Обучение радиоэлектронике с нуля. Самостоятельное изучение схемотехники

Для Windows 13.05.2019
Для Windows

Я решил написать ряд статей, которые должны помочь разобраться самостоятельно в предмете схемотехники. Первая часть вводная, в ней рассказывается об основных дисциплинах, которые стоит изучить для понимания принципов конструктирования и построения электрических схем. Если эта статья вам понравится, тема будет развиваться, внимание будет фокусироваться на нюансах и примерах.

Для старта в обучении требуется изучить три основные дисциплины :
1. Основы электротехники
2. Теоретические основы электроники
3. Теория автоматов

Все на так страшно, как кажется на первый взгляд.

Первый пункт необходим для понимания принципов работы с электричеством (В этом предмете изучаются основы расчета электрических схем).
Второй пункт - то же самое, что и первый, но более углубленный. Здесь будут рассматриваться частные примеры основных электронных устройств, через их электрические схемы.
Третий пункт - это очень важная дисциплина, которая рассматривает электрические схемы с точки зрения их логики работы. Эта дисциплина является вводной частью в курс схемотехники и рассматривает основные логические элементы, принципы построения принципиальных схем, процессы происходящие в схемах и многое другое.

Как изучать эти дисциплины?
Изучать их стоит по ВУЗовским учебникам, совмещаяя друг с другом. Т.е. стоит начать изучение курсов ОЭ и ТА параллельно, а после этого переходить к изучению ТОЭ и схемотехники. Уже после нескольких недель вы сможете сами разрабатывать простые логические схемы и понимать работу более сложных. Конечно, не стоит забывать и про практику, на нее нужно делать особый упор. Решайте задачи, изучайте электрические и принципиальные схемы.

Какие книги понадобятся в процессе обучения?
Для изучения электротехники и электроники пойдет любой учебник для высших учебных заведений. (Как пример А. А. Бессонов «Теоретические основы электротехники»)
Теорию автоматов можно изучать по одноименному учебнику Ю. Г. Карпова

Программное обеспечение :
В ходе обучения весьма пригодяться программы такие как
Electronic Workbench
Старая программа для построения принципиальных электрических схем. Для обучения вполне пойдет демо версия с ограниченным количеством допустимых элементов на листе. Программу можно использовать как для изучения курса теории автоматов, так и для проверки задач по электротехнике.

P-CAD
Будет использоваться на завершающих этапах обучения для разводки элементов по печатной плате.

На этом вводная часть заканчивается. Если данная тема будет интересна хабраюзерам, я продолжу писать статьи на эту тему.
Удачи вам в самообразовании.


Язык: русский
Продолжительность: 50 параграфов, 12 скрипт-тестов, более 8 часов видео
Видео кодек: Flash
Системные требования:
DVD-диск проверялся на ПК и ОС -
Celeron(R) CPU 1.7GHz 1.77ГГц, 512МВ ОЗУ
Windows XP SP3
Pentium(R)4 CPU 1.80 GHz 1.80ГГц, 768МВ ОЗУ
Windows XP SP3
Intel(R) CORE(TM) 2 Duo CPU E4500 @ 2.20GHz 2.21ГГц, 2.00 ГБ ОЗУ
Windows Vista Ultimate
AMD Athlon(tm) 64x2 Dual Core Processor 3800+ 2.00ГГц, 2.00 ОЗУ
Windows XP SP2
Описание: курс по электротехнике и основам электроники. В основе материала лежит бессмертная классическая теория электротехники и основ электроники, благодаря которой, выросло не одно поколение замечательных специалистов в этих областях.

