Основная единица скорости передачи информации. Скорость передачи информации

Для Windows Phone 12.07.2019
Для Windows Phone

Ключевые слова:

· скорость передачи данных

· биты в секунду

Скорость передачи данных – важнейшая характеристика линии связи. Изучив этот параграф, вы научитесь решать задачи, связанные с передачей данных по сети.

Единицы измерения

Вспомним, в каких единицах измеряется скорость в уже знакомых нам ситуациях. Для автомобиля скорость – это расстояние, пройденное за единицу времени; скорость измеряется в километрах в час или метрах в секунду. В задачах перекачки жидкости скорость измеряется в литрах в минуту (или в секунду, в час).

Неудивительно, что в задачах передачи данных скоростью будем называть количество данных, переданное по сети за единицу времени (чаще всего – за секунду).

Количество данных можно измерить в любых единицах количества информации: битах, байтах, Кбайтах и др. Но на практике скорость передачи данных чаще всего измеряют в битах в секунду (бит/с).

В скоростных сетях скорость обмена данными может составлять миллионы и миллиарды битов в секунду, поэтому используются кратные единицы: 1 кбит/c (килобит в секунду), 1 Мбит/c (мегабит в секунду) и 1 Гбит/c (гигабит в секунду).

1 кбит/с = 1 000 бит/с 1 Мбит/с = 1 000 000 бит/с 1 Гбит/с = 1 000 000 000 бит/с

Обратите внимание, что здесь приставки «кило-», «мега-» и «гига-» обозначают (как и в международной системе единиц СИ) увеличение ровно в тысячу, миллион и миллиард раз. Напомним, что в традиционных единицах измерения количества информации «кило-» означает увеличение в 1024 раза, «мега-» – в 1024 2 и «гига-» – в 1024 3 .

Задачи

Пусть скорость передачи данных по некоторой сети равна v бит/с. Это значит, что за одну секунду передаётся v битов, а за t секунд – v× t битов.

Задача 1 . Скорость передачи данных по линии связи 80 бит/с. Сколько байтов будет передано за 5 минут?

Решение . Как вы знаете, количество информации рассчитывается по формуле I = v× t . В данном случае v = 80 бит/с и t = 5 мин. Но скорость задана в битах в секунду , а время – в минутах , поэтому для получения правильного ответа нужно минуты перевести в секунды:

t = 5 × 60 = 300 с

и только потом выполнить умножение. Сначала получаем количество информации в битах:

I = 80 бит/c × 300 с = 24000 битов

Затем переводим его в байты:

I = 24000: 8 байтов = 3000 байтов

Ответ: 3000 байт.

Задача 2 . Скорость передачи данных по линии связи 100 бит/с. Сколько секунд потребуется на передачу файла размером 125 байтов?

Решение . Нам известна скорость передачи данных (v = 100 бит/с) и количество информации (I = 125 байтов). Из формулы I = v× t получаем

t = I : v.

Но скорость задана в битах в секунду, а количество информации – в байтах . Поэтому для того, чтобы «состыковать» единицы измерения, нужно сначала перевести количество информации в биты (или скорость в байты в секунду!):

I = 125 × 8 битов = 1000 битов.

Теперь находим время передачи:

t = 1000 : 100 = 10 с.

Ответ: 10 секунд.

Задача 3 . Какова средняя скорость передачи данных (в битах в секунду), если файл размером 200 байтов был передан за 16 с?

Решение . Нам известно количество информации (I = 200 байтов) и время передачи данных (t = 16 с). Из формулы I = v× t получаем

v = I : t.

Но объём файла задан в байтах , а скорость передачи нужно получить в битах в секунду. Поэтому сначала переведём количество информации в биты:

I = 200 × 8 битов = 1600 битов.

Теперь находим среднюю скорость

v = 1600 : 16 = 100 бит/с.

Обратите внимание, что речь идёт именно о средней скорости передачи, потому что во время обмена данными она могла изменяться.

Ответ: 100 бит/с.

1. В каких единицах измеряется скорость передачи данных в компьютерных сетях?

2. Что означают приставки «кило-», «мега-» и «гига-» в единицах измерения скорости передачи данных? Как вы думаете, почему эти приставки не такие, как в единицах измерения количества информации?

3. Какая формула используется для решения задач на скорость передачи данных?

4. Как вы думаете, в чём заключается главная причина ошибок в решении таких задач?

1. Сколько байтов информации будет передано за 24 секунды по линии связи со скоростью 1500 бит в секунду?

2. Сколько байтов информации будет передано за 15 секунд по линии связи со скоростью 9600 бит/c?

3. Сколько байтов информации передается за 16 секунд по линии связи со скоростью 256000 бит в секунду?

4. Сколько секунд потребуется на передачу файла размером 5 Кбайт по линии связи со скоростью 1024 бит/с?

5. Сколько секунд потребуется на передачу файла размером 800 байт по линии связи со скоростью 200 бит/с?

6. Сколько секунд потребуется на передачу файла размером 256 Кбайт по линии связи со скоростью 64 байта в секунду?

7. Книжка, в которой 400 страниц текста (каждая страница содержит 30 строк по 60 символов в каждой), закодирована в 8-битной кодировке. Сколько секунд потребуется для передачи этой книжки по линии связи со скоростью 5 кбит/c?



8. Сколько бит в секунду передается по линии связи, если файл размером 400 байт был передан за 5 с?

9. Сколько бит в секунду передается по линии связи, если файл размером 2 Кбайта был передан за 8 с?

10. Сколько байтов в секунду передается по линии связи, если файл размером 100 Кбайт был передан за 16 с?

