Основные функции языка программирования. О языках программирования

Для Symbian 26.07.2019
Для Symbian

Языки программирования

Язык программирования – формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, ЭВМ, т.е. компьютера).

Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более 2500 языков программирования. Каждый год их число пополняется новыми.

Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Каждый язык программирования может быть представлен в виде набора формальных спецификаций, определяющих его синтаксис и семантику – систему правил истолкования отдельных языковых конструкций.

Эти спецификации обычно включают в себя описание:

    типов и структур данных;

    операционную семантику (алгоритм вычисления конструкций языка);

    семантические конструкции языка;

    библиотеки примитивов (например, команды ввода-вывода);

    философии, назначения и возможностей языка.

Для многих широко распространённых языков программирования созданы международные комитеты по стандартизации, которые выполняют регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.

Языки программирования принято делить на низкоуровневые и высокоуровневые . Такое разделение происходит взависимости от степени детализации команд – чем меньше детализация, тем выше уровень языка.

Языки программирования низкого уровня

Низкоуровневый язык программирования – язык программирования, близкий к программированию непосредственно в машинных кодах. Низкоуровневые языки, как правило, используют особенности конкретного семейства процессоров.

Низкоуровневым языком является язык ассемблера (от английского assembler - сборщик) - названия транслятора (компилятора) c языка ассемблера. Язык ассемблера, часто для краткости неверно называют "ассемблером".

Команды языка ассемблера один в один соответствуют командам процессора и фактически, представляют собой удобную символьную форму записи команд и аргументов.

Обычно программы или участки кода пишутся на низкоуровневом языке ассемблера в случаях, когда разработчику критически важно оптимизировать такие параметры, как быстродействие (например, при создании драйверов устройств) и размер кода (загрузочные сектора, программное обеспечение различных устройств, вирусы, навесные защиты и т.д.).

Языки программирования высокого уровня

Высокоуровневый язык программирования – язык программирования, разработанный для быстроты и удобства использования программистом. Термин «высокоуровневый» здесь означает, что язык предназначен для решения абстрактных высокоуровневых задач и оперирует не инструкциями к оборудованию, а логическими понятиями и абстракцией данный. Это позволяет быстрее программировать сложные задачи и обеспечивает относительную независимость от оборудования. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и различным аппаратным оборудованием, в то время как их исходный текст остаётся, в большей части, неизменным.

Высокоуровневый язык не даёт возможности создания точных инструкций оборудованию. Таким образом, программы, написанные на языках высокого уровня, проще для понимания программистом, но гораздо менее эффективны, чем их аналоги, написанные при помощи низкоуровневых языков. В частности, поэтому в большинство профессиональных высокоуровневых языков программирования сегодня встроена поддержка того или иного языка низкого уровня – языка ассемблера.

Первым языком программирования высокого уровня считается компьютерный язык Plankalkül , разработанный немецким инженером Конрадом Цузе ещё в период 1942–1946 гг. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка (1957).

Наиболее распространёнными языками высокого уровня в настоящее время являются С++, Visual Basic, Delphi, Java, Python, Ruby, Perl, PHP.

Большинство современных компиляторов позволяют комбинировать в одной программе, код написанный на разных языках программирования. Это позволяет быстро писать сложные программы, используя высокоуровневый язык, не теряя быстродействия в критических ко времени задачах, используя для них части написанные на языке ассемблера. Комбинирование достигается несколькими приемами:

    Вставка фрагментов на языке ассемблера в текст программы (специальными директивами языка) или написание процедур на языке ассемблера. Способ хороший для несложных преобразований данных, но полноценного ассемблерного кода - с данными и подпрограммами, включая подпрограммы с множеством входов и выходов, не поддерживаемых высокоуровневыми языками, с помощью него сделать нельзя.

    Модульная компиляция. Большинство современных компиляторов работают в два этапа. На первом этапе каждый файл программы компилируется в объектный модуль. А на втором объектные модули линкуются (связываются) в готовую программу. Прелесть модульной компиляции состоит в том что каждый объектный модуль будущей программы может быть полноценно написан на своем языке программирования и скомпилирован своим компилятором.

Среда визуального программирования Delphi

Бурное развитие вычислительной техники, потребность в эффективных средствах разработки программного обеспечения и языках программирования привели к появлению систем программирования, ориентированных на так называемую "быструю разработку" - RAD-систем (Rapid Application Development).

Среди таких систем быстрой разработки приложений можно выделить Borland Delphi , Borland C Builder и Microsoft Visual Basic. В их основе лежит технология визуального проектирования и событийного программирования, суть которой заключается в том, что среда разработки берет на себя большую часть рутинной работы, оставляя программисту работу по конструированию диалоговых окон и функций обработки событий.

Delphi – это среда быстрой разработки, в которой в качестве языка программирования используется язык объектно-ориентированный язык Object Pascal .

Object Pascal - результат развития языка Turbo Pascal, который, в свою очередь, развился из языка Pascal. Pascal, впервые предложенный швейцарским ученым Н. Виртом еще в 1970г., является полностью процедурным языком, Turbo Pascal начиная с версии 5.5 добавил в Pascal объектно-ориентированные свойства, а Object Pascal - объектно-ориентированный язык программирования с уникальным свойством доступа к метаданным классов (то есть к описанию классов и их членов) в компилируемом коде, также называемом интроспекцией.

Действительно ли нам нужны новые языки программирования ? Безусловно, на данный момент их вполне достаточно. Среди разнообразия императивных, функциональных, объектно-ориентированных , динамических, компилируемых, интерпретируемых и скриптовых языков ни один разработчик не сможет познать все доступные на сегодняшний день возможности.

