерение и рисунок, таким образом Вы можете использовать их, чтобы создать Ваш UI более быстро. Список доступных графических фрагментов включает TextView, EditText, Button, RadioButton, Checkbox, ScrollView и т.д.

Viewgroups

Viewgroup - объект класса android.view.viewgroup. Viewgroup - специальный тип объекта View, функция которого - содержать набором View и Viewgroup и управлять ими. Viewgroups позволяют Вам добавлять структуру к Вашему UI и создавать сложные элементы экрана, к которым можно обратиться как к единственному объекту. Класс Viewgroup служит базовым классом для Layouts - ряда полностью осуществленных подклассов, обеспечивающего общие типы Layouts экрана. Layouts дают Вам способ встроить структуру для ряда View.

UI с древовидной структурой

На платформе Андроид Вы определяете UI Activity использование дерева View и Viewgroup узлов, как показано в диаграмме ниже. Дерево может быть столь же простым или сложным, как Вы его сделаете, и Вы можете построить его, используя наборы предопределенных графических фрагментов и Layouts Андроида, или заказных типов View, которые Вы создаете самостоятельно.

UI Андроид – древовидная структура.

Чтобы прикрепить дерево к экрану и отрендрить его, Ваш Activity вызывает свой метод setContentView() и передает информацию на корневой объект узла. Как только у система Андроид получает информацию на корневой объект узла, она начинает работать непосредственно с узлом, чтобы измерить, и отрисовать дерево. Когда Ваш Activity становится активным и получает приоритет, система регистрирует Ваш Activity и просит корневой узел измерить и отрисовать дерево. Тогда корневой узел просит, чтобы его дочерние вершины отрисовали себя - в свою очередь, каждый Viewgroup узел в дереве ответственен за отрисовку его прямых дочерних узлов. Как упомянуто ранее, у каждой группы View есть ответственность измерения ее доступного пространства, расположения ее дочерних узлов, и вызов draw() на каждом дочернем узле, чтобы позволить все им рендрить себя. Дочерние узлы могут просить размер и местоположение в родителе, но у родительского объекта есть конечное решение, где и насколько большой каждый ребенок может быть.

Сравнение Андроида Элементы UI к Swing Элементы UI

Поскольку некоторые разработчики, которые читают это, возможно, нашли, что UIs схож с Swing, сейчас будет немного общих черт между Андроидом и Swing.

Activity в Андроид - почти (J) Frame в Swing.

View в Андроид - (J) Component в Swing.

TextViews в Андроид - (J) TextField в Swing.

EditTexts в Андроид - (J) TextField в Swing.

Button в Андроид - (J) Button в Swing.

Установка слушателей к View в Андроид является почти тем же самым, чем и в Swing.

myView.setOnClickListener(new OnClickListener(){ ...

myButton.addActionListener(new ActionListener() {...



Тебя никогда не интересовало, как работают fastboot или ADB? Или почему смартфон под управлением Android практически невозможно превратить в кирпич? Или, может быть, ты давно хотел узнать, где кроется магия фреймворка Xposed и зачем нужны загрузочные скрипты /system/etc/init.d? А как насчет консоли восстановления (recovery)? Это часть Android или вещь в себе и почему для установки сторонней прошивки обычный рекавери не подходит? Ответы на все эти и многие другие вопросы ты найдешь в данной статье.

Как работает Android

Узнать о скрытых возможностях программных систем можно, поняв принцип их работы. В некоторых случаях сделать это затруднительно, так как код системы может быть закрыт, но в случае Android мы можем изучить всю систему вдоль и поперек. В этой статье я не буду рассказывать обо всех нюансах работы Android и остановлюсь только на том, как происходит запуск ОС и какие события имеют место быть в промежутке между нажатием кнопки питания и появлением рабочего стола.

Попутно я буду пояснять, что мы можем изменить в этой цепочке событий и как разработчики кастомных прошивок используют эти возможности для реализации таких вещей, как тюнинг параметров ОС, расширение пространства для хранения приложений, подключение swap, различных кастомизаций и многого другого. Всю эту информацию можно использовать для создания собственных прошивок и реализации различных хаков и модификаций.

Шаг первый. ABOOT и таблица разделов

Все начинается с первичного загрузчика. После включения питания система исполняет код загрузчика, записанного в постоянную память устройства. Затем он передает управление загрузчику aboot со встроенной поддержкой протокола fastboot, но производитель мобильного чипа или смартфона/планшета имеет право выбрать и любой другой загрузчик на его вкус. Например, компания Rockchip использует собственный, несовместимый с fastboot загрузчик, для перепрограммирования и управления которым приходится использовать проприетарные инструменты.

Протокол fastboot, в свою очередь, представляет собой систему управления загрузчиком с ПК, которая позволяет выполнять такие действия, как разлочка загрузчика, прошивка нового ядра и recovery, установка прошивки и многие другие. Смысл существования fastboot в том, чтобы иметь возможность восстановить смартфон в начальное состояние в ситуации, когда все остальные средства не работают. Fastboot останется на месте, даже если в результате экспериментов ты сотрешь со смартфона все разделы NAND-памяти, содержащие Android и recovery.

Получив управление, aboot проверяет таблицу разделов и передает управление ядру, прошитому в раздел с именем boot, после чего ядро извлекает в память RAM-образ из того же раздела и начинает загрузку либо Android, либо консоли восстановления. NAND-память в Android-устройствах поделена на шесть условно обязательных разделов:

  • boot - содержит ядро и RAM-диск, обычно имеет размер в районе 16 Мб;
  • recovery - консоль восстановления, состоит из ядра, набора консольных приложений и файла настроек, размер 16 Мб;
  • system - содержит Android, в современных девайсах имеет размер не менее 1 Гб;
  • cache - предназначен для хранения кешированных данных, также используется для сохранения прошивки в ходе OTA-обновления и поэтому имеет размер, сходный с размерами раздела system;
  • userdata - содержит настройки, приложения и данные пользователя, ему отводится все оставшееся пространство NAND-памяти;
  • misc - содержит флаг, определяющий, в каком режиме должна грузиться система: Android или recovery.