Самое важное в главе 1: · Информатика изучает широкий круг вопросов, связанных с автоматической обработкой данных. · Человек получает информацию об окружающем мире с помощью органов чувств. · Данные – это зафиксированная (закодированная) информация. Компьютеры работают только с данными. · Сигнал – это изменение свойств носителя информации. Сообщение – это последовательности сигналов. · Основные информационные процессы – это передача и обработка информации (данных). · Минимальная единица измерения количества информации – это бит. Так называется количество информации, которое можно закодировать с помощью одной двоичной цифры («0» или «1»). · С помощью i битов можно закодировать 2 i разных вариантов. · 1 байт содержит 8 битов. · В единицах измерения количества информации используются двоичные приставки: 1 Кбайт = 2 10 байтов = 1024 байтов 1 Мбайт = 2 20 байтов 1 Гбайт = 2 30 байтов · Информационный объем текста определяется длиной текста и мощностью алфавита. Чем больше символов содержит алфавит, тем больше будет информационный объём одного символа (и текста в целом). · Большинство рисунков кодируется в компьютерах в растровом формате, то есть, в виде набора точек разного цвета (пикселей). Пиксель – это наименьший элемент рисунка, для которого можно задать свой цвет. · Информационный объем рисунка определяется количеством пикселей и количеством используемых цветов. Чем больше цветов используется в рисунке, тем больше будет информационный объём одного пикселя (и рисунка в целом). · Скорость передачи данных обычно измеряется в битах в секунду (бит/с). · В единицах измерения скорости передачи данных используются десятичные приставки: 1 кбит/с = 1 000 бит/c 1 Мбит/с = 1 000 000 бит/c 1 Гбит/с = 1 000 000 000 бит/c

Конечно, вместо 0 и 1 можно использовать два любых знака.

Английское слово bit – это сокращение от выражения binary digit , «двоичная цифра».

Существует и другой тип языков, к которому относятся китайский, корейский, японский языки. В них используются иероглифы , каждый из которых обозначает отдельное слово или понятие.

Английское слово pixel – это сокращение от picture element , элемент рисунка.

Под термином “информация ” понимают различные сведения, которые поступают к получателю. В литературе встречается наиболее часто следующее определение информации: информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования. Это могут быть сведения о результатах измерения, наблюдения за каким-либо объектом и т.п. В дальнейшем нас будут интересовать лишь вопросы, связанные с информацией как объектом передачи.

Сообщение является формой представления информации. Одно и то же сведение может быть представлено в различной форме. Например, сведение о часе приезда вашего приятеля может быть передано по телефону или же в виде телеграммы. В первом случае мы имеем дело с информацией, представленной в непрерывном виде (непрерывное сообщение). Во втором случае – с информацией, представленной в дискретном виде (дискретное сообщение). При передаче сведений по телеграфу информация заложена в буквах, из которых составлены слова, и цифрах. Очевидно, что на конечном отрезке времени число букв или цифр конечное. Это и является отличительной особенностью дискретного или счетного сообщения. В то же время число различных возможных значений звукового давления, измеренное при разговоре, даже на конечном отрезке времени будет бесконечным. В современных цифровых системах телефонной связи в канал связи передаются кодовые комбинации, несущие информацию об отсчетах квантованного аналогового сигнала. Следовательно, такой телефонный квантованный сигнал относится к классу дискретных, и поэтому будем в дальнейшем рассматривать только вопросы передачи дискретных сообщений. В случае телефонной связи под сообщением будем понимать некоторую последовательность отсчетов квантованного аналогового сигнала, передаваемую в канале связи в виде последовательности кодовых комбинаций.

К числу основных информационных характеристик сообщений относятся количество информации в отдельных сообщениях, энтропия и производительность источника сообщений.

Количество информации в сообщении (символе) определяется в битах – единицах измерения количества информации. Чем меньше вероятность появления того или иного сообщения, тем большее количество информации мы извлекаем при его получении. Если в памяти источника имеется два независимых сообщения (а 1 и а 2) и первое из них выдается с вероятностью =1, то сообщение а 1 не несет информации, ибо оно заранее известно получателю.

Было предложено определять количество информации, которое приходится на одно сообщение a i , выражением

.

С реднее количество информации Н(А), которое приходится на одно сообщение, поступающее от источника без памяти, получим, применив операцию усреднения по всему объему алфавита:

. (2.1)

Выражение (2.1) известно как формула Шеннона для энтропии источника дискретных сообщений. Энтропия – мера неопределенности в поведении источника дискретных сообщений. Энтропия равна нулю, если с вероятностью единица источником выдается всегда одно и то же сообщение (в этом случае неопределенность в поведении источника сообщений отсутствует). Энтропия максимальна, если символы источника появляются независимо и с одинаковой вероятностью.

Определим энтропию источника сообщений, если К = 2 и . Тогда

Отсюда 1 бит – это количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника состоит из двух равновероятных символов.

Если в предыдущем примере взять , то Н(А) < 1 бит/сообщ. Таким образом, один бит – максимальное среднее количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника включает два независимых символа.

Среднее количество информации, выдаваемое источником в единицу времени, называют производительностью источника

(бит/с). (2.2)

где Т – среднее время, отводимое на передачу одного символа (сообщения).

Для определения количества единичных элементов, передаваемых в одну секунду ввели понятие скорость модуляции (телеграфирования):

В=1/t (Бод)

Для каналов передачи дискретных сообщений вводят аналогичную характеристику – скорость передачи информации по каналу R (бит/с). Она определяется количеством бит, передаваемых в секунду. Максимально возможное значение скорости передачи информации по каналу называется пропускной способностью канала:

где 2D F – полоса пропускания канала,

Р с – мощность сигнала,

Р п – мощность помехи.

Сообщение, поступающее от источника, преобразуется в сигнал, который является его переносчиком в системах электросвязи.