И всё же возникновение новых языков - явление довольно частое. Некоторые из них создаются студентами или любителями в качестве индивидуальных проектов, другие являются продуктами крупных производителей программного обеспечения . Даже небольшие и средние компании принимают участие в этом процессе, создавая языки для нужд своих отраслей. Так почему же люди продолжают изобретать велосипед снова и снова?

Дело в том, что, несмотря на мощность и многофункциональность популярных на данный момент языков, ни один синтаксис не является идеально универсальным. Более того, само программирование постоянно развивается. Распространение многоядерных процессоров , облачного программирования, мобильности, а также распределённых архитектур создали новые проблемы для разработчиков. Добавление поддержки самых последних функций, парадигм и шаблонов к уже существующим языкам, особенно наиболее популярным, может быть чрезмерно сложным. Иногда лучшим решением является начать с нуля.

Таким образом, здесь представлены 10 передовых языков программирования , каждый из которых рассматривает искусство разработки ПО с новой стороны, решая определённую проблему либо специфический недостаток языков, наиболее популярных на сегодняшний день. Некоторые из них являются уже законченными проектами, тогда как другие находятся лишь на ранних стадиях своего развития. Вполне вероятно, что некоторые из них так и не обретут популярность , но любой из них может стать революционным достижением, которое окончательно изменит программирование - по крайней мере до тех пор, пока не будут созданы новые языки.

JavaScript хорош для добавления базовых элементов интерактивности веб-страницам, но когда код ваших веб-приложений состоит из тысяч строк, слабые места этого языка становятся заметны. Вот почему Google создала Dart - язык, который, как полагает компания, станет новым "родным" языком веб-программирования .

Как и в JavaScript, в Dart используются синтаксисы и ключевые слова, похожие на те, которые используются в языке C. Однако одним существенным различием является то, что в то время как JavaScript основывается на прототипах, объекты в Dart определяются с помощью классов и интерфейсов, как в C++ или Java . Также Dart позволяет программистам дополнительно задавать переменные со статическими типами. Идея заключается в том, чтобы сделать Dart таким же привычным, динамичным и гибким языком, как и JavaScript, который в то же время позволяет разработчикам писать коды, быстрые и лёгкие в выполнении, и в которых сложно сделать труднонаходимые ошибки.

Сегодня Dart мало где можно использовать. Он разработан для запуска либо на клиенте, либо на сервере (а-ля Node.js), но единственным способом запустить клиентскую версию Dart-кода является его кросскомпиляция в JavaScript. Однако и после этого он не будет запускаться во всех браузерах. Но так как Dart выпускается по бесплатной лицензии типа BSD , то любой продавец, который согласен с условиями Google, может свободно использовать этот язык в своих продуктах. Всё, что осталось сделать Google, - это убедить всю индустрию.

Код F# чем-то похож на код OCaml, но содержит свой собственный интересный синтаксис. Например, для облегчения проведения научных расчётов числовыми типами данных в F# могут являться единицы измерения. Также в F# имеются конструкции для облегчения асинхронных вводов/выводов, параллелизации ЦПУ и вывода процессов на графический процессор.

После длительного периода созревания в Microsoft Research, на сегодняшний день F# поставляется вместе с Visual Studio 2010 . Что ещё лучше, но не характерно для корпорации, Microsoft создала F# компилятор и корневую библиотеку, доступную по открытой лицензии Apache. Вы можете начать работу с ним бесплатно и даже использовать его на системах Mac и Linux (с помощью Mono runtime).

Естественно, с такого рода интегрированной системой в конце должно получиться что-то волшебное. Среда выполнения Opa объединяет собственный веб-сервер и систему управления базой данных , которые не могут быть заменены самостоятельными альтернативами. Как бы то ни было, это может быть не так уж и важно, учитывая возможность разработки современных веб-приложений , управляемых данными, с помощью всего лишь нескольких десятков строк кода. Opa поставляется бесплатно и на данный момент доступен для 64-х битных Linux и Mac OS X платформ, другие же порты пока разрабатываются.

Fantom распространяется бесплатно в соответствии с Academic Free License 3.0 и доступен для Windows и Unix-подобных платформ (в том числе и Mac OS X).

Исследуемый язык программирования №7: Zimbu

Благодаря своему смешанному характеру, синтаксис Zimbu уникален и специфичен, но в то же время обладает большим количеством функций. Он использует выражения и операторы, похожие на те, которые используются в C, но со своими ключевыми словами, типами данных и блочными структурами. Он поддерживает управление памятью, потоки и конвейеры.

Единственной проблемой является портативность. Хотя Zimbu и является компилируемым языком, его компилятор выдаёт ANSI C код, а двоичные файлы могут быть созданы лишь на платформах со встроенным C-компилятором.

К сожалению, проект Zimbu находится на стадии разработки. Компилятор и несколько программ-примеров могут быть созданы самостоятельно, но не весь действительный Zimbu-код будет компилироваться и выполняться должным образом. Не все заявленные функции ещё разработаны, а некоторые из уже представленных работают некорректно. Спецификация языка также, возможно, со временем изменится: по мере необходимости добавятся ключевые слова, типы и синтаксис. Следовательно, документация также ещё неполная. Однако если Вы хотите попробовать, предварительные утилиты уже доступны по лицензии Apache .

Исследуемый язык программирования №8: X10

Когда-то параллельная обработка данных была специализированной нишей разработки ПО, но с распространением многоядерных процессоров и распределённых вычислений, параллелизм обрёл популярность. К сожалению, нынешние языки программирования не успевают за этой тенденцией. Именно поэтому IBM Research создаёт X10 - язык, созданный специально для современных параллельных архитектур, который нацелен на увеличение производительности разработчиков "в десять раз".