* Как только вы вставите диск в дисковод, после короткой видео-заставки откроется логотип-меню.
* Затем перед Вами откроется окно проекта с понятным интерфейсом, с помощью которого Вы с лёгкостью будете проделывать свой путь по страницам курса. Text-Buttom
* При нажатии на изображении "телефонов", будут демонстрироваться объяснения и комментарии по темам данной страницы, с использованием графических изображений и схем. Screen-Cast
* В непосредственной связи с текстом, находятся flash и gif анимационные демонстрации, созданные по мере необходимости. Предусмотрена остановка анимации, например, для просмотра синусоиды в месте периода, определённом положением якоря генератора. Flash-Gif
* Таким же, выборочным способом, расположены видеоролики практических работ, обычно – в конце параграфов и глав. Foto-Video
В конце каждой главы скрипт – тест, при прохождении которого, Вы встретите вопросы по данной главе, на которые необходимо ответить. Во время теста можно включить/выключить музыкальный фон, без возможности выбора (музыка - на «вкус» автора, можете включать свой «aimp» или «winamp»). Script-Test

1. Введение в электротехнику.
Кратко о происхождении.
Пьезо эффект.(1.32)
Фотоэффект.(2.50)
Термоэффект.(4.17)
Химический эффект.(3.47)
Проводники и сопротивление.
Сопротивление в цепи постоянного тока.(10.52)
ТЕСТ
Диэлектрики и ёмкость.
Конденсаторы.(3.27)
Первый шаг.
Закон Ома.(14.18)ScreenCast
Действие тока.(9.03)
Внутреннее сопротивление источника.(11.96)ScreenCast
ТЕСТ
2. Постоянный ток.
Зависимости сопротивлений.
Зависимость от положения движка.(1.36)
Зависимость сопротивления проводника от температуры.(1.34)
Последовательное соединение.(2.34)
Параллельное и смешанное соединение.
Первый закон Кирхгофа.
Параллельное соединение сопротивлений.(2.19)
Смешанное соединение сопротивлений.
Нелинейные сопротивления.
ТЕСТ
Зависимости тока.
Зависимость силы тока от напряжения.(2.50)
Зависимость силы тока от сопротивления.(4.52)
Расчёт цепей.
Второй закон Кирхгофа.
Метод эквивалентного генератора.(9.03)ScreenCast
Сложные электрические цепи.(8.10)ScreenCast
Метод наложения токов.(3.12)ScreenCast
Метод узловых напряжений.
Метод контурных токов.(8.28)ScreenCast
Работа и мощность.
Закон Ленца - Джоуля.
Нагрев проводников.(6.43)ScreenCast
Расчёт сечения проводов.(9.11)ScreenCast
Режимы цепи.
Мощность электрической цепи.(16.05)ScreenCast
Расчёт мощности и к.п.д. в цепи постоянного тока
с переменным сопротивлением и источником
компьютерного блока питания.(4.29)
Химические источники.
Химическое действие электрического тока.
Гальванические элементы.
Аккумуляторы.
Выполнение работ с аккумуляторными батареями.
КТЦ кислотного аккумулятора.(20.50)
ТЕСТ
3. Магнетизм.
Магниты и их свойства.(2.30)
Магнитное поле электрического тока.
Напряженность магнитного поля.
Закон полного тока. Магнитная проницаемость. Магнитный поток.
Взаимодействие проводников с токами. Гистерезис.(3.06)
Электромагниты. Вихревые токи.
Электромагнит.(3.57)
Электромагнитная индукция.(1.16)
Самоиндукция. Расчет индуктивности.
Расчет катушек индуктивности (однослойных, цилиндрических без сердечника).
Пример.(3.32)
Энергия магнитного поля. Взаимоиндукция.
ТЕСТ
4. Получение ЭДС. Синусоидальная ЭДС.
Активное сопротивление, катушка индуктивности в цепи переменного тока.
Активное сопротивление в цепи переменного тока.
Действующие значения тока и напряжения.
Катушка индуктивности в цепи переменного тока.
Активное, индуктивное и емкостное сопротивления в цепи переменного тока.
Цепь переменного тока, содержащая активное и индуктивное сопротивления.
Емкость в цепи переменного тока.
Цепь переменного тока, содержащая активное и емкостное сопротивления.
Цепь переменного тока, содержащая активное, индуктивное и емкостное сопротивления.
Параллельное соединение реактивных сопротивлений. Резонанс токов. Мощность.
Обновление приборов.(0.55)
Погрешности и поправки.(5.32)
Активное и индуктивное сопротивления.(11.30)
Активное и емкостное сопротивления.(4.45)
Дополнительно.(4.34)
ТЕСТ
5. Трёхфазный ток.
Трёхфазные генераторы.
Соединение обмоток.
Включение нагрузки в сеть трехфазного тока.
Защита трехфазной сети предохранителями.
Мощность трехфазной цепи.
Вращающееся магнитное поле.
ТЕСТ
6. Трансформаторы.
Принцип действия, устройство и работа.
Общие сведения о трансформаторах.
Принцип действия и устройство трансформатора.(14.26)
Работа трансформатора под нагрузкой.
Расчёт витков и определение обмоток.(13.08)
Определение тока по диаметру провода.(2.16)
Трёхфазные трансформаторы.
Опыты.
Опыты х.х.и к.з.
Определение рабочих свойств трансформаторов по данным опытов холостого хода и короткого замыкания.
Опыт ХХ.(1.35)
Опыт с нагрузкой.(10.23)
Опыт КЗ.(1.27)
Магнитопровод.(2.39)
Автотрансформаторы.(3.07) Измерительные.
ТЕСТ
7. Ассинхронные двигатели.
Принцип действия и устройство ассинхронного двигателя.
Общие сведения об электрических машинах.
Принцип действия асинхронного двигателя.
Устройство асинхронного двигателя.
Устройство и работа асинхронного двигателя.(6.20)
Соединение обмоток и подключение.(16.04)
Работа под нагрузкой, вращающий момент и рабочие характеристики ассинхронного двигателя.
Работа асинхронного двигателя под нагрузкой.
Вращающий момент асинхронного двигателя.
Рабочие характеристики асинхронного двигателя.
Пуск в ход и регулирование частоты вращения трёхфазных ассинхронных двигателей.
Двигатели с улучшенными пусковыми свойствами.
Регулирование частоты вращения трехфазных асинхронных двигателей.
Однофазные ассинхронные двигатели.(5.27)
ТЕСТ
8. Синхронные машины.
Принцип действия и устройство синхронного генератора.
3х-фазный синхронный генератор.(7.13)
Синхронный генератор и сеть 3х-фазного тока.(9.30)
Работа синхронного генератора под нагрузкой.
Синхронные двигатели.
ТЕСТ
9. Машины постоянного тока.
Принцип действия и устройство генератора постоянного тока.
Обмотки якорей и эдс машины постоянного тока.
Магнитное поле машины постоянного тока при нагрузке. Коммутация тока.
Способы возбуждения генераторов.
Характеристики генераторов постоянного тока.
Работа машины постоянного тока в режиме генератора.
Пуск, характеристики, регулирование частоты вращения двигателей постоянного тока.