Рис. 2.2. Принцип передачи сообщений

Система электросвязи обеспечивает доставку сигнала из одной точки пространства в другую с заданными качественными показателями. Схема передачи сообщений, в состав которой входят преобразователи сообщение–сигнал–сообщение, приведена на рис. 2.2.

Контрольные вопросы

  1. Дайте определения понятиям “информация”, “сообщение”.
  2. Как измеряется количество информации?
  3. Определить энтропию источника вырабатывающего независимые символы а 1 и а 2 , если р(а 1) = 0,3. Сравнить полученное значение с вариантом, когда р(а 1) = р(а 2) = 0,5.

Список литературы

  1. Кох Р., Яновский Г. Эволюция и конвергенция в электросвязи. – М.: Радио и связь, 2001. – 280 с.
  2. Концепция развития рынка телекоммуникационных услуг Российской Федерации. “СвязьИнформ”, 2001, № 10. с. 9-32.

Объем текстового файла

Кодирование информации в ПК заключается в том, что каждому символу ставится в соответствие уникальный двоичный код. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.

КОИ-8: 1 символ - 1 байт = 8 бит

UNICODE : 1 символ - 2 байта = 16 бит

ЗАДАЧА 1. Считая, что каждый символ кодируется одним байтом, оцените информационный объем сообщения:

РЕШЕНИЕ: Считаем количество символов в сообщении с учетом пробелов и знаков препинания. Получаем N =35. Т.к. один символ кодируется 1 байтом, то всё сообщение будет занимать в памяти компьютера 35 байт.

ЗАДАЧА 2. Оценить информационный объем сообщения в Unicode : Без труда не вытащишь рыбку из пруда!

РЕШЕНИЕ: Количество символов в сообщении 35. Т.к. в Unicode один символ кодируется 2 байтами, то всё сообщение будет занимать в памяти компьютера 70 байт.

ЗАДАЧА 3. Определить информационный объем книги (в Мбайтах) подготовленной на компьютере, состоящей из 150 страниц (каждая страница содержит 40 строк, 60 символов в каждой строке).

РЕШЕНИЕ:

1) Подсчитаем количество символов в книге 40 * 60 * 150 = 360 000

2) Информационный объем книги составит 360 000 * 1 байт = 360 байт

3) Переведем в заданные единицы 360 000 байт / 1024 = 351,5625 Кбайт / 1024 = 0,34332275 Мбайт

Длина фразы составляет примерно 40 символов. Следователь но, ее объем можно приблизительно оценить в 40 х 2 = 80 байт. Такого варианта ответа нет, попробуем перевести результат в би ты: 80 байт х 8 = 640 бит. Наиболее близкое значение из пред ложенных — 592 бита. Заметим, что разница между 640 и 592 составляет всего 48/16 = 3 символа в заданной кодировке и его можно считать несущественным по сравнению с длиной строки.

З амечание: Подсчетом символов в строке можно убедиться, что их ровно 37 (включая точку и пробелы), поэтому оценка 592 бита = 74 байта, что соответствует ровно 37 символам в двухбайтовой кодировке, является точной.

Алфавит – это набор букв, символов препинания, цифр, пробел и т.п.

Полное число символов в алфавите называют мощностью алфавита

ЗАДАЧА 4. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 16 символов. Второй текст в алфавите мощностью 256 символов. Во сколько раз количество информации во втором тексте больше, чем в первом?

РЕШЕНИЕ: Если первый текст составлен в алфавите мощностью (К) 16 символов, то количество информации, которое несет 1 символ (1) в этом тексте, можно определить из соотношения: N = 2", таким образом, из 16 = 2" получим 1 = 4 бита. Мощность второго алфавита - 256 символов, из 256 = 2" получим 1 = 8 бит. Т.к. оба текста содержат одинаковое количество символов, количество информации во втором тексте больше, чем в первом, в 2 раза.

Скорость передачи информации

Скорость передачи данных по каналам связи ограничена пропускной способностью канала. Пропускная способность канала связи изменяется как и скорость передачи данных в бит/сек (или кратностью этой величины Кбит/с, Мбит/с, байт/с, Кбайт/с, Мбайт/с).
Для вычислении объема информации V переданной по каналу связи с пропускной способностью а за время t используют формулу:

V = а * t

ЗАДАЧА 1. Через ADSL- соединение файл размером 1000 Кбайт передавался 32 с. Сколько секунд потребуется для передачи файла размером 625 Кбайт.

РЕШЕНИЕ: Найдем скорость ADSL соединения: 1000 Кбайт / 32 с. = 8000 Кбит / 32 с. = 250 Кбит/с.
Найдем время для передачи файла объемом 625 Кбайт: 625 Кбайт / 250 Кбит/с = 5000 Кбит / 250 Кбит/с. = 20 секунд.

При решении задач на определении скорости и времени передачи данных возникает трудность с большими числами (пример 3 Мб/с = 25 165 824 бит/с), поэтому проще работать со степенями двойки (пример 3 Мб/с = 3 * 2 10 * 2 10 * 2 3 = 3 * 2 23 бита/с).

n

0
1
2
3
4
5
6
7
8
9
10

2 n

1
2
4
8
16
32
64
128
256
512
1024

ЗАДАЧА 2 . Скорость передачи данных через ADSL─соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.