Параллелизм в X10 возможен благодаря PGAS модели программирования (модели разделённого глобального адресного пространства). Код и данные выделяются в блоки и распределяются по разным "пространствам", тем самым облегчая шкалирование программы от однопотокового прототипа (одно пространство) до многопотокового, выполняемого на одном или более многоядерном процессоре (несколько пространств) в высокопроизводительном кластере .

Код X10 больше всего похож на Java. По сути, среда выполнения X10 доступна как в качестве встроенных исполнимых файлов , так и как классовые файлы для JVM. Компилятор X10 может выдавать исходные коды либо на C++, либо на Java. В будущем планируется разработать прямую совместимость с Java.

А пока язык развивается, хотя он уже довольно разработан. Компилятор и среда выполнения доступны для различных платформ, в том числе Linux, Mac OS X и Windows. В качестве дополнительных утилит выступают интерактивная среда разработки (IDE), основанная на Eclipse, и отладчик, которые распространяются по лицензии Eclipse Public License.

Исследуемый язык программирования №9: haXe

Многие языки можно использовать для написания переносимого кода. C-компиляторы доступны практически для всех ЦПУ архитектур, а Java-байткод будет выполняться везде, где есть JVM. Но haXe (произносится как "хекс") является более чем просто переносимым. Это мультиплатформенный язык, который может использоваться в различных операционных средах, начиная от встроенных

Компьютеры до сих пор плохо понимают естественные языки, которые используются для общения между людьми, по крайней мере, еще не научились понимать.

В свою очередь, люди плохо понимают машинные языки. Поэтому были созданы языки программирования, которые покрывают эту дыру в понимании, в модели мышления между человеком и компьютером.

Языки программирования могут быть:

  • простыми,
  • сложными и
  • непонятными (например, графическими).

История возникновения языков программирования

Сейчас используется несколько сотен языков программирования, но еще больше таких языков уже не используется. Под новые задачи со временем разрабатывались новые языки программирования.

Нулевое поколение

  • (электро) ,
  • программируются структурой их собственного устройства
  • узкоспециальные,
  • возможности программирования ограничены.

Жаккардовый станок

Примером таких машин служит жаккардовый ткацкий станок с программируемым устройством. Он был сделан в 1804 году французом Жозефом Мари Жаккаром. Кстати, в его честь узорчатая, декоративная ткань названа жаккардовой или жаккард.

С помощью станка можно было легко и массово производить вышивки на ткани при помощи перфокарт, представленных ниже на рисунке:

Рис. 1. Перфокарты для ткацкого станка Жаккарда

На перфокартах была запрограммирована последовательность действий для станков, чтобы воспроизвести какой-либо рисунок на ткани.

Машина Беббиджа

Интернет и Веб

Появились специализированные языки:

  • JavaScript.

Многие сайты написаны с помощью PHP и JavaScript.

Некоторые ранее существовавшие языки с появлением Интернета и Веба нашли новые ниши и стали веб-ориентированными:

  • Ruby,
  • Pynton,
  • Java.

К 2000-м годам старые языки программирования постепенно «умирают», появляются новые, но нет общепризнанной концепции, что же происходит с этими вещами.

Любой язык программирования – это искусственный язык, который имеет свой цикл жизни. Аналогично, операционные системы семейства Windows тоже имеют свои жизненные циклы: .

Жизненный цикл языка программирования:

  • создание,
  • early adoption (первоначальное использование языка),
  • (промышленный) успех,
  • угасание, смена другими языками.

В современном мире основная часть программного обеспечения (софта) пишется на 10-15 языках, хотя за все время, которое нам известно, было создано больше сотен языков программирования. Официально как-то зарегистрировано 300 или 400 языков.

Что есть язык программирования

Язык – это

  • синтаксис (правила написания программ),
  • семантика (поведение элементов, которые входят в правила написания и встроены в язык),
  • runtime (среда выполнения).

Синтаксис определяет форму текстового представления программ, то есть, как их нужно написать, какие слова в язык входят, как ставить запятые, пробелы и т.д.

Синтаксис на примере Lisp

Одним из самых простых языков программирования, которые имеют формальную грамматику, считается язык списков LISP.

Рис. 10. Программа на LISP

LISP является очень старым языком, который вырабатывает списки. Грамматика такого языка – это грамматика списков, читается сверху вниз.

  • В Лиспе есть выражения: может быть один атом, либо список;
  • atom – это число или символ,
  • number – число, то есть, с плюсом или минусом цифры, не менее одной,
  • symbol – это буквы, сколько угодно раз, можно даже много раз,
  • list – список, выражения в скобочках более одного раза.

Программа на Лиспе – это список списков. Знаков препинания в Лиспе нет, но есть скобочки. Могут быть такие длинные программы на Лиспе, где в конце идет 2-3 листа, состоящих из одних закрывающих скобочек.

Простейший интерпретатор Лиспа занимает всего 19 строк! Ни один другой язык не может себе позволить себе такой роскоши.

Семантика

Если грамматика описывает формы представления: буквы, цифры, скобочки, то семантика описывает то, как программа работает, что эти буквы, цифры, скобочки означают, как они работают, взаимодействуют друг с другом и т.п.

Варианты представления семантики довольно ограничены.