Кроме них, также могут существовать и другие разделы, однако общая разметка определяется еще на этапе проектирования смартфона и в случае aboot зашивается в код загрузчика. Это значит, что: 1) таблицу разделов нельзя убить, так как ее всегда можно восстановить с помощью команды fastboot oem format; 2) для изменения таблицы разделов придется разлочить и перепрошить загрузчик с новыми параметрами. Из этого правила, однако, бывают исключения. Например, загрузчик того же Rockchip хранит информацию о разделах в первом блоке NAND-памяти, так что для ее изменения перепрошивка загрузчика не нужна.

Особенно интересен раздел misc. Существует предположение, что изначально он был создан для хранения различных настроек независимо от основной системы, но в данный момент используется только для одной цели: указать загрузчику, из какого раздела нужно грузить систему - boot или recovery. Эту возможность, в частности, использует приложение ROM Manager для автоматической перезагрузки системы в recovery с автоматической же установкой прошивки. На ее же основе построен механизм двойной загрузки Ubuntu Touch, которая прошивает загрузчик Ubuntu в recovery и позволяет управлять тем, какую систему грузить в следующий раз. Стер раздел misc - загружается Android, заполнил данными - загружается recovery… то есть Ubuntu Touch.

Шаг второй. Раздел boot

Если в разделе misc не стоит флаг загрузки в recovery, aboot передает управление коду, расположенному в разделе boot. Это не что иное, как ядро Linux; оно находится в начале раздела, а сразу за ним следует упакованный с помощью архиваторов cpio и gzip образ RAM-диска, содержащий необходимые для работы Android каталоги, систему инициализации init и другие инструменты. Никакой файловой системы на разделе boot нет, ядро и RAM-диск просто следуют друг за другом. Содержимое RAM-диска такое:

  • data - каталог для монтирования одноименного раздела;
  • dev - файлы устройств;
  • proc - сюда монтируется procfs;
  • res - набор изображений для charger (см. ниже);
  • sbin - набор подсобных утилит и демонов (adbd, например);
  • sys - сюда монтируется sysfs;
  • system - каталог для монтирования системного раздела;
  • charger - приложение для отображения процесса зарядки;
  • build.prop - системные настройки;
  • init - система инициализации;
  • init.rc - настройки системы инициализации;
  • ueventd.rc - настройки демона uventd, входящего в состав init.

Это, если можно так выразиться, скелет системы: набор каталогов для подключения файловых систем из разделов NAND-памяти и система инициализации, которая займется всей остальной работой по загрузке системы. Центральный элемент здесь - приложение init и его конфиг init.rc, о которых во всех подробностях я расскажу позже. А пока хочу обратить внимание на файлы charger и ueventd.rc, а также каталоги sbin, proc и sys.

Файл charger - это небольшое приложение, единственная задача которого - вывести на экран значок батареи. Он не имеет никакого отношения к Android и используется тогда, когда устройство подключается к заряднику в выключенном состоянии. В этом случае загрузки Android не происходит, а система просто загружает ядро, подключает RAM-диск и запускает charger. Последний выводит на экран иконку батареи, изображение которой во всех возможных состояниях хранится в обычных PNG-файлах внутри каталога res.

Файл ueventd.rc представляет собой конфиг, определяющий, какие файлы устройств в каталоге sys должны быть созданы на этапе загрузки системы. В основанных на ядре Linux системах доступ к железу осуществляется через специальные файлы внутри каталога dev, а за их создание в Android отвечает демон ueventd, являющийся частью init. В нормальной ситуации он работает в автоматическом режиме, принимая команды на создание файлов от ядра, но некоторые файлы необходимо создавать самостоятельно. Они перечислены в ueventd.rc.

Каталог sbin в стоковом Android обычно не содержит ничего, кроме adbd, то есть демона ADB, который отвечает за отладку системы с ПК. Он запускается на раннем этапе загрузки ОС и позволяет выявить возможные проблемы на этапе инициализации ОС. В кастомных прошивках в этом каталоге можно найти кучу других файлов, например mke2fs, которая может потребоваться, если разделы необходимо переформатировать в ext3/4. Также модеры часто помещают туда BusyBox, с помощью которого можно вызвать сотни Linux-команд.

Каталог proc для Linux стандартен, на следующих этапах загрузки init подключит к нему procfs, виртуальную файловую систему, которая предоставляет доступ к информации обо всех процессах системы. К каталогу sys система подключит sysfs, открывающую доступ к информации о железе и его настройкам. С помощью sysfs можно, например, отправить устройство в сон или изменить используемый алгоритм энергосбережения.

Файл build.prop предназначен для хранения низкоуровневых настроек Android. Позже система обнулит эти настройки и перезапишет их значениями из недоступного пока файла system/build.prop.


Выносы из текста

  • Fastboot останется на месте, даже если в результате экспериментов ты сотрешь со смартфона содержимое всех разделов NAND-памяти
  • Раздел recovery полностью самодостаточен и содержит миниатюрную операционную систему, которая никак не связана с Android
  • Слегка изменив файл fstab, мы можем заставить init загрузить систему с карты памяти

Шаг второй, альтернативный. Раздел recovery

В том случае, если флаг загрузки recovery в разделе misc установлен или пользователь включил смартфон с зажатой клавишей уменьшения громкости, aboot передаст управление коду, расположенному в начале раздела recovery. Как и раздел boot, он содержит ядро и RAM-диск, который распаковывается в память и становится корнем файловой системы. Однако содержимое RAM-диска здесь несколько другое.