РЕШЕНИЕ: Время передачи файла: 1 мин = 60 с = 4 * 15 с = 2 2 * 15 с
Скорость передачи файла: 512000 бит/c = 512 * 1000 бит/с = 2 9 * 125 * 8 бит/с (1 байт =8 бит)

2 9 * 125 байт/с = 2 9 * 125 бит/с / 2 10 = 125 / 2 Кб/с

Чтобы найти время объем файла, нужно умножить время передачи на скорость передачи:

(2 2 * 15 с) * 125 / 2 Кб/с = 2 * 15 * 125 Кб = 3750 Кб

Думаете, скорость вашего широкополосного подключения к интернету быстрая? Осторожно, после прочтения данной статьи ваше отношение к слову "быстро" относительно передачи данных может сильно измениться. Представьте объем вашего жесткого диска на компьютере и определитесь, какая скорость его заполнения является быстрой -1 Гбит/с или может быть 100 Гбит/с, тогда 1 терабайтный диск заполнится уже через 10 сек? Если бы книга рекордов Гиннеса констатировала рекорды по скорости передачи информации, то ей бы пришлось обработать все приведенные далее эксперименты.

В конце ХХ в., то есть еще относительно недавно, скорости в магистральных каналах связи не превышали десятков Гбит/с. В то же время пользователи интернета с помощью телефонных линий и модемов наслаждались скоростью в десятки килобит в секунду. Интернет был по карточкам и цены за услугу были немаленькие - тарифы приводились, как правило, в у.е. На загрузку одной картинки порой даже уходило несколько часов и как точно подметил один из пользователей интернета того времени: "Это был интернет, когда за одну ночь можно было только несколько женщин в интернете посмотреть". Такая скорость передачи данных медленная? Возможно. Однако стоит помнить, что все в мире относительно. Например, если бы сейчас был 1839 г., то неким подобием интернета для нас бы представляла самая протяженная в мире оптическая телеграфная линии связи Петербург-Варшава. Длина этой линии связи для ХIХ века кажется просто заоблачной - 1200 км, состоит она из 150 ретранслирующих транзитных вышек. Любой гражданин может воспользоваться этой линией и послать "оптическую" телеграмму. Скорость "колоссальная" - 45 символов на расстояние 1200 км можно передать всего за 22 минуты, никакая конная почтовая связь здесь и рядом не стояла!

Вернемся в ХХI век и посмотрим, что в сравнении с описанными выше временами мы сегодня имеем. Минимальные тарифы у крупных провайдеров проводного интернета исчисляются уже не единицами, а несколькими десятками Мбит/с; смотреть видео с разрешением менее 480pi мы не уже хотим, такое качество картинки нас уже не устраивает.

Посмотрим среднюю скорость интернета в разных странах мира. Представленные результаты составлены CDN-провайдером Akamai Technologies. Как видно, даже в республике Парагвай уже в 2015 году средняя скорость соединения по стране превышала 1.5 Мбит/с (кстати, Парагвай имеет близкий для нас русских по транслитерации домен - *.py).

На сегодняшний день средняя скорость интернет соединений в мире составляет 6.3 Мбит/с . Наибольшая средняя скорость наблюдается в Южной Корее 28.6 Мбит/с, на втором месте Норвегия -23.5 Мбит/с, на третьем Швеция - 22.5 Мбит/с. Ниже приведена диаграмма, показывающая среднюю скорость интернета по лидирующим в этом показателе странам на начало 2017 года.

Хронология мировых рекордов скоростей передачи данных

Поскольку сегодня неоспоримым рекордсменом по дальности и скорости передачи являются волоконно-оптические системы передачи, акцент будет делаться именно на них.

С каких скоростей все начиналось? После многочисленных исследований в период с 1975 по 1980 гг. появилась первая коммерческая волоконно-оптическая система, работающая с излучением на длине волны 0,8 мкм на полупроводниковом лазере на основе арсенида галлия.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с . При такой скорости, можно организовать одновременную передачу до 94 простейших цифровых телефонных каналов.

Максимальная скорость оптических систем передачи в экспериментальных исследовательских установках этого времени доходило до 45 Мбит/с , максимальное расстояние между регенераторами - 10 км .

В начале 1980-х передача светового сигнала проходила в многомодовых волокнах уже на длине волны 1,3 мкм с помощью InGaAsP-лазеров. Максимальная скорость передачи была ограничена значением 100 Мбит/с вследствие дисперсии.

При использовании одномодовых ОВ в 1981 году при лабораторных испытаниях добились рекордной для того времени скорости передачи 2 Гбит/с на расстоянии 44 км .

Коммерческое внедрение таких систем в 1987 году обеспечивало скорость до 1,7 Гбит/с с протяженностью трассы 50 км .

Как можно было заметить, оценивать рекорд системы связи стоит не только по скорости передачи, здесь также крайне важно на какое расстояние данная система способна обеспечить данную скорость. Поэтому для характеристики систем связи обычно пользуются произведением общей пропускной способности системы B [бит/с] на ее дальность L [км].


В 2001 году при применении технологии спектрального уплотнения была достигнута скорость передачи 10,92 Тбит/с (273 оптических канала по 40 Гбит/с), но дальность передачи была ограничена значением 117 км (B∙L = 1278 Тбит/с∙км).

В этом же году был проведен эксперимент по организации 300 каналов со скоростью 11,6 Гбит/с каждый (общая пропускная способность 3.48 Тбит/с ), длина линии составила свыше 7380 км (B∙L = 25 680 Тбит/с∙км).

В 2002 г. была построена межконтинентальная оптическая линия протяженностью 250 000 км с общей пропускной способностью 2.56 Тбит/с (64 WDM канала по 10 Гбит/с, трансатлантический кабель содержал 4 пары волокон).

Теперь с помощью единственного оптоволокна можно одновременно передавать 3 миллиона! телефонных сигналов или 90 000 сигналов телевидения.

В 2006 г. Nippon Telegraph и Telephone Corporation организовали скорость передачи 14 триллион бит в секунду (14 Тбит/с ) по одному оптическому волокну при длине линии 160 км (B∙L = 2240 Тбит/с∙км).