Семантика может быть:

  • описана на естественном, человеческом языке. Многие языки можно описать только так. На самом деле, это основной случай, когда просто есть документ, где описано по-русски или по-английски, что такая-то штука работает таким-то образом, одна команда делает одно, другая делает такие-то вещи и т.п.;
  • задана формально (в специализированных языках, например, для каких-то расчетов поведение элементов можно описать формально);
  • определена исходной реализацией (редко используют, но это «последняя надежда» на описание, когда слишком сложная семантика или не очень важная);
  • описана набором тестов (кейсов), а именно, что это должно так работать, а это вот таким образом.

Семантика разделяется на две части:

  • статическую,
  • динамическую.

Статическая семантика

  • придает смысл лексическим конструкциям;
  • определяет допустимые значения переменных и параметров;
  • описывает синтаксические ограничения, например, с помощью синтаксиса не получится описать, что нельзя складывать строки с числами.

Динамическая или фронтальная семантика этапа выполнения

  • определяет общий характер выполнения программы;
  • описывает, как работают встроенные операции и встроенные библиотеки. Это основная часть семантики, которая нужна, чтобы понять, как программа будет жить и работать после ее написания;
  • задает требования для интерпретатора.

Система типов данных в языках программирования

Важной частью семантики является система типов – это набор правил и выражений для методов, которые написаны в идеологии языка и того, как они между собой взаимодействуют.

Обычно в языке программирования имеется система типов данных – это строки, числа, списки и т.д. Есть, например, язык Форс, где все данные – просто , другими словами, существуют языки, где вообще не встроены типы данных.

Если же система типов присутствует, то можно провести деление языков программирования на два независимых друг от друга класса, которые приведены ниже.

Система типов данных:

  • типизированный или нетипизированный язык
  • статическая или динамическая типизация
  • строгая или слабая типизация

Если типизация статическая, то типы всех и выражений, которые написаны в программе, известны до момента ее выполнения, то есть, когда описываются функции, классы, переменные, то сразу задаются или явно обеспечиваются условия для того, чтобы тип такой конструкции был известен с самого начала.

Если типизация динамическая, то, наоборот, тип объектов контекстного языка неизвестен до момента выполнения, то есть тип функции или чего угодно будет неизвестен до самого конца.

Строгая типизация означает, что если у сущности есть какой-то тип и он известен, то этот тип может заменяться, но у самого объекта тип фиксированный, и он не меняется.

При слабой типизации тип объекта может быть разным в зависимости от контекста и от того, что Вы с ним делаете.

За системой типов языка приходится следить. Из-за неверно заданного типа только одного, не очень заметного символа в начале программы меняется тип всего выражения и поэтому в итоге могут получаться очень странные ошибки.

Следующая важная характеристика языка –

Парадигма языка программирования

  • с греческого – шаблон, пример, образец;
  • это система идей и понятий, определяющих стиль написания программ на этом языке – то, как язык предполагает написание программ на нем (wiki);
  • язык «благоволит» одной или нескольким парадигмам (мультипарадигменность).

Главные парадигмы

  • императивная: программа – набор последовательных инструкций, изменяющих внутренне состояние компьютера, данных и т.д. То есть, программа – это инструкция;
  • функциональная: программа – набор математических функций. Работа программы – вычисление значения функций;
  • объектно-ориентированная: предметная область описывается при помощи объектов со свойствами и методами. Программа – процесс взаимодействия объектов;
  • логическая: программа – набор утверждений о предметной области. Работа программы – установление истинности высказываний об этой предметной области.

Часто одну и ту же практическую задачу можно реализовать с помощью любой из парадигм, перечисленных выше.

Еще одной важной частью языка, которую нужно учитывать при использовании языка, является Runtime – то, как язык выполняется.

Runtime – выполнение программы

Программа может выполняться по-разному:

  1. самым простым и наивным способом выполнения программы является интерпретация – чтение исходного кода в момент запуска. Так работают легкие, скриптовые языки. Также работает сам программист: когда он написал программу, то смотрит своими глазами на собственную программу и прикидывает, как его программа будет работать и что делать;
  2. распространенным способом запуска программ является компиляция в машинный код – отдельный шаг до запуска. Есть отдельный инструмент – компилятор, где читаются исходники программы, что-то с ними делают, преобразуя в машинные коды, которые понятны текущей системе. Потом этот код выполняется непосредственно «железки»;
  3. гибридный способ – это байт-компиляция и выполнение в виртуальной машине. Компилятор читает исходный код, после чего производится байт-код, который выполняется в виртуальной машине.

Перечисленные три способы разные и используются для разных целей. Эти техники могут комбинироваться – интерпретатор может компилировать на лету какие-то куски программы, чтобы работало быстрее. Динамически-сгенерированный код может интерпретироваться без компиляции.

Представители языков

Язык C

– один из самых популярных, один из самых важных по физически написанному по нему коду, практически это «наше всё».

Он создан в 1972 году, создатели – Деннис Ритчи (Dennis Ritchie) и коллеги. Д.Ритчи создал также систему Linux и многие другие полезные вещи.

  • императивный,
  • компилируемый,
  • ручное управление памятью (при помощи некоторых операций, встроенных в язык, вам нужно выделить элементы памяти под переменные и затем вы освобождаете их, когда они больше не нужны).

Кстати, С актуален до сих пор, используется для:

  • системного программирования (например, ядро Linux написано на C),
  • number-crunching (так называемые числа-дробилки, то есть, для больших вычислений, где важно быстродействие),
  • программирования микроконтроллеров и встраиваемых систем.

С – низкоуровневый язык, можно сказать, что это Ассемблер с человеческим лицом, ибо почти любую конструкцию C человек может вручную преобразовать в Ассемблер и получатся довольно понятные операции.

Программы на C получаются очень компактные. Они не намного больше, чем если бы аналогичные программы были написаны на Ассемблере. При этом разработка на C проходит намного быстрее, чем на Ассемблере.