В отличие от раздела boot, выступающего в роли переходного звена между разными этапами загрузки ОС, раздел recovery полностью самодостаточен и содержит миниатюрную операционную систему, которая никак не связана с Android. У recovery свое ядро, свой набор приложений (команд) и свой интерфейс, позволяющий пользователю активировать служебные функции.

В стандартном (стоковом) recovery таких функций обычно всего три: установка подписанных ключом производителя смартфона прошивок, вайп и перезагрузка. В модифицированных сторонних recovery, таких как ClockworkMod и TWRP, функций гораздо больше. Они умеют форматировать файловые системы, устанавливать прошивки, подписанные любыми ключами (читай: кастомные), монтировать файловые системы на других разделах (в целях отладки ОС) и включают в себя поддержку скриптов, которая позволяет автоматизировать процесс прошивки и многие другие функции.

С помощью скриптов, например, можно сделать так, чтобы после загрузки recovery автоматически нашел на карте памяти нужные прошивки, установил их и перезагрузился в Android. Эта возможность используется инструментами ROM Manager, auto-flasher, а также механизмом автоматического обновления CyanogenMod и других прошивок.

Кастомные рекавери также поддерживают скрипты бэкапа, располагающиеся в каталоге /system/addon.d/. Перед прошивкой recovery проверяет наличие скриптов и выполняет их перед тем, как произвести прошивку. Благодаря таким скриптам gapps не исчезают после установки новой версии прошивки.

Команды fastboot

Чтобы получить доступ к fastboot, необходимо установить Android SDK, подключить смартфон к ПК с помощью кабеля и включить его, зажав обе кнопки громкости. После этого следует перейти в подкаталог platform-tools внутри SDK и запустить команду

Fastboot devices

На экран будет выведено имя устройства. Другие доступные команды:

  • fatsboot oem unlock - разлочка загрузчика на нексусах;
  • update файл.zip - установка прошивки;
  • flash boot boot.img - прошивка образа boot-раздела;
  • flash recovery recovery.img - прошивка образа раздела recovery;
  • flash system system.img - прошивка образа системы;
  • oem format - восстановление разрушенной таблицы разделов;

Шаг третий. Инициализация

Итак, получив управление, ядро подключает RAM-диск и по окончании инициализации всех своих подсистем и драйверов запускает процесс init, с которого начинается инициализация Android. Как я уже говорил, у init есть конфигурационный файл init.rc, из которого процесс узнает о том, что конкретно он должен сделать, чтобы поднять систему. В современных смартфонах этот конфиг имеет внушительную длину в несколько сот строк и к тому же снабжен прицепом из нескольких дочерних конфигов, которые подключаются к основному с помощью директивы import. Тем не менее его формат достаточно простой и по сути представляет собой набор команд, разделенных на блоки.

Каждый блок определяет стадию загрузки или, выражаясь языком разработчиков Android, действие. Блоки отделены друг от друга директивой on, за которой следует имя действия, например on early-init или on post-fs. Блок команд будет выполнен только в том случае, если сработает одноименный триггер. По мере загрузки init будет по очереди активировать триггеры early-init, init, early-fs, fs, post-fs, early-boot и boot, запуская таким образом соответствующие блоки команд.


Если конфигурационный файл тянет за собой еще несколько конфигов, перечисленных в начале (а это почти всегда так), то одноименные блоки команд внутри них будут объединены с основным конфигом, так что при срабатывании триггера init выполнит команды из соответствующих блоков всех файлов. Это сделано для удобства формирования конфигурационных файлов для нескольких устройств, когда основной конфиг содержит общие для всех девайсов команды, а специфичные для каждого устройства записываются в отдельные файлы.

Наиболее примечательный из дополнительных конфигов носит имя initrc.имя_устройства.rc, где имя устройства определяется автоматически на основе содержимого системной переменной ro.hardware. Это платформенно-зависимый конфигурационный файл, который содержит блоки команд, специфичные для конкретного устройства. Кроме команд, отвечающих за тюнинг ядра, он также содержит примерно такую команду:

Mount_all ./fstab.имя_устройства

Она означает, что теперь init должен подключить все файловые системы, перечисленные в файле./fstab.имя_устройства, который имеет следующую структуру:

Имя_устройства_(раздела) точка_монтирования файловая_система опции_фс прочие опции

Обычно в нем содержатся инструкции по подключению файловых систем из внутренних NAND-разделов к каталогам /system (ОС), /data (настройки приложений) и /cache (кешированные данные). Однако слегка изменив этот файл, мы можем заставить init загрузить систему с карты памяти. Для этого достаточно разбить карту памяти на три 4 раздела: 1 Гб / ext4, 2 Гб / ext4, 1 Гб / ext4 и оставшееся пространство fat32. Далее необходимо определить имена разделов карты памяти в каталоге /dev (для разных устройств они отличаются) и заменить ими оригинальные имена устройств в файле fstab.


В конце блока boot init, скорее всего, встретит команду class_start default, которая сообщит, что далее следует запустить все перечисленные в конфиге службы, имеющие отношение к классу default. Описание служб начинается с директивы service, за которой следует имя службы и команда, которая должна быть выполнена для ее запуска. В отличие от команд, перечисленных в блоках, службы должны работать все время, поэтому на протяжении всей жизни смартфона init будет висеть в фоне и следить за этим.

Современный Android включает в себя десятки служб, но две из них имеют особый статус и определяют весь жизненный цикл системы.