В этом эксперименте они публично продемонстрировали передачу за одну секунду 140 цифровых HD фильмов. Величина 14 Тбит/с появилась в результате объединения 140 каналов по 111 Гбит/с каждый. Использовалось мультиплексирование с разделением по длине волны, а также поляризационное уплотнение.

В 2009 г. Bell Labs достигли параметра B∙L = 100 пета бит в секунду умножить на километр, преодолев, таким образом, барьер в 100 000 Тбит/с∙км.

Для достижения таких рекордных результатов исследователи из лаборатории Bell Labs в Villarceaux, Франция, использовали 155 лазеров, каждый из которых работает на своей частоте и осуществляет передачу данных на скорости 100 Гигабит в секунду. Передача осуществлялась через сеть регенераторов, среднее расстояние между которыми составляло 90 км. Мультиплексирование 155 оптических канала по 100 Гбит/с позволило обеспечить общую пропускную способность 15,5 Тбит/с на расстоянии 7000 км . Чтобы осмыслить значение этой скорости, представьте, что идет передача данных из Екатеринбурга во Владивосток со скоростью 400 DVD-дисков в секунду.

В 2010 г. NTT Network Innovation Laboratories добились рекорда скорости передачи 69.1 терабит в секунду по одному 240-километровому оптическому волокну. Используя технологию волнового мультиплексирования (WDM), они мультиплексировали 432 потока (частотный интервал составил 25 ГГц) с канальной скоростью 171 Гбит/с каждый.

В эксперименте применялись когерентные приемники, усилители с низким уровнем собственных шумов и с ультра-широкополосным усилением в С и в расширенном L диапазонах. В сочетании с модуляцией QAM-16 и поляризационного мультиплексирования, получилось достичь значения спектральной эффективности 6.4 бит/с/Гц.

На графике ниже видна тенденция развития волоконно-оптических систем связи на протяжении 35 лет с начала их появления.

Из данного графика возникает вопрос: "а что дальше?" Каким образом можно еще в разы повысить скорость и дальность передачи?

В 2011 г. мировой рекорд пропускной способности установила компания NEC, передав более 100 терабит информации в секунду по одному оптическому волокну. Этого объема данных, переданного за 1 секунду, достаточно, чтобы просматривать HD фильмы непрерывно в течение трех месяцев. Или это эквивалентно передаче за секунду содержимого 250 двухсторонних Blu-ray дисков.

101,7 терабит были переданы за секунду на расстояние 165 километров с помощью мультиплексирования 370 оптических каналов, каждый из которых имел скорость 273 Гбит/с.

В этом же году National Institute of Information and Communications Technology (Токио, Япония) сообщил о достижении 100-терабного порога скорости передачи посредством применения многосердцевинных ОВ. Вместо того чтобы использовать волокно только с одной световедущей жилой, как это происходит современных коммерческих сетях, команда использовали волокно с семью сердцевинами. По каждой из них осуществлялась передача со скоростью 15.6 Тбит/с, таким образом, общая пропускная способность достигла 109 терабит в секунду.

Как заявили тогда исследователи, использование многосердцевинных волокон пока является достаточно сложным процессом. Они имеют большое затухание и критичны к взаимным помехам, поэтому сильно ограничены по дальности передачи. Первое применение таких 100 терабитных систем будет внутри гигантских центров обработки данных компаний Google, Facebook и Amazon.

В 2011 г. команда ученых из Германии из технологического института Karlsruhe Institute of Technology (KIT) без использования технологии xWDM передала данные по одному ОВ со скоростью 26 терабит в секунду на расстояние 50 км . Это эквивалентно передачи в одном канале одновременно 700 DVD-дисков в секунду или 400 миллионов телефонных сигналов.

Начали появляться новые услуги, такие как облачные вычисления, трехмерное телевидение высокой четкости и приложения виртуальной реальности, что опять требовало беспрецедентной высокой емкости оптического канала. Для решения этой проблемы исследователи из Германии продемонстрировали применение схемы оптического быстрого преобразования Фурье для кодирования и передачи потоков данных со скоростью 26.0 Тбит/с. Для организации такой высокой скорости передачи была использована не просто классическая технология xWDM, а оптическое мультиплексирование с ортогональным частотным разделением каналов (OFDM) и соответственно декодирование оптических OFDM потоков.

В 2012 г. японская корпорация NTT (Nippon Telegraph and Telephone Corporation) и три ее партнера: фирма Fujikura Ltd., университет Hokkaido University и университет Technical University of Denmark установили мировой рекорд пропускной способности, передав 1000 терабит (1 Пбит / с ) информации в секунду по одному оптическому волокну на расстояние 52.4 км . Передача одного петабита в секунду эквивалентна передаче 5000 двухчасовых HD фильмов за одну секунду.

С целью значительного улучшения пропускной способности оптических коммуникационных систем, было разработано и протестировано волокно с 12-тью сердцевинами, расположенных особым образом в виде соты. В данном волокне благодаря его особой конструкции взаимные помехи между соседними сердцевинами, которые обычно являются главной проблемой в обычных многосердцевинных ОВ, значительно подавлены. В результате применения поляризационного мультиплексирования, технологии xWDM, квадратурной амплитудной модуляции 32-QAM и цифрового когерентного приема, ученые успешно повысили эффективность передачи в расчете на одну сердцевину более чем в 4 раза, в сравнении с предыдущими рекордами для многосердцевинных ОВ.

Пропускная способность составила 84.5 терабит в секунду на одну сердцевину (скорость канала 380 Гбит/с х 222 каналов). Общая пропускная способность на одно волокно составила 1.01 петабит в секунду (12 х 84.5 терабит).