Поэтому C сейчас используется для таких задач, где требуется быстродействие, очень важно управление памятью и большое значение имеет компактный объем самой программы. Если у Вас маленький микроконтроллер, который встраивается в какое-то устройство, то программа для него, скорее всего, будет написана либо на Ассемблере, либо на C.

Рис. 11. Пример простой программы на C.

Java

  • Создан в 1995 году,
  • создатели – Джеймс Гослинг (James Gosling) и Sun Microsystems (в этой компании работал Гослинг).
  • Объектно-ориентированный, императивный (C императивный, но НЕ объектно-ориентированный),
  • строго- и статически-типизированный,
  • байт-компилируемый с виртуальной машиной,
  • нет доступа к памяти, автоматическая сборка мусора (последняя работает хорошо, если имеется треть или четверть свободной памяти).

В 90-ых годах JAVA получила большую популярность как мультиплатформенный язык. Один раз написав виртуальную машину для какой-то платформы, допустим для Windows или для Linux или для Mac, можно любые программы на JAVA запускать на ней без перекомпиляции. Поэтому язык был популярен в эпоху веба, когда было разных платформ (разные версии Windows, разные Маки). Программы на JAVA работали быстро и довольно хорошо на разных платформах.

Используется для:

  • прикладного программирования, в том числе для веб-программирования,
  • встраиваемых систем (если С используется для микроконтроллеров, то JAVA – для мобильных телефонов, терминалов и т.п.),
  • высоконагруженных систем с большим количеством пользователей (банковские программы, системы управления воздушным движением и т.п.).

Следует отличать спецификации языка Java и различные реализации JVM:

  • Sun JDK (от компании Sun, ныне это Oracle),
  • IBM JDK (продается за деньги),
  • OpenJDK (абсолютно свободная)
  • и т.п.

Рис. 12. Пример простой программы на JAVA.

Как видно на рис. 12, приходится писать много букв, чтобы выполнить простые действия. Java часто называют новым Коболом, так как она содержит те же негативные свойства, которые когда-то сделали Кобол плохим языком.

Тем не менее JAVA очень популярна, в частности, на ней написана клиентская часть операционной системы .

Lisp

  • Он действительно завершает Lis t P rocessor (LisP);
  • создан в 1958 году;
  • создатели – Джон Маккарти;
  • чистый функциональный язык, несмотря на довольно странный синтаксис;
  • строго- и динамически- типизированный;
  • как правило, интерпретируемый;
  • нет доступа к памяти, автоматическая сборка мусора, которая ложится на интерпретатор, а не на виртуальную машину.

Используется для:

  • научного программирования и исследований;
  • искусственный интеллект – Lisp был создан в самом начале по поиску с интеллектом. В конце 1950-ых – начале 1960-ых в научных кругах было сильное ощущение, что вот-вот будет создан искусственный интеллект. Тогда считалось, что ключевыми особенностями искусственного интеллекта будет возможность оперировать естественным языком, текстом, читать, говорить и делать какие-то разумные вещи. Для обработки смысловых данных из текста был создан Lisp, он позволяет такие вещи делать хорошо;
  • всего, чего угодно, но, как правило, используется не очень эффективно.

Язык Lisp, разработанный в 1958 году, претерпел массу изменений.

У него есть множество реализаций и диалектов:

  • CommonLisp (создан в 1970-ых) – классическая реализация, которая считается основной;
  • Scheme (схема) – упрощенный диалект, который некоторые вещи из CommonLisp выбрасывает и позволяет делать проще;
  • Clojure – диалект Lisp в плане языка, но работает поверх JAVA-машины, то есть компилируется в байт-код и исполняется также, как будто это JAVA-программа.

Рис. 13. Программа на LISP: сортировка пузырьком

Python (Питон)

  • Назван в честь британского шоу 1970-ых годов Monty Pynton’s Flying Circus (там старые шутки, но смешные)
  • создан в 1991 году
  • создатель – голландец Guido van Rossum
  • мультипарадигменный язык, объектно-ориентированный, императивный, функциональный
  • строго- и динамически-типизированный
  • интерпретируемый, байт-компилируемый с виртуальной машиной (в зависимости от реализации)

Используется для:

  • скриптового программирования
  • веб-программирования
  • научного программирования (имеются большие, сильные пакеты для работы с моделированием, с вероятностью, со статистикой и в других областях, которые объединяют в себе опыт, накопленный в других областях)

Python – спецификация языка. Существует несколько основных реализаций:

  • CPython – основная (reference)
  • Jython – поверх JVM
  • PyPy – Python in Python («Питон на Питоне» работает быстрее и лучше, чем CPython и Jython)

Рис. 14. Программа на Python: сортировка пузырьком

У Python есть важная особенность – вместо скобочек (круглых, фигурных) для выделения блоков кода и структурных элементов используются отступы с помощью пробелов, что довольно необычно для всех языков. Кроме Python такой особенностью почти никто не обладает.

Выбор языка под задачу

Как выбрать язык под задачу, когда Вы знаете, что Вам нужно сделать, но не знаете на чем?

Важный совет: используйте то, на чем Вы умеете программировать. Это гораздо лучше, чем использовать то, на чем Вы НЕ умеете программировать.