Команды init.rc

Процесс init имеет встроенный набор команд, многие из которых повторяют стандартный набор команд Linux. Наиболее примечательные из них:

  • exec /путь/до/команды - запустить внешнюю команду;
  • ifup интерфейс - поднять сетевой интерфейс;
  • class_start имя_класса - запустить службы, относящиеся к указанному классу;
  • class_stop имя_класса - остановить службы;
  • insmod /путь/до/модуля - загрузить модуль ядра;
  • mount ФС устройство каталог - подключить файловую систему;
  • setprop имя значение - установить системную переменную;
  • start имя_службы - запустить указанную службу;
  • trigger имя - включить триггер (выполнить указанный блок команд);
  • write /путь/до/файла строка - записать строку в файл.

Шаг четвертый. Zygote и app_process

На определенном этапе загрузки init встретит в конце конфига примерно такой блок:

Service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server class default socket zygote stream 660 root system onrestart write /sys/android_power/request_state wake onrestart write /sys/power/state on onrestart restart media onrestart restart netd

Это описание службы Zygote, ключевого компонента любой Android-системы, который ответственен за инициализацию, старт системных служб, запуск и остановку пользовательских приложений и многие другие задачи. Zygote запускается с помощью небольшого приложения /system/bin/app_process, что очень хорошо видно на приведенном выше куске конфига. Задача app_proccess - запустить виртуальную машину Dalvik, код которой располагается в разделяемой библиотеке /system/lib/libandroid_runtime.so, а затем поверх нее запустить Zygote.

Когда все это будет сделано и Zygote получит управление, он начинает формирование среды исполнения Java-приложений с помощью загрузки всех Java-классов фреймворка (сейчас их более 2000). Затем он запускает system_server, включающий в себя большинство высокоуровневых (написанных на Java) системных сервисов, в том числе Window Manager, Status Bar, Package Manager и, что самое важное, Activity Manager, который в будущем будет ответственен за получение сигналов о старте и завершении приложений.

После этого Zygote открывает сокет /dev/socket/zygote и уходит в сон, ожидая данные. В это время запущенный ранее Activity Manager посылает широковещательный интент Intent.CATEGORY_HOME, чтобы найти приложение, отвечающее за формирование рабочего стола, и отдает его имя Zygote через сокет. Последний, в свою очередь, форкается и запускает приложение поверх виртуальной машины. Вуаля, у нас на экране появляется рабочий стол, найденный Activity Manager и запущенный Zygote, и статусная строка, запущенная system_server в рамках службы Status Bar. После тапа по иконке рабочий стол пошлет интент с именем этого приложения, его примет Activity Manager и передаст команду на старт приложения демону Zygote

INFO

В терминологии Linux RAM-диск - это своего рода виртуальный жесткий диск, существующий только в оперативной памяти. На раннем этапе загрузки ядро извлекает содержимое диска из образа и подключает его как корневую файловую систему (rootfs).

В процессе загрузки Android отображает три разных загрузочных экрана: первый появляется сразу после нажатия кнопки питания и прошит в ядро Linux, второй отображается на ранних этапах инициализации и записан в файл /initlogo.rle (сегодня почти не используется), последний запускается с помощью приложения bootanimation и содержится в файле /system/media/bootanimation.zip.

Кроме стандартных триггеров, init позволяет определять собственные триггеры, которые могут срабатывать от самых разных событий: подключения устройства к USB, изменения состояния смартфона или изменения состояния системных переменных.

Кроме всего прочего, Activity Manager также занимается убийством фоновых приложений при нехватке памяти. Значения порогов свободной памяти содержатся в файле /sys/module/lowmemorykiller/parameters/minfree.

Все это может выглядеть несколько непонятно, но самое главное - запомнить три простые вещи:

Во многом Android сильно отличается от других ОС, и с наскоку в нем не разобраться. Однако, если понять, как все работает, открываются просто безграничные возможности. В отличие от iOS и Windows Phone, операционка от гугла имеет очень гибкую архитектуру, которая позволяет серьезно менять ее поведение без необходимости писать код. В большинстве случаев достаточно подправить нужные конфиги и скрипты.

  • Перевод

В этой статье мы рассмотрим архитектуру Android-приложений.

Откровенно говоря, официальную Google по этой теме я считаю не очень полезной. Детально отвечая на вопрос «как», она совсем не объясняет «что» и «почему». Итак, вот моя версия, и, я надеюсь, она внесёт некоторую ясность. Да, кстати, я полностью одобряю чтение статей Google, поскольку они содержат полезную информацию, повторять которую я не собираюсь.

Архитектура ОС Android - немного истории

Как это часто бывает в IT, многие вещи не могут быть объяснены в отрыве от истории возникновения конкретного программного обеспечения. Вот почему мы должны обратиться к истокам ОС Android.

Разработка ОС Android была начата в 2003 молодой компанией Android Inc. В 2005 году эта компания была куплена Google. Я считаю, что главные особенности архитектуры Android были определены именно в этот период. Это заслуга не только Android Inc; архитектурные концепции и финансовые ресурсы Google оказали решающее влияние на архитектуру Android. Далее я приведу несколько примеров.

Если вы помните, 2003-2005 года были ознаменованы повышенным вниманием к AJAX приложениям. Я думаю, это оказало основополагающее влияние на архитектуру Android: во многих аспектах она ближе к архитектуре типичного AJAX приложения, нежели к десктопному GUI приложению, написанному на Java, C#, C++, VB и тп.

Не знаю, почему так произошло. Моя догадка - это придумал кто-то из Google в тот период, когда насыщенные интернет-приложения (Rich Internet Applications, RIA) в духе Google Docs или Gmail считались решением всех проблем. По-моему, эту идею нельзя назвать ни плохой, ни хорошей. Просто помните, что Android-приложения очень сильно отличаются от десктопных.