Также в 2012 г. немного позднее исследователи из лаборатории NEC в Принстоне, Нью-Джерси, США, и Нью-Йоркского научно-исследовательского центра Corning Inc., успешно продемонстрировали сверхвысокую скорость передачи данных со скоростью 1.05 петабит в секунду. Данные передавались с помощью одного многосердцевинного волокна, которое состояло из 12 одномодовых и 2 маломодовых сердцевин.

Данное волокно было разработано исследователями Corning. Объединив технологии спектрального и поляризационного разделения с пространственным мультиплексированием и оптической системы MIMO, а также используя многоуровневые форматы модуляции, исследователи в результате достигли общей пропускной способности 1.05 Пбит/с, поставив, таким образом, новый мировой рекорд самой высокой скорости передачи по одному оптическому волокну.

Летом 2014 года рабочая группа в Дании, используя новое волокно, предложенное японской компанией Telekom NTT, установила новый рекорд -организовав с помощью одного лазерного источникаскорость в 43 Тбит/с . Сигнал от одного лазерного источника передавался по волокну с семью сердцевинами.

Команда Датского технического университета совместно с NTT и Fujikura ранее уже достигала самой высокой в мире скорости передачи данных в 1 петабит в секунду. Однако тогда были использованы сотни лазеров. Сейчас же рекорд в 43 Тбит/с был достигнут с помощью одного лазерного передатчика, что делает систему передачи более энергоэффективной.

Как мы убедились, в связи есть свои интересные мировые рекорды. Для новичков в этой области стоит отметить, что многие представленные цифры до сих пор не встречаются повсеместно в коммерческой эксплуатации, поскольку были достигнуты в научных лабораториях в единичных экспериментальных установках. Однако и сотовый телефон когда-то был прототипом.

Чтобы не перегружать ваш носитель информации, пока остановим текущий поток данных.

Продолжение следует…

В технических спецификациях устройств и договорах на оказание услуг связи с интернет-провайдером фигурируют единицы Килобиты в секунду и, в большинстве случаев, Мегабиты в секунду (Кбит/с; Кб/с; Kb/s; Kbps, Мбит/с; Мб/с; Мb/s; Мbps - буква «б» маленькая). Эти единицы измерения являются общепризнанными в телекоммуникациях и в них измеряют полосы пропускания устройств, портов, интерфейсов и каналов связи. Обычные пользователи и интернет-провайдеры предпочитают не использовать столь специализированный термин, называя его «скоростью интернета» или «скоростью соединения» .

Многие пользовательские программы (торрент-клиенты, программы-загрузчики, интернет-браузеры) отображают скорость передачи данных в других единицах, которые очень похожи на Килобиты в секунду и Мегабиты в секунду, однако это совсем иные единицы измерения - Килобайты и Мегабайты в секунду. Эти величины часто путают между собой, так как они имеют схожее написание.

Килобайты в секунду (в которых отображают скорость передачи данных пользовательские программы) принято обозначать как КБайт/с, КБ/с, KB/s или KBps.

Мегабайты в секунду - МБайт/с, МБ/с, МB/s или МBps.

Килобайты и Мегабайты в секунду всегда пишутся с большой буквой «Б» как в английском, так и в русском варианте написания: МБайт/с, МБ/с, МB/s, МBps.

В одном Байте содержится 8 бит, следовательно, Мегабайт отличается от Мегабита (как и Килобайт от Килобита) в 8 раз.

Для того, чтобы перевести «Мегабайты в секунду» в «Мегабиты в секунду», необходимо умножить на восемь значение, выраженное в МБ/с (Мегабайтах в секунду).

Например, если браузер или торрент-клиент отображает скорость передачи данных, равную 3 МБ/с (Мегабайт в секунду), то в Мегабитах это будет в восемь раз больше - 24 Мбит/с (Мегабит в секунду).

Для перевода из «Мегабит в секунду» в «Мегабайты в секунду», необходимо разделить значение, выраженное в Мегабитах в секунду, на восемь.

Например, если тарифный план провайдера предусматривает выделение полосы пропускания, равной 8 Мбит/с, (Мегабит в секунду), то при загрузке торрента на компьютер, программа-клиент отобразит максимальное значение в 1 Мбайт/с (если со стороны сервера нет ограничений и нет перегрузки).

Как протестировать скорость интернет соединения он-лайн?

Для того, чтобы протестировать ширину полосы пропускания, можно воспользоваться одним из бесплатных ресурсов измерения скорости интернета: Speedtest.net или 2ip.ru .

Оба сайта измеряют ширину полосы пропускания от сервера, который можно выбрать, до компьютера, на котором измеряется скорость. Так как длина канала связи может быть от нескольких сотен метров до нескольких тысяч километров, то рекомендуется выбирать территориально наиболее близкий сервер (хотя и он может оказаться сильно загруженным). Тестирование лучше проводить в то время, когда активность клиентов сети провайдера наименьшая (например, утром или поздней ночью). Точность измерений скорости соединения с сетью интернет не идеальна из-за большого количества различных факторов, которые сильно влияют на пропускную способность, но вполне способна дать представление о реальной скорости интернет-соединения.

Интернет-провайдер выделяет каждому абоненту полосу пропускания для доступа в Интернет в соответствии с тарифным планом абонента (провайдер «урезает» скорость согласно тарифному плану). Однако, многие интернет-браузеры, а также мастеры загрузки файлов, торрент-клиенты отображают ширину пропускания канала связи не в мегабитах в секунду, а в мегабайтах в секунду, и из за этого часто возникает путаница.

Протестируем скорость интернет-соединения на примере ресурса speedtest.net. Нужно нажать кнопку «BEGIN TEST recommended server».