Экосистема

Язык, который Вы хотите взять, не должен быть «голым» языком, у него должна быть экосистема, которая включает:

  • средства разработки (удобное IDE)
  • готовые библиотеки и фреймворки
  • инструменты тестирования для запуска тест-кейсов: тестовые фреймворки и инструменты
  • системы пакетирования и развертывания для того, чтобы написанный код можно было упаковать, куда-то выложить, чтобы другие могли легко воспользоваться. У языка Си нет такой возможности, а у языков Руби и Питон есть.
  • коммьюнити. Не надо пользоваться мертвыми языками, какими бы классными они не были. Если не у кого спросить, Вы останетесь в полном тупике. Считается, что одни коммьюнити более дружелюбные, другие – менее. Например, коммьюнити Руби классное, а коммьюнити Java ужасное – там даже спрашивать ничего не надо.

Популярность

Сложно найти в команду людей, которые пишут код на редко используемом языке, к примеру на Eiffel. С другой стороны, на вакансию по мега-популярному языку JAVА, в котором порог входа низкий, набежит много народа, но будет непросто подобрать людей, которые пишут на нем действительно хорошо.

Чем популярнее язык, тем больше у него библиотек, коммьюнити, фреймворков и других вещей, которые нарастают сами по себе сверху.

Скорость обучения

Почти никто не знает язык до конца. По мере работы Вам потребуется учиться языку все дальше и дальше. Некоторые языки учатся легко, а какие-то очень плохо.

JAVA – язык простой в изучении и простой по возможностям, а дальше все строится не за счет языка, а за счет инструментов.

С++ выучить до конца невозможно, потому что там есть очень сложные вещи с кодогенерацией.

Нишевость языков

Конкретные языки лучше подходят для решения определенных нишевых задач.

Пример 1: веб приложение, которое

  • взаимодействует с базой данных
  • внутренний сервис в компании
  • нужна быстрая разработка, потому что шеф очень просит.

Для такой задачи, скорее всего, подойдет Python или Ruby. Не надо это делать на JAVA

Пример 2: биллинговая система сотового оператора

  • тысячи операций в секунду, масса различных платежей и переводов
  • высокая надежность и отказоустойчивость
  • гибкость в конфигурации, диагностика проблем

В этом случае наш выбор – Java, С++, Erlang – богатые языки с богатым инструментарием.

Пример 3: код бортовой ЭВМ для спутника

  • ограниченные ресурсы (всего мегабайт памяти и очень низкая тактовая частота)
  • жесткое реальное время, чтобы спутник не потерял ориентацию, не сломался и не взорвался
  • строго известные задачи, нет никакой гибкости и нет настроек
  • большое количество вычислений

Наш выбор – С и С-подобные языки (и даже ассемблер), потому что очень мало ресурсов и эти требования надо соблюсти.

Статья основана на видео:

Как правильно выбрать язык программирования – Иван Калинин

Видео снято в декабре 2014 года, тем не менее, вся информация актуальна и не имеет срока давности. Многие материалы с позиции сегодняшних реалий представляют несомненный интерес, например, о том, что ученые еще в конце 1950-ых – начале 1960-ых годов считали, что искусственный интеллект уже на пороге и с его помощью можно будет вот-вот работать на компьютере с естественным, обычным, человеческим языком.

Программирование - это целая наука, позволяющая создавать компьютерные программы. Она включает в себя огромное количество различных операций и алгоритмов, которые образуют единый язык программирования. Итак, что же это такое и какими бывают языки программирования? В статье даны ответы, а также приведен обзорный список языков программирования.

Историю возникновения и изменения программных языков следует изучать наравне с историей развития компьютерных технологий, ведь эти понятия связаны между собой напрямую. Без языков программирования невозможно было бы создать никакую программу для работы компьютера, а значит, создание вычислительных машин стало бы бессмысленным занятием.

Первый машинный язык был придуман в 1941 году Конрадом Цузе, который является изобретателем аналитической машины. Чуть позже, в 1943 г., Говард Эйкен создал машину "Марк-1", способную считывать инструкцию на уровне машинного кода.

В 1950-х годах начался активный спрос на разработку программного обеспечения, а машинный язык не выдерживал большие объемы кода, поэтому был создан новый способ общения с компьютерами. "Ассемблер" является первым мнемоническим языком, заменившим машинные команды. С годами список языков программирования только увеличивается, ведь область применения компьютерных технологий становится обширнее.

Классификация языков программирования

На данный момент существует более 300 языков программирования. Каждый из них имеет свои особенности и подходит для одной определенной задачи. Все языки программирования можно условно разделить на несколько групп:

  • Аспектно-ориентированные (основная идея - разделение функциональности для увеличения эффективности программных модулей).
  • Структурные (в основе лежит идея создания иерархической структуры отдельных блоков программы).
  • Логические (в основе лежит теория аппарата математической логики и правил резолюции).
  • Объектно-ориентированные (в таком программировании используются уже не алгоритмы, а объекты, которые принадлежат определенному классу).
  • Мультипарадигмальные (сочетают в себе несколько парадигм, и программист сам решает, каким языком воспользоваться в том или ином случае).
  • Функциональные (в качестве основных элементов выступают функции, которые меняют значение в зависимости от результатов вычислений исходных данных).

Программирование для начинающих

Многие задаются вопросом, что же такое программирование? По сути, это способ общения с компьютером. Благодаря языкам программирования мы можем ставить перед различными устройствами определенные задачи, создавая специальные приложения или программы. При изучении данной науки на начальном этапе самое главное - это выбрать подходящие (интересные для вас) языки программирования. Список для начинающих приведен ниже:

  • Basic придуман в 1964 году, относится к семейству высокоуровневых языков и используется для написания прикладных программ.
  • Python ("Питон") довольно легко выучить благодаря простому читаемому синтаксису, преимущество же в том, что на нем можно создавать как обычные десктопные программы, так и веб-приложения.
  • Pascal ("Паскаль") - один из древнейших языков (1969 г.), созданных для обучения студентов. Его современная модификация имеет строгую типизацию и структурированность, однако "Паскаль" - вполне логичный язык, который понятен на интуитивном уровне.