Влияние архитектурной философии Eclipse заметно в выборе принципа реализации GUI, который больше похоже на SWT, нежели на Swing.

В стандартах оформления кода Android присутствует «венгерская нотация», рождённая в стенах MS. Можно предположить, что тот, кто писал эти стандарты, ранее занимался разработкой под Windows.

Архитектурные уровни Android
Операционная система Android имеет три весьма различных и сильно отделённых друг от друга уровня:
  1. В основе лежит модифицированная и урезанная версия Linux, как я и упоминал в одной из моих предыдущих статей .
  2. Над уровнем Linux находится уровень инфраструктуры приложения, содержащий виртуальную машину Dalvik , веб-браузер, базу данных SQLite , некие инфраструктурные «костыли» и Java API.
  3. И, наконец, уровень написанных в Google Android-приложений. Вообще говоря, они являются расширением уровня инфраструктуры, поскольку разработчик может использовать эти приложения или их части как строительные блоки для собственных разработок.
Рассмотрим эти слои один за другим и более подробно.

Уровень Linux

Представьте себе, что вы - архитектор в молодой компании. Вы должны разработать ОС для нового типа устройств. Что вы будете делать?

Грубо говоря, у вас два пути: реализовывать собственные идеи, начав с нуля или же использовать существующую ОС и адаптировать её под свои устройства.

Реализация с нуля всегда звучит захватывающе для программистов. В эти моменты мы все верим в то, что в этот раз мы всё сделаем лучше, чем делают другие, и даже лучше, чем мы сами делали ранее.

Тем не менее, это не всегда практично. Например, использование ядра Linux заметно уменьшило стоимость разработки (возможно где-то и без того чрезмерно большую). Согласитесь, если кто-то решит создать нечто, напоминающее ядро Linux в его сегодняшнем состоянии, ему потребуется несколько миллионов долларов.

Если вы руководите Android Inc, то у вас по определению не может быть столько денег. Если вы руководите Google, то у вас такие деньги найдутся, но вы, скорее всего, подумаете дважды, прежде чем потратить их на создание собственной ОС. Так же вы потратите несколько лет, прежде чем достигните сегодняшнего состояния Linux; несколько лет задержки могут стать слишком большим опозданием при выходе на рынок.

В подобной ситуации компания Apple решила построить Mac OS на основе Free BSD. Android Inc приняла решение использовать Linux как основу для Android. Исходники как Free BSD, так и Linux, находятся в свободном доступе и предоставляют собой хорошую основу для любых разработок, будь то Apple или Google.

Но в то время запустить стандартный Linux на мобильном устройстве было невозможно (сейчас это уже не так). Устройства имели слишком мало оперативной и энергонезависимой памяти. Процессоры были значительно медленнее по сравнению с процессорами компьютеров, где обычно используется Linux. Как результат, разработчики Android решили минимизировать системные требования Linux.

Если рассматривать Linux на высоком уровне, то это комбинация ядра (без которого нельзя обойтись) и множества других, необязательных частей. Можно даже запустить одно ядро, без чего бы то ни было ещё. Так, Google вынуждена в любом случае использовать ядро Linux как часть ОС Android. Кроме того, были рассмотрены необязательные части и из них выбрано самое необходимое. Например, были добавлены сетевой фаервол IPTables и оболочка Ash. Любопытно, что добавили именно Ash, а не Bash, не смотря на то, что последний на порядок мощнее; вероятно, это решение было основано на том, что Ash менее требователен к ресурсам.

Разработчики Android модифицировали ядро Linux, добавив поддержку железа, используемого в мобильных устройствах и, чаще всего, недоступного на компьютерах.

Выбор Linux в качестве основы оказал огромное влияние на все аспекты ОС Android. Сборка Android, по сути, есть вариация процесса сборки Linux. Код Android находится под управлением git (инструмент, разработанный для управления кодом Linux). И так далее.

Пускай это всё и интересно, но вы, скорее всего, никогда не коснётесь всех этих специфических моментов до тех пор, пока ваша цель просто разработать приложения под Android. Исключение может составить разве что обзор файловой системы с помощью команд ash. Главное, что вы должны знать, разрабатывая приложения под Android - это уровень инфраструктуры приложения.

Вы можете спросить, как же быть, если необходимо разработать нативное приложение для Android? Google настоятельно не рекомендует делать этого. Технически, конечно, это возможно, но в дальнейшем у вас не будет возможности распространять это приложение нормальным способом. Так что подумайте дважды, прежде чем начать нативную разработку под Android, если конечно, вы не работает над Android Open Source Project (AOSP), т.е. собственно ОС Android.

Уровень инфраструктуры приложения

Несмотря на некоторое сходство Apple iOS и Android ОС, существуют значительные отличия между архитектурными решениями на инфраструктурном уровне обоих ОС.

Apple решила использовать Objective-C как язык программирования и среду выполнения приложения iOS. Objective-C выглядит более или менее естественным выбором для ОС, в основе которой лежит Free BSD. Можно рассматривать Objective-C как обычный C++ с кастомным препроцессором, который добавляет некоторые специфические лингвистические конструкции. Почему же нельзя использовать стандартный C++, на котором написана Free BSD? Мне кажется причина в том, что Apple старается всё делать в своём, «эппловском» стиле.

Основная идея в том, что приложения iOS написаны более или менее на том же языке, что и стоящая за ними ОС.

Android-приложения сильно отличаются в этом смысле. Они написаны на Java, а это совсем другая технология, нежели C++ (хотя синтаксис и унаследован от C++).