Работа машины постоянного тока в режиме двигателя.
Пуск двигателей постоянного тока.
Характеристики двигателей постоянного тока.
Регулирование частоты вращения двигателей постоянного тока.
Электродвигатель постоянного тока стартерного устройства.(11.04)
Электродвигатель постоянного тока с магнитным возбуждением.(6.18)
Потери и кпд машин постоянного тока.
ТЕСТ
10. Полупроводники.
Электропроводность полупроводников. Диоды.(8.48)
Транзисторы.(8.42)Тиристоры.(3.02)
ТЕСТ
Ионизация газа и электрический разряд. Фотоэлементы.
Газотрон.
Фотоэлементы с внешним фотоэффектом.
Фотоэлементы с внутренним фотоэффектом и с запирающим слоем.
Фотоэлементы с внешним и внутренним фотоэффектом.(4.02)
ТЕСТ
11. Устройства электроники.
Выпрямители.
Двухполупериодная схема выпрямления.(8.59)
Однофазная мостовая схема выпрямления.(3.06)
Сглаживающие фильтры. Стабилизаторы.
ВАХ стабилитрона.(5.05) Стабилизатор.(3.24)
Усилители низкой частоты.
Каскады устройств. (17.18) Усилитель низкой частоты на одном транзисторе.(7.35) Термостабилизация транзистора.(10.51)
Генераторы гармонических колебаний.
Генераторы колебаний.(10.03)
Генератор звуковой частоты.(2.55)
Реле. Электромагнитное реле.(9.29)
Транзисторный ключ.(2.36) Электронные реле.(3.32)
ТЕСТ