Это не полный список языков программирования для начинающих. Существует огромное количество синтаксисов, которые доступны для понимания, и обязательно будут востребованы в ближайшие годы. Каждый вправе самостоятельно выбрать то направление, которое будет интересным для него.

Новички имеют возможность ускорить изучение программирования и его основ благодаря специальным инструментам. Основной помощник - это интегрированная среда разработки программ и приложений Visual Basic («Визуал Бейсик» одновременно является и языком программирования, который унаследовал стиль языка Basic 1970-х годов).

Уровни языков программирования

Все формализованные языки, предназначенные для создания, описания программ и алгоритмов для решения задач на компьютерах, делятся на две основных категории: языки программирования низкого уровня (список приведен ниже) и высокого уровня. Поговорим о каждом из них отдельно.

Низкоуровневые языки предназначены для создания машинных команд для процессоров. Главное их преимущество в том, что они используют мнемонические обозначения, т. е. вместо последовательности нулей и единиц (из двоичной системы счисления) компьютер запоминает осмысленное сокращенное слово из английского языка. Самые известные языки низкого уровня - это "Ассемблер" (существует несколько подвидов этого языка, каждый из которых имеет много общего, а отличается лишь набором дополнительных директив и макросов), CIL (доступен в платформе.Net) и Байт-код JAVA.

Языки программирования высокого уровня: список

Высокоуровневые языки созданы для удобства и большей эффективности приложений, они являются полной противоположностью низкоуровневых языков. Их отличительная черта - наличие смысловых конструкций, которые емко и кратко описывают структуры и алгоритмы работы программ. В языках низкого уровня их описание на машинном коде было бы слишком длинным и непонятным. Языки же высокого уровня обладают независимостью от платформы. Вместо них функцию транслятора совершают компиляторы: они переводят текст программы в элементарные машинные команды.

Следующий список языков программирования: C ("Си"), C# ("Си-шарп"), "Фортран", "Паскаль", Java ("Ява") - входит в число самых используемых высокоуровневых синтаксисов. Он обладает следующими свойствами: эти языки работают с комплексными структурами, поддерживают строковые типы данных и операции с файлами ввода-вывода информации, а также имеют преимущество - с ними гораздо проще работать благодаря читабельности и понятному синтаксису.

Самые используемые языки программирования

В принципе, написать программу можно на любом языке. Вопрос в том, будет ли она работать эффективно и без сбоев? Вот почему для решения различных задач следует выбирать наиболее подходящие языки программирования. Список по популярности можно охарактеризовать так:

  • языки ООП: Java, C++, Python, PHP, VisualBasic и JavaScript;
  • группа структурных языков: Basic, Fortran и Pascal;
  • мультипарадигмальные: C#, Delphi, Curry и Scala.

Область применения программ и приложений

Выбор языка, на котором написана та или иная программа, во многом зависит от области ее применения. Так, например, для работы с самим "железом" компьютера (написания драйверов и поддерживающих программ) лучшим вариантом станет C ("Си") или С++, которые входят в основные языки программирования (список смотрите выше). А для разработки мобильных приложений, в том числе игр, следует выбрать Java или С# ("Си-шарп").

Если вы еще не определились, в каком направлении работать, то рекомендуем начать изучение с языков C или C++. Они имеют весьма понятный синтаксис, четкое структурное разделение на классы и функции. К тому же, зная C или С++, можно с легкостью выучить любой другой язык программирования.

Рассказывает программист Вильям В. Вольд

На протяжении последних шести месяцев я работал над созданием языка программирования (ЯП) под названием Pinecone. Я не рискну назвать его законченным, но использовать его уже можно - он содержит для этого достаточно элементов, таких как переменные, функции и пользовательские структуры данных. Если хотите ознакомиться с ним перед прочтением, предлагаю посетить официальную страницу и репозиторий на GitHub .

Введение

Я не эксперт. Когда я начал работу над этим проектом, я понятия не имел, что делаю, и всё еще не имею. Я никогда целенаправленно не изучал принципы создания языка - только прочитал некоторые материалы в Сети и даже в них не нашёл для себя почти ничего полезного.

Тем не менее, я написал абсолютно новый язык. И он работает. Наверное, я что-то делаю правильно.

В этой статье я постараюсь показать, каким образом Pinecone (и другие языки программирования) превращают исходный код в то, что многие считают магией. Также я уделю внимание ситуациям, в которых мне приходилось искать компромиссы, и поясню, почему я принял те решения, которые принял.

Текст точно не претендует на звание полноценного руководства по созданию языка программирования, но для любознательных будет хорошей отправной точкой.

Первые шаги

«А с чего вообще начинать?» - вопрос, который другие разработчики часто задают, узнав, что я пишу свой язык. В этой части постараюсь подробно на него ответить.

Компилируемый или интерпретируемый?

Компилятор анализирует программу целиком, превращает её в машинный код и сохраняет для последующего выполнения. Интерпретатор же разбирает и выполняет программу построчно в режиме реального времени.

Технически любой язык можно как компилировать, так и интерпретировать. Но для каждого языка один из методов подходит больше, чем другой, и выбор парадигмы на ранних этапах определяет дальнейшее проектирование. В общем смысле интерпретация отличается гибкостью, а компиляция обеспечивает высокую производительность, но это лишь верхушка крайне сложной темы.

Я хотел создать простой и при этом производительный язык, каких немного, поэтому с самого начала решил сделать Pinecone компилируемым. Тем не менее, интерпретатор у Pinecone тоже есть - первое время запуск был возможен только с его помощью, позже объясню, почему.