Я думаю, основная причина состоит в необходимости одному и тому же приложению работать на различном аппаратном обеспечении. Эта проблема имеет место лишь для ОС Android; у ребят из Apple такой проблемы нет. iOS работает только на оборудовании собственного производства, и Apple полностью контролирует весь процесс. Для Android же всё наоборот: Google не контролирует производителей аппаратных средств. Например, ОС Android работает на процессорах с архитектурой x86, ARM и Atom (в комментах подсказывают, что x86 включает в себя Atom, и Android работает на x86, ARM, PPC и MIPS - примечание переводчика ). На бинарном уровне эти архитектуры несовместимы.

Если бы архитекторы ОС Android выбрали тот же путь, что и архитекторы из Apple, разработчики приложений под Android были бы вынуждены распространять несколько версий одного и того же приложения одновременно. Это стало бы серьёзной проблемой, которая могла бы привести к краху всего проекта Android.

Для того, чтобы одно и то же приложение могло работать на разном аппаратном обеспечении, компания Google использовала контейнер-ориентированную архитектуру (container-based architecture). В такой архитектуре двоичный код выполняется программным контейнером и изолируется от деталей конкретного аппаратного обеспечения. Примеры всем знакомы - Java и C#. В обоих языках двоичный код не зависит от специфики аппаратного обеспечения и выполняется виртуальной машиной.

Конечно, есть и другой способ достигнуть независимости от аппаратного обеспечения на уровне двоичного кода. Как один из вариантов, можно использовать эмулятор аппаратного обеспечения, так же известный как QEMU . Он позволяет эмулировать, например, устройство с процессором ARM на платформе x86 и так далее. Google могла бы использовать C++ как язык для разработки приложений внутри эмуляторов. Действительно, Google использует такой подход в своих эмуляторах Android, которые построены на основе QEMU.

Очень хорошо, что они не пошли по такому пути, поскольку тогда кому-то пришлось бы запускать ОС на эмуляторе, требующем намного больше ресурсов, и, как итог, скорость работы снизилась бы. Для достижения наилучшего быстродействия эмуляция была оставлена только там, где этого нельзя было избежать, в нашем случае - в Android-приложениях.

Как бы то ни было, компания Google пришла к решению использовать Java как основной язык разработки приложений и среды их выполнения.

Я думаю, это было критически важное архитектурное решение, которое поставило Android в стороне от остальных мобильных ОС на основе Linux, представленных в настоящее время. Насколько мне известно, ни у одной из них нет совместимости двоичного кода на уровне приложений. Возьмём для примера MeeGo . Она использует C++ и фреймворк Qt ; не смотря на то, что Qt кроссплатформенный, необходимость делать разные сборки для разных платформ не исчезает.

Выбрав Java, нужно было решить, какую виртуальную машину (JVM) использовать. Ввиду ограниченности ресурсов использование стандартной JVM было затруднено. Единственным возможным выбором было использование Java ME JVM, разработанной для мобильных устройств. Однако счастье Google было бы неполным без разработки собственной виртуальной машины, и появилась Dalvik VM .

Dalvik VM отличается от других виртуальных Java-машин следующим:

  • Она использует специальный формат DEX для хранения двоичных кодов, в противовес форматам JAR и Pack200, которые являются стандартом для других виртуальных Java-машинах. Компания Google заявила, что бинарники DEX меньше, чем JAR. Я думаю, с тем же успехом они могли бы использовать Pack200, но они решили пойти своим путём.
  • Dalvik VM оптимизирована для выполнения нескольких процессов одновременно.
  • Dalvik VM использует архитектуру, основанную на регистрах против стековой архитектуры в других JVM, что приводит к увеличению скорости выполнения и уменьшению размеров бинарников.
  • Она использует собственный набор инструкций (а не стандартный байткод JVM)
  • Возможен запуск (если необходимо) нескольких независимых Android-приложений в одном процессе
  • Выполнение приложения может охватывать несколько процессов Dalvik VM «естественным образом» (позже мы обсудим, что это значит). Для поддержи этого добавлено:
    • Специальный механизм сериализации объектов, основанный на классах Parcel и Parcelable. Функционально преследуются те же цели, что и Java Serializable, но в результате данные имеют меньший объём и потенциально более терпимы к версионным изменениям классов.
    • Особый способ для выполнения вызовов между процессами (inter process calls, IPC), основный на Android Interface Definition Language (AIDL).
  • До Android 2.2 Dalvik VM не поддерживала JIT-компиляцию, что было серьёзным ударом по производительности. Начиная с версии 2.2, скорость выполнения часто используемых приложений
Название Описание Необходимость
gen Файлы, сгенерированные самой Java. Здесь находится такой важный файл как R.java Да
AndroidManifest.xml Файл манифеста AndroidManifest.xml предоставляет системе основную информацию о программе. Каждое приложение должно иметь свой файл манифеста Да
src Каталог, в котором содержится исходный код приложения Да
assets Произвольное собрание каталогов и файлов Нет
res Каталог, содержащий ресурсы приложения. В данном каталоге могут находиться подпапки drawable, anim, layout, menu, values, xml и raw (см. ниже) Да

1.5.1. Файл манифеста AndroidManifest.xml

Файл манифеста AndroidManifest.xml предоставляет системе основную информацию о программе. Каждое приложение должно иметь свой файл AndroidManifest.xml. Редактировать файл манифеста можно вручную, изменяя XML-код или через визуальный редактор Manifest Editor, который позволяет осуществлять визуальное и текстовое редактирование файла манифеста приложения.

Назначение файла:

  • описывает компоненты приложения – Activities, Services, Broadcast receivers и Content providers;
  • содержит список необходимых разрешений для обращения к защищенным частям API и взаимодействия с другими приложениями;
  • объявляет разрешения, которые сторонние приложения обязаны иметь для взаимодействия с компонентами данного приложения;
  • объявляет минимальный уровень API Android, необходимый для работы приложения;
  • перечисляет связанные библиотеки.