Ресурс автоматически подберёт ближайший к вам сервер и начнёт тестировать скорость Интернета. Результатом тестирования будет пропускная способность канала от провайдера к абоненту («DOWNLOAD SPEED») и пропускная способность канала от абонента к провайдеру («UPLOAD SPEED»), которые будут выражены в Мегабитах в секунду.

Скорость через роутер «не такая», роутер «режет» скорость

Зачастую, после приобретения роутера, его подключения и настройки, пользователи сталкиваются с проблемой, что скорость интернет соединения стала ниже, чем до приобретения роутера. Особенно часто такая проблема встречается на высокоскоростных интернет тарифах.

Например, при наличии тарифного плана, предусматривающего «скорость интернет соединения» в 100Мбит/с, и при подключении кабеля провайдера «напрямую» к сетевой плате компьютера, скорость интернета полностью соответствует тарифному плану:

При подключении кабеля провайдера к WAN-порту роутера, а компьютера - к порту LAN, зачастую можно наблюдать снижение пропускной способности (или, как принято говорить, «роутер режет скорость тарифного плана»):

Логичнее всего предположить, что в данной схеме проблема в самом роутере и скорость роутера не соответствует скорости тарифного плана. Однако, если подключить более «медленный» тарифный план (например, 50 Мбит/с), то можно заметить, что роутер уже не режет скорость и «скорость интернета» соответствует указанной в тарифном плане:

В среде инженеров не принята терминология «роутер режет скорость» или «скорость роутера» - обычно пользуются терминами «скорость маршрутизации WAN-LAN», «скорость коммутации WAN-LAN», или «пропускная способность WAN-LAN».

Пропускная способность WAN-LAN измеряется в Мегабитах в секунду (Мбит/с) и отвечает за производительность роутера. За скорость коммутации WAN-LAN и за производительность роутера в целом, отвечает аппаратное оснащение роутера (H/W - от англ. «Hardware», указана на стикере, который наклеен на днище устройства) - это модель и тактовая частота процессора роутера, объем оперативной памяти, модель коммутатора (свитча, встроенного в роутер), стандарт и модель WI-Fi радиомодуля (точки доступа Wi-Fi), встроенного в роутер. Кроме аппаратной версии устройства (H/W) немалую роль в скорости маршрутизации WAN-LAN играет версия установленного микропрограммного обеспечения («прошивки») установленного на роутер. Именно поэтому рекомендуется обновить версию микропрограммного обеспечения устройства сразу после приобретения.

После «перепрошивки» или, говоря профессионально, после обновления микропрограммного обеспечения на рекомендованную версию прошивки, должна повыситься стабильность работы роутера, уровень оптимизации устройства для работы в сетях российских провайдеров, а так же пропускная способность WAN-LAN.

Стоит отметить, что скорость коммутации WAN-LAN зависит не только от аппаратной версии устройства (H/W) и версии микропрограммного обеспечения, но и от протокола подключения к провайдеру.

Наиболее высокая скорость маршрутизации WAN-LAN достигается на протоколах подключения DHCP и Static IP, низкая - при использовании провайдером технологии VPN , а если используется протокол PPTP - самая низкая.

Скорость WiFi

Многие пользователи, подключившиеся к какой-либо Wi-Fi сети, не всегда довольны скоростью соединения. Вопрос довольно сложный и нуждается в детальном рассмотрении.

a. Реальные скорости технологии Wi-FI

Так выглядят часто задаваемые вопросы по данной тематике:

«У меня тарифный план предусматривает скорость 50 Мбит/с - почему получается всего 20?»

«Почему на коробке написано 54 Мбит/с, а программа-клиент при загрузке торрента отображает максимум 2,5 МБайт/с (что равно 20 Мбит/с)?»

«Почему на коробке написано 150 Мбит/с, а программа-клиент при загрузке торрента отображает 2,5 - 6 МБ/с (что равно 20 - 48 Мбит/с)?»

«Почему на коробке написано 300 Мбит/с, а программа-клиент при загрузке торрента отображает 2,5 - 12 МБ/с (что равно 20 - 96 Мбит/с)?»

На коробках и спецификациях к устройствам указана теоретически рассчитанная максимальная пропускная способность для идеальных условий того или иного стандарта Wi-Fi (по сути - для вакуума).

В реальных условиях пропускная способность и площадь зоны покрытия сети зависят от помех, создаваемых другими устройствами, степени загрузки сети WiFi, наличия препятствий (и материалов, из которых они изготовлены) и прочих факторов.

Многие клиентские утилиты, поставляемые производителями вместе с WiFi-адаптерами, а также утилиты операционной системы Windows , при подключении по Wi-Fi отображают именно «теоретическую» пропускную способность, а не реальную скорость передачи данных, вводя пользователей в заблуждение.

Как показывают результаты тестирования, максимальная реальная пропускная способность оказывается примерно в 3 раза ниже, чем та, что указана в спецификациях к устройству или к тому или иному стандарту IEEE группы 802.11 (стандарты технологии Wi-Fi):

b. WLAN-WLAN. Скорость Wi-Fi (в зависимости от расстояния)

Все современные и актуальные стандарты Wi-Fi на сегодняшний день работают схожим образом.

В каждый момент времени, активное Wi-Fi оборудование (точка доступа или роутер) работает только с одним клиентом (WiFi-адаптером) из всей WiFi сети, причем все устройства сети получают специальную служебную информацию о том, на какое время будет зарезервирован радиоканал для передачи данных. Передача происходит в полудуплексном режиме т.е. по очереди - от активного Wi-Fi оборудования к клиентскому адаптеру, затем наоборот и так далее. Одновременный «параллельный» процесс передачи данных (дуплекс) в технологии Wi-Fi не возможен.

