Основные методы интегрирования замена переменной. п.2 Основные понятия дифференциального уравнения. Интегрирование по частям. Примеры решений

Для Symbian 20.04.2019
Для Symbian

А способы приведения интегралов к табличным мы Вам перечислили:

    метод замены переменной;

    метод интегирования по частям;

    Метод непосредственного интегрирования

    способы представления неопределенных интегралов через табличные для интегралов от рациональных дробей;

    методы представления неопределенных интегралов через табличные интегралы для интегралов от иррациональных выражений;

    способы выражения неопределенных интегралов через табличные для интегралов от тригонометрических функций.

Неопределенный интеграл степенной функции

Неопределенный интеграл експоненты показательной функции

А вот неопределенный интеграл логарифма не является табличным интегралом, вместо него табличной является формула:

Неопределенные интегралы тригонометрических функций: Интегралы синуса косинуса и тангенса

Неопределенные интегралы с обратными тригонометрическими функциями

Приведение к табличному виду или метод непосредственного интегрирования . С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов.

Пример

Задание. Найти интеграл

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

Ответ.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

Подведение функции под знак дифференциала. – Собственно замена переменной.

Подведение функции под знак дифференциала

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на . Далее используем табличную формулу :

Проверка: Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Метод замены переменной в неопределенном интеграле

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается: Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак: Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место. Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко: Теперь по правилам пропорции выражаем нужный нам :

В итоге: Таким образом: А это уже самый что ни на есть табличный интеграл (таблица, интегралов, естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену:

Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче. Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Интегрирование по частям. Примеры решений

Интегралы от логарифмов

Пример 1

Найти неопределенный интеграл.

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрироватьправую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: . Вот кстати, и образец чистового решения с небольшими пометками.

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Замена переменной в неопределенном интеграле. Формула преобразования дифференциалов. Примеры интегрирования. Примеры линейных подстановок.

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x(t) , или t = t(x) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f(x) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x(t) . Тогда мы должны выразить функцию f(x) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f(x) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x(t) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

Тогда
.

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t(x) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′(x) - это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x - это функция от t .
(2) ,
где t - это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2) . Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x)′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b - постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

A) Вычислить интеграл
.
Решение.
.

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции .
.
ln 2 - это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Непосредственное интегрирование

Основные формулы интегрирования

1. С – константа 1*.
2. , n ≠ –1
3. +С
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Вычисление интегралов с помощью непосредственного использования таблицы простейших интегралов и основных свойств неопределенных интегралов называется непосредственным интегрированием .

Пример 1.

Пример 2.

Пример 3.

Это наиболее распространенный метод интегрирования сложной функции, состоящий в преобразовании интеграла с помощью перехода к другой переменной интегрирования.

Если интеграл затруднительно привести к табличному с помощью элементарных преобразований, то в этом случае пользуются методом подстановки. Сущность этого метода заключается в том, что путём введения новой переменной удаётся свести данный интеграл к новому интегралу, который сравнительно легко берётся непосредственно.

Для интегрирования методом подстановки используют схему решения:

2) найти дифференциал от обеих частей замены;

3) всё подынтегральное выражение выразить через новую переменную (после чего должен получиться табличный интеграл);

4) найти полученный табличный интеграл;

5) выполнить обратную замену.

Найдите интегралы:

Пример 1 . Подстановка: cosx=t, -sinxdx = dt,

Решение:

Пример 2. ∫e -x3 x 2 dx Подстановка: -x 3 =t, -3x 2 dx=dt, Решение: ∫e -x3 x 2 dx=∫e t (-1/3)dt=-1/3e t +C=-1/3e -x3 +C

Пример 3. Подстановка: 1+sinx=t , cosxdx=dt ,

Решение: .

РАЗДЕЛ 1.5. Определенный интеграл, методы его вычисления.