Корневым элементом манифеста является . Помимо данного элемента обязательными элементами являются теги и . Элемент является основным элементом манифеста и содержит множество дочерних элементов, определяющих структуру и работу приложения. Порядок расположения элементов, находящихся на одном уровне, произвольный. Все значения устанавливаются через атрибуты элементов. Кроме обязательных элементов, упомянутых выше, в манифесте по мере необходимости используются другие элементы. Перечислим некоторые из них:

  • является корневым элементом манифеста.

    По умолчанию Eclipse создает элемент с четырьмя атрибутами:

    xmlns:android определяет пространство имен Android.

    package определяет уникальное имя пакета приложения.

    android:versionCode указывает на внутренний номер версии.

    android:versionName указывает номер пользовательской версии.

  • Объявляет разрешение, которое используется для ограничения доступа к определенным компонентам или функциональности данного приложения. В этой секции описываются права, которые должны запросить другие приложения для получения доступа к приложению. Приложение может также защитить свои собственные компоненты (Activities, Services, Broadcast receivers и Content providers) разрешениями. Оно может использовать любое из системных разрешений, определенных Android или объявленных другими приложениями, а также может определить свои собственные разрешения.
  • запрашивает разрешения, которые приложению должны быть предоставлены системой для его нормального функционирования. Разрешения предоставляются во время установки приложения, а не во время его работы.

    Наиболее распространненные разрешения:

    INTERNET – доступ к интернету

    READ_CONTACTS – чтение (но не запись) данных из адресной книги пользователя

    WRITE_CONTACTS – запись (но не чтение) данных в адресную книгу пользователя

    RECEIVE_SMS – обработка входящих SMS

    ACCESS_FINE_LOCATION – точное определение местонахождения при помощи GPS

  • позволяет объявлять совместимость приложения с указанной версией (или более новыми версиями API) платформы Android. Уровень API, объявленный приложением, сравнивается с уровнем API системы мобильного устройства, на который инсталлируется данное приложение.

    Атрибуты:

    android:minSdkVersion определяет минимальный уровень API, требуемый для работы приложения. Система Android будет препятствовать тому, чтобы пользователь установил приложение, если уровень API системы будет ниже, чем значение, определенное в этом атрибуте.

    android:maxSDKVersion позволяет определить самую позднюю версию, которую готова поддерживать программа.

    targetSDKVersion позволяет указать платформу, для которой разрабатывалось и тестировалось приложение.

  • указывает требуемую для приложения аппаратную и программную конфигурацию мобильного устройства. Спецификация используется, чтобы избежать инсталляции приложения на устройствах, которые не поддерживают требуемую конфигурацию. Если приложение может работать с различными конфигурациями устройства, необходимо включить в манифест отдельные элементы для каждой конфигурации.
  • объявляет определенную функциональность, требующуюся для работы приложения. Таким образом, приложение не будет установлено на устройствах, которые не имеют требуемую функциональность. Например, приложение могло бы определить, что оно требует камеры с автофокусом. Если устройство не имеет встроенную камеру с автофокусом, приложение не будет установлено.

    Возможные атрибуты:

    android.hardware.camera – требуется аппаратная камера.

    android.hardware.camera.autofocus – требуется камера с автоматической фокусировкой.

  • определяет разрешение экрана, требуемое для функционирования приложения. По умолчанию современное приложение с уровнем API 4 или выше поддерживает все размеры экрана и должно игнорировать этот элемент.
  • один из основных элементов манифеста, содержащий описание компонентов приложения. Содержит дочерние элементы ( , , , И другие), которые объявляют каждый из компонентов, входящих в состав приложения. В манифесте может быть только один элемент .

1.5.2. Ресурсы

В Android принято хранить такие объекты, как изображения, строковые константы, цвета, анимацию, стили и тому подобное, за пределами исходного кода. Система поддерживает хранение ресурсов во внешних файлах. Внешние ресурсы легче поддерживать, обновлять и редактировать.

В основном, ресурсы хранятся в виде XML-файлов в каталоге res с подкаталогами values, drawable-ldpi, drawable-mdpi, drawable-hdpi, layout. Но также бывают еще два типа ресурсов: raw и assets.

Для удобства система создает идентификаторы ресурсов и использует их в файле R.java (класс R, который содержит ссылки на все ресурсы проекта), что позволяет ссылаться на ресурсы внутри кода программы. Статический класс R генерируется на основе заданных ресурсов и создается во время компиляции проекта. Так как файл R генерируется автоматически, то нет смысла его редактировать вручную, потому что все изменения будут утеряны при повторной генерации.

В общем виде ресурсы представляют собой файл (например, изображение) или значение (например, заголовок программы), связанные с создаваемым приложением. Удобство использования ресурсов заключается в том, что их можно изменять без повторной компиляции или новой разработки приложения.

Самыми распространенными ресурсами являются, пожалуй, строки (string), цвета (color) и графические рисунки (bitmap).

В следующей таблице перечислены основные ресурсы Android-приложения:

Тип ресурса Размещение Описание
Цвета /res/colors/ Идентификатор цвета, указывающий на цветовой код.
Строки /res/strings/ Строковые ресурсы. В их число также входят строки в формате java и html.
Меню /res/menus/ Меню в приложении можно задать как XML-ресурсы.
Параметры /res/values/ Представляет собой параметры или размеры различных элементов.
Изображения /res/drawable/ Ресурсы-изображения. Поддерживает форматы JPG, GIF, PNG (самый предпочтительный) и другие. Каждое изображение является отдельным файлом. Система также поддерживает stretchable images, в которых можно менять масштаб отдельных элементов, а другие элементы оставлять без изменений.