Прим. перев. Кстати, у нас есть краткий обзор - это отличное упражнение для тех, кто изучает Python.

Выбор языка

Своеобразный мета-шаг: язык программирования сам является программой, которую надо написать на каком-то языке. Я выбрал C++ из-за производительности, большого набора функциональных возможностей, и просто потому что он мне нравится.

Но в целом совет можно дать такой:

  • интерпретируемый ЯП крайне рекомендуется писать на компилируемом ЯП (C, C++, Swift). Иначе потери производительности будут расти как снежный ком, пока мета-интерпретатор интерпретирует ваш интерпретатор;
  • компилируемый ЯП можно писать на интерпретируемом ЯП (Python, JS). Возрастёт время компиляции, но не время выполнения программы.

Проектирование архитектуры

У структуры языка программирования есть несколько ступеней от исходного кода до исполняемого файла, на каждой из которых определенным образом происходит форматирование данных, а также функции для перехода между этими ступенями. Поговорим об этом подробнее.

Лексический анализатор / лексер

Строка исходного кода проходит через лексер и превращается в список токенов.

Первый шаг в большинстве ЯП - это лексический анализ . Говоря по-простому, он представляет собой разбиение текста на токены, то есть единицы языка: переменные, названия функций (идентификаторы), операторы, числа. Таким образом, подав лексеру на вход строку с исходным кодом, мы получим на выходе список всех токенов, которые в ней содержатся.

Обращения к исходному коду уже не будет происходить на следующих этапах, поэтому лексер должен выдать всю необходимую для них информацию.

Flex

При создании языка первым делом я написал лексер. Позже я изучил инструменты, которые могли бы сделать лексический анализ проще и уменьшить количество возникающих багов.

Одним из основных таких инструментов является Flex - генератор лексических анализаторов. Он принимает на вход файл с описанием грамматики языка, а потом создаёт программу на C, которая в свою очередь анализирует строку и выдаёт нужный результат.

Моё решение

Я решил оставить написанный мной анализатор. Особых преимуществ у Flex я в итоге не увидел, а его использование только создало бы дополнительные зависимости, усложняющие процесс сборки. К тому же, мой выбор обеспечивает больше гибкости - например, можно добавить к языку оператор без необходимости редактировать несколько файлов.

Синтаксический анализатор / парсер

Список токенов проходит через парсер и превращается в дерево.

Следующая стадия - парсер. Он преобразует исходный текст, то есть список токенов (с учётом скобок и порядка операций), в абстрактное синтаксическое дерево , которое позволяет структурно представить правила создаваемого языка. Сам по себе процесс можно назвать простым, но с увеличением количества языковых конструкций он сильно усложняется.

Bison

На этом шаге я также думал использовать стороннюю библиотеку, рассматривая Bison для генерации синтаксического анализатора. Он во многом похож на Flex - пользовательский файл с синтаксическими правилами структурируется с помощью программы на языке C. Но я снова отказался от средств автоматизации.

Преимущества кастомных программ

С лексером моё решение писать и использовать свой код (длиной около 200 строк) было довольно очевидным: я люблю задачки, а эта к тому же относительно тривиальная. С парсером другая история: сейчас длина кода для него - 750 строк, и это уже третья попытка (первые две были просто ужасны).

Тем не менее, я решил делать парсер сам. Вот основные причины:

  • минимизация переключения контекста ;
  • упрощение сборки;
  • желание справиться с задачей самостоятельно.

В целесообразности решения меня убедило высказывание Уолтера Брайта (создателя языка D) в одной из его статей :

Я бы не советовал использовать генераторы лексических и синтаксических анализаторов, а также другие так называемые «компиляторы компиляторов». Написание лексера и парсера не займёт много времени, а использование генератора накрепко привяжет вас к нему в дальнейшей работе (что имеет значение при портировании компилятора на новую платформу). Кроме того, генераторы отличаются выдачей не релевантных сообщений об ошибках.

Абстрактный семантический граф

Переход от синтаксического дерева к семантическому графу

В этой части я реализовал структуру, по своей сути наиболее близкую к «промежуточному представлению» (intermediate representation) в LLVM. Существует небольшая, но важная разница между абстрактным синтаксическим деревом (АСД) и абстрактным семантическим графом (АСГ).

АСГ vs АСД

Грубо говоря, семантический граф - это синтаксическое дерево с контекстом. То есть, он содержит информацию наподобие какой тип возвращает функция или в каких местах используется одна и та же переменная. Из-за того, что графу нужно распознать и запомнить весь этот контекст, коду, который его генерирует, необходима поддержка в виде множества различных поясняющих таблиц.

Запуск

После того, как граф составлен, запуск программы становится довольно простой задачей. Каждый узел содержит реализацию функции, которая получает некоторые данные на вход, делает то, что запрограммировано (включая возможный вызов вспомогательных функций), и возвращает результат. Это - интерпретатор в действии.

Варианты компиляции

Вы, наверное, спросите, откуда взялся интерпретатор, если я изначально определил Pinecone как компилируемый язык. Дело в том, что компиляция гораздо сложнее, чем интерпретация - я уже упоминал ранее, что столкнулся с некоторыми проблемами на этом шаге.

Написать свой компилятор

Сначала мне понравилась эта мысль - я люблю делать вещи сам, к тому же давно хотел изучить язык ассемблера. Вот только создать с нуля кроссплатформенный компилятор - сложнее, чем написать машинный код для каждого элемента языка. Я счёл эту идею абсолютно не практичной и не стоящей затраченных ресурсов.



Рекомендуем почитать

Наверх