п.1 Понятие определенного интеграла

Задача. Найти приращение функции, первообразной для функции f(x) , при переходе аргумента x от значения a к значению b .

Решение . Положим, что интегрированием найдено: (x)dx = F(x)+C.

Тогда F(x)+C 1 , где С 1 - любое данное число, будет одной из первообразных функций для данной функции f(x) . Найдем её приращение при переходе аргумента от значения a к значению b . Получим:

x=b - x=a =F(b) +C 1 - F(a) -C 1 =F(b)-F(a)

Как видим, в выражении приращения первообразной функции F(x)+C 1 отсутствует постоянная величина C 1 . А так как под C 1 подразумевалось любое данное число, то полученный результат приводит к следующему заключению: при переходе аргумента x от значения x=a к значению x=b все функции F(x)+C , первообразные для данной функции f(x) , имеют одно и то же приращение, равное F(b)-F(a) .



Это приращение принято называть определенным интегралом и обозначать символом: и читается: интеграл от а до b от функции f(x) по dх или, короче, интеграл от а до b от f(х)dх.

Число а называется нижним пределом интегрирования, число b - верхним ; отрезок а ≤ x ≤ b – отрезком интегрирования. Предполагается при этом, что подынтегральная функция f(x) непрерывна при всех значениях x , удовлетворяющих условиям: a x b

Определение. Приращение первообразных функций F(x)+C при переходе аргумента x от значения x=a к значению x=b , равное разности F(b)-F(a) , называется определенным интегралом и обозначается символом: так, что если (x)dx = F(x)+C, то = F(b)-F(a) - данное равенство называется формулой Ньютона - Лейбница.

п.2 Основные свойства определённого интеграла

Все свойства сформулированы в предложении, что рассматриваемые функции интегрируемы в соответствующих промежутках.

п. 3 Непосредственное вычисление определенного интеграла

Для вычисления определённого интеграла, когда можно найти соответствующий неопределенный интеграл, служит формула Ньютона – Лейбница

т.е. определённый интеграл равен разности значений любой первообразной функции при верхнем и нижнем пределах интегрирования.

Из этой формулы виден порядок вычисления определенного интеграла:

1) найти неопределенный интеграл от данной функции;

2) в полученную первообразную подставить вместо аргумента сначала верхний, затем нижний предел интеграла;

3) из результата подстановки верхнего предела вычесть результат подстановки нижнего предела.

Пример 1: Вычислить интеграл:

Пример 2: Вычислить интеграл:

п.4 Вычисление определенного интеграла методом подстановки

Вычисление определенного интеграла методом подстановки состоит в следующем:

1) часть подынтегральной функции заменить новой переменной;

2) найти новые пределы определенного интеграла;

3) найти дифференциал от обеих частей замены;

4) всё подынтегральное выражение выразить через новую переменную (после чего должен получиться табличный интеграл); 5) вычислить полученный определенный интеграл.

Пример 1: Вычислить интеграл:

Подстановка: 1+cosx=t, -sinxdx = dt,

РАЗДЕЛ 1.6. Геометрический смысл определенного интеграла.

Площадь криволинейной трапеции:

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x).

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

Пусть на отрезке [а; b] задана непрерывная функция у = ƒ(х) ≥ 0. Найдем площадь этой трапеции.

Площадь фигуры, ограниченной осью 0x , двумя вертикальными прямыми x = a, x = b и графиком функции у = ƒ(х) (рисунок), определяется по формуле:

В этом заключается геометрический смысл определённого интеграла.

Пример 1: Вычислить площадь фигуры, ограниченной линиями: у=х 2 .+2, у=0, х= -2, х=1.

Решение: Выполним чертеж (обратите внимание, что уравнение у=0 задает ось Ох).

Ответ:S = 9 ед 2

Пример 2: Вычислить площадь фигуры, ограниченной линиями: у= - е х, х=1 и координатными осями.