Отрисовываемые цвета

/res/values/

/res/drawable/

Представляет цветные прямоугольники, которые используются в качестве фона основных отрисовываемых объектов, например точечных рисунков.
Анимация /res/anim/ Android может выполнить простую анимацию на графике или на серии графических изображений.
Произвольные XML-файлы /res/xml/ В Android в качестве ресурсов могут использоваться произвольные XML-файлы.
Произвольные необработанные ресурсы /res/raw/ Любые нескомпилированные двоичные или текстовые файлы, например, видео.

Помимо изображений в каталоге res/drawable могут храниться ресурсы простых геометрических фигур. Вот лишь некоторые из возможных атрибутов:

  • android:shape задает тип фигуры: rectangle (прямоугольник), oval (овал), line (линия), ring (окружность);
  • создает закругленные углы для прямоугольника;
  • задает градиентную заливку для фигуры; в Android можно создавать три типа градиентов: Linear (линейный), Radial (радиальный) и Sweep (разверточный);
  • задает размеры фигуры;
  • задает сплошной цвет для фигуры.

Анимация в Android бывает двух видов:

  • Frame Animation – кадровая анимация, традиционная анимация при помощи быстрой смены последовательных изображений, как на кинопленке.
  • Tween Animation – анимация преобразований может выполняться в виде ряда простых преобразований: изменение позиции (класс TranslateAnimation), размера (ScaleAnimation), угла вращения (RotateAnimation) и уровня прозрачности (AlphaAnimation). Команды анимации определяют преобразования, которые необходимо произвести над объектом. Преобразования могут быть последовательными или одновременными. Последовательность команд анимации определяется в XML-файле (предпочтительно) или в программном коде.

В Android имеется еще один каталог, в котором моrут храниться файлы, предназначенные для включения в пакет – /assets . Это не ресурсы, а просто необработанные файлы. Этот каталог находится на том же уровне, что и /res. Для файлов, располагающихся в /assets, в R.java не генерируются идентификаторы ресурсов. Для их считывания необходимо указать путь к файлу. Путь к файлу является относительным и начинается с /assets. Этот каталог, в отличие от подкаталога res/, позволяет задавать произвольную глубину подкаталогов и произвольные имена файлов.

1.5.3. Разметка

В Android-приложениях, пользовательский интерфейс построен на View и ViewGroup объектах. Класс ViewGroup является основой для подкласса Layout (разметка).

Разметка (также используются термины компоновка или макет) хранится в виде XML-файла в папке /res/layout . Это сделано для того, чтобы отделить код от дизайна, как это принято во многих технологиях (HTML и CSS, Visual Studio и Expression Blend). Кроме основной компоновки для всего экрана, существуют дочерние компоновки для группы элементов. По сути, компоновка – это некий визуальный шаблон для пользовательского интерфейса приложения, который позволяет управлять элементами, их свойствами и расположением. В своей практике вам придется познакомиться со всеми способами размещения.

Android-плагин для Eclipse включает в себя специальный редактор для создания разметки двумя способами. Редактор имеет две вкладки: одна позволяет увидеть, как будут отображаться элементы управления, а вторая – создавать XML-разметку вручную.

Создавая пользовательский интерфейс в XML-файле, можно отделить дизайн приложения от программного кода. Можно изменять пользовательский интерфейс в файле разметки без необходимости изменения программного кода. Например, можно создавать XML-разметки для различных ориентаций экрана мобильного устройства (portrait, landscape), размеров экрана и языков интерфейса. Впрочем, элементы интерфейса можно создавать и программно, когда это необходимо.

Каждый файл разметки должен содержать только один корневой элемент компоновки, который должен быть объектом View или ViewGroup. Внутри корневого элемента можно добавлять дополнительные объекты разметки или дочерние элементы интерфейса, чтобы постепенно формировать иерархию элементов, которую определяет создаваемая разметка.

Существует несколько стандартных типов разметок:

  • FrameLayout является самым простым типом разметки. Обычно это пустое пространство на экране, которое можно заполнить только дочерним объектом View или ViewGroup . Все дочерние элементы FrameLayout прикрепляются к верхнему левому углу экрана. В разметке FrameLayout нельзя определить различное местоположение для дочернего объекта View. Последующие дочерние объекты View будут просто рисоваться поверх предыдущих представлений, частично или полностью затеняя их, если находящийся сверху объект непрозрачен
  • LinearLayout выравнивает все дочерние объекты в одном направлении – вертикально или горизонтально. Направление задается при помощи атрибута ориентации android:orientation . Все дочерние элементы помещаются в стек один за другим, так что вертикальный список представлений будет иметь только один дочерний элемент в строке независимо от того, насколько широким он является. Горизонтальное расположение списка будет размещать элементы в одну строку с высотой, равной высоте самого высокого дочернего элемента списка.
  • TableLayout позиционирует свои дочерние элементы в строки и столбцы. TableLayout не отображает линии обрамления для рядов, столбцов или ячеек. TableLayout может иметь ряды с разным количеством ячеек. При формировании разметки таблицы некоторые ячейки при необходимости можно оставлять пустыми. TableLayout удобно использовать, например, при создании логических игр типа Судоку, Крестики-Нолики и тому подобных.
  • RelativeLayout позволяет дочерним элементам определять свою позицию относительно родительского представления или относительно соседних дочерних элементов.

Все описываемые разметки являются подклассами ViewGroup и наследуют свойства, определенные в классе View.

Разметки ведут себя как элементы управления, и их можно группировать. Расположение элементов управления может быть вложенным. Например, можно использовать RelativeLayout в LinearLayout и так далее. Однако, слишком большая вложенность элементов управления вызывает проблемы с производительностью.



Рекомендуем почитать

Наверх