Таким образом, скорость обмена данными между двумя клиентами (скорость коммутации WLAN-WLAN) одной Wi-Fi сети, созданной одним устройством (точкой доступа или роутером), будет (в идеальном случае) в два и более раза ниже (зависит от расстояния), чем максимальная реальная скорость передачи данных во всей сети.

Два компьютера с Wi-Fi адаптерами стандарта IEEE 802.11g подключены к одному Wi-Fi роутеру стандарта IEEE 802.11g. Оба компьютера находятся на небольшом расстоянии от роутера. Вся сеть имеет максимально достижимую теоретическую пропускную способность в 54 Мбит/с (что написана в спецификациях устройств) реальная же скорость обмена данными не превысит 24 Мбит/с.

Но, так как технология Wi-Fi - это полудуплексная передача данных, то Wi-Fi радиомодулю приходится коммутировать между двумя клиентами сети (Wi-Fi адаптерами) в два раза чаще, чем в случае, если бы клиент был один. Соответственно, реальная скорость передачи данных между двумя адаптерами будет в два раза ниже, чем максимальная реальная для одного клиента. В данном примере, максимальная реальная скорость обмена данными для каждого из компьютеров будет составлять 12 Мбит/с. Напомним, что речь идет о передаче данных от одного компьютера другому через роутер по wifi-соединению (WLAN-WLAN).

В зависимости от удаленности клиента сети от точки доступа или роутера, будет изменяться «теоретическая» и, как следствие, «реальная» скорость передачи данных по WiFi. Напомним, что она примерно в 3 раза меньше «теоретической».

Это происходит из-за того, что активное WiFi оборудование, работая в полудуплексном режиме, совместно с адаптерами изменяет параметры сигнала (тип модуляции, скорость сверточного кодирования и т.д.) в зависимости от условий в радиоканале (расстояние, наличие препятствий и помех).

При нахождении клиента сети в зоне покрытия с «теоретической» пропускной способностью 54 Мбит/с, его максимальная реальная скорость будет составлять 24 Мбит/с. При перемещении клиента на расстояние 50 метров в условиях прямой оптической видимости (без преград и помех), она будет составлять 2 Мбит/с. Подобный эффект также может вызвать преграда в виде толстой несущей стены или массивной металлоконструкции - можно находиться на расстоянии 10-15 метров, но за данной преградой.

c. Роутер стандарта IEEE 802.11n, адаптер стандарта IEEE 802.11g

Рассмотрим пример, когда Wi-Fi сеть создает Wi-Fi роутер стандарта IEEE 802.11 n (150 Мбит/с). К роутеру подключены ноутбук с Wi-Fi адаптером стандарта IEEE 802.11n (300 Мбит/с) и стационарный компьютер с Wi-Fi адаптером стандарта IEEE 802.11g (54 Мбит/с):

В данном примере вся сеть имеет максимальную «теоретическую» скорость 150 Мбит/с, так как она построена на Wi-Fi роутере стандарта IEEE 802.11n, 150 Мбит/с. Максимальная реальная скорость WiFi не превысит 50 Мбит/с. Так как все стандарты WiFi, работающие на одном частотном диапазоне, обратно совместимы друг с другом, то к такой сети можно подключиться при помощи WiFi адаптера стандарта IEEE 802.11g, 54 Мбит/с. При этом, максимальная реальная скорость не превысит 24 Мбит/с. При подключении к данному роутеру ноутбука с WiFi адаптером стандарта IEEE 802.11n (300 Мбит/с), клиентские утилиты могут отобразить значение максимальной «теоретической» скорости в 150 Мбит/с, (сеть создана устройством стандарта IEEE 802.11n ,150 Мбит/с), а вот максимальная реальная скорость не будет выше 50 Мбит/с. В данной схеме, WiFi-роутер будет работать с клиентским адаптером стандарта IEEE 802.11g на реальной скорости, не превышающей 24 Мбит/с, а с адаптером стандарта IEEE 802.11n на реальной скорости, не превышающей 50 Мбит/с. Тут надо вспомнить, что технология WiFi - это полудуплексная связь и точка доступа (или роутер) может работать только с одним клиентом сети, причём все остальные клиенты сети «оповещены» о том времени, на которое зарезервирован радиоканал для передачи данных.

d. Скорость WiFi через роутер. WAN-WLAN

Если речь идет о подключении по Wi-Fi соединению к Wi-Fi роутеру, то скорость загрузки торрента может оказаться даже ниже, чем те значения, которые были приведены выше.

Эти значения не могут превышать скорость коммутации WAN-LAN, так как это основная характеристика производительности роутера.

Таким образом, если в спецификациях (и на коробке) устройства указана скорость передачи данных по Wi-Fi до 300 Мбит/с, а параметр WAN-LAN для данной модели, ее аппаратной версии, версии микропрограммного обеспечения, а также типа и протокола подключения равен 24 Мбит/с, то скорость передачи данных по Wi-Fi (например, при загрузке торрента) ни при каких условиях не может превысить значение 3 Мбайт/с (24 Мбит/с). Этот параметр носит название WAN-WLAN, который напрямую зависит от скорости маршрутизации WAN-LAN, от версии микропрограммного обеспечения («прошивки»), установленной на Wi-Fi роутер, Wi-Fi радиомодуля (точки доступа WiFi, встроенной в WiFi роутер), а так же от характеристик Wi-Fi адаптера, его драйверов, удаленности от роутера, зашумленности радиоэфира и прочих факторов.

Источник

Данная инструкция подготовлена и опубликована Морозовым Иваном Александровичем - руководителем Учебного Центра представительства компании TRENDnet в России и СНГ. Если вы желаете повысить уровень собственных знаний в области современных сетевых технологий и сетевого оборудования - приглашаем в гости на бесплатные семинары!



Рекомендуем почитать

Наверх