Определять неисправность деталей, как установленных на плате, так и в «чистом» виде. Подбирать аналоги для замены, узнаете по каким основным критериям это делается, определять взаимозаменяемость деталей.

На практике узнаете типовые схемы включения с примерами включения в схеме реального устройства. В качестве примера мы рассмотрим схемы наиболее распространённых устройств: блок питания, ноутбуки, мониторы, зарядные устройства и т.д. В результате вы самостоятельно сможете проводить их ремонт на компонентном уровне.

Изучение различных электронных компонентов, встречающихся практически во всех без исключения бытовых и промышленных устройствах электронной техники. Построение схем на их базе, от элементарно простых до более сложных, с построением временных диаграмм и детальным изучением, протекающих процессов

Изучение работы операционных усилителей, компараторов, логических элементов. Также проводиться сборка небольших схем на основе почти всех перечисленных элементов, с изучением их работы, измерением основных параметров или исследованием схем с помощью осциллографа.

Изучение основных принципов работы измерительных приборов, предназначенных для измерения тока напряжения сопротивления, визуального исследования электрических сигналов (осциллограф)

Будут рассмотрены топологии построения схем и примеры реальных схем на базе той или иной топологии. Рассказано об особенностях данных схем и областях применения. Рассмотрим несколько основных типовых схем построения импульсных БП, рассказывается об особенностях и областях применения той или иной схемы. Далее слушателям будут предложены реальные схемы (розданы листы со схемами БП-разными) и они будут должны самостоятельно определить топологию данной схемы. Именно определение топологии построения схемы на 80% определяет успех дальнейшего ремонта, который в 99% случаев придётся проводить, не имея схемы конкретно именно ремонтируемого БП.

Всем слушателям будет предложено рассмотреть несколько десятков электронных компонентов, различного исполнения; по мощности, по способу маркировки (буквенно-цифровое или цветовое) и рассказано что и как обозначается, чем является (диод, резистор, транзистор и т.д.) и для чего служит. Какие ещё варианты исполнения существуют и где какие устанавливаются, в зависимости от характеристик. Мы подготавливаем мастеров по ремонту, чтобы вы могли определить неисправность на любой электронной схеме.

Практические занятия по поиску и устранению неисправностей в электронных устройствах. Можно принести что-то неработающее из дома, и здесь мы коллективно или разбившись на группы это ремонтируем. На практические занятия люди приносят, для ремонта, платы от стиральных машин, гироскутеров, блоков питания и другой техники.

В процессе обучения, даём ученикам различные вопросы или задачки, имеющие нестандартные решения, чтобы не просто вызубрили, как работает тот или иной элемент, но и могли помыслить самостоятельно и применить полученные знания на практике.

Как правило, мы идём навстречу пожеланиям учащихся и делаем по их выбору основной упор при изучении схем, в сторону компьютерной, бытовой техники или телефонов.

Курс подойдет любому, кто планирует разобраться в ремонте кокой-либо электроники. Бытовая техника, промышленная и любая другая, которая работает под управлением электроники.

Обучение на курсах будет интересно как людям с нулевым опытом, так и для тех, кто уже занимается ремонтом техники. Для начала вы можете приехать в наш центр и посмотреть своими глазами как проходят курсы. Вы сможете пообщаться с преподавателем и более подробно узнать о курсе. Мы берём людей любого возраста.

В любой из понедельников вы можете приехать и попробовать абсолютно бесплатно позаниматься на курсе электроники.

После прохождения всего курса вы получите навыки ремонта любой электроники. Все наши ученики могут в любое время обратиться за советом или помощью, и