Решение: Выполним чертеж.
Если криволинейная трапеция полностью расположена под осью Ох , то её площадь можно найти по формуле:

В данном случае:

Внимание! Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

РАЗДЕЛ 1.7 . Применение определенного интеграла

п.1 Вычисление объема тела вращения

Если криволинейная трапеция прилежит к оси Оx, а прямые у=a, у=b и график функции у= F(x) (Рис.1), тогда объем тела вращения определяется по формуле, содержащей интеграл.

Объем тела вращения равен:

Пример:

Найти объём тела, ограниченного поверхностью вращения линии вокруг оси Ох при 0≤ х ≤4.

Решение: V

ед 3 . Ответ:ед 3 .

РАЗДЕЛ 3.1. Обыкновенные дифференциальные уравнения

п.1 Понятие о дифференциальном уравнении

Определение. Дифференциальным уравнением называется уравнение, содержащее функцию от совокупности переменных и их производных.

Общий вид такого уравнения =0, где F- известная функция своих аргументов, заданная в фиксированной области; х - независимая переменная(переменная, по которой дифференцируется);у - зависимая переменная (та, от которой берутся производные и та, которую надо определить); - производная зависимой переменной у по независимой переменной х.

п.2 Основные понятия дифференциального уравнения

Порядком дифференциального уравнения называется порядок старшей производной, входящей в него.

Например:

Уравнение второго порядка, - уравнение первого порядка.

Всякая функция, связывающая переменные и обращающая дифференциальное уравнение в верное равенство, называется решением дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка называется функция от и произвольной постоянной С, обращающая это уравнение в тождество по .

Общее решение, записанное в неявном виде =0, называется общим интегралом.

Частным решением уравнения =0 называется решение, полученное из общего решения при фиксированном значении - фиксированное число.

Задача нахождения частного решения дифференциального уравнения n-го порядка (n= 1,2,3,…), удовлетворяющего начальным условиям вида

называется задачей Коши.

п.3 Дифференциальные уравнения первого порядка с разделяющимися переменными

Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если его можно представить в виде можно переписать в виде . Если . Интегрируем: .

Чтобы решить уравнение такого вида надо:

1. Разделить переменные;

2. Интегрируя уравнение с разделенными переменными, найти общее решение данного уравнения;

3. Найти частное решение, удовлетворяющее начальным условиям (если они заданы).

Пример 1. Решить уравнение . Найти частное решение, удовлетворяющее условию y=4 при x=-2.

Решение: Это уравнение с разделенными переменными. Интегрируя, находим общее решение уравнения: . Для получения более простого по форме общего решения постоянное слагаемое в правой части представим в виде C/2. Имеем или - общее решение. Подставив в общее решение значения y=4 и x=-2, получим 16=4+С, откуда С=12.

Итак, частное решение уравнения, удовлетворяющее данному условию, имеет вид

Пример 2. Найдите частное решение уравнения, еслипри.

Решение: , , , , , общее решение.

Подставляем значения х и у в частное решение: , , частное решение.

Пример 3. Найдите общее решение уравнения. Решение: , , , - общее решение.

п.4 Дифференциальные уравнения порядка выше первого

Уравнение вида или решается двукратным интегрированием: , , откуда . Проинтегрировав эту функцию, получим новую функцию от f(x), которую обозначим через F(x). Таким образом, ; . Интегрируем еще раз: или у=Ф(х) . Получили общее решение уравнения, содержащее две произвольные постоянные и .

Пример 1. Решить уравнение .

Решение: , , ,

Пример 2. Решить уравнение . Решение: , , .

РАЗДЕЛ 3.2. Числовой ряд, его члены

Определение 1. Числовым рядом называется выражение вида ++…++…, (1)

где , , …, , …- числа, принадлежащие некоторой определенной числовой системе.

Так, можно говорить о действительных рядах, для которых R, о комплексных рядах, для которых C, i = 1, 2, …, n, …



Рекомендуем почитать

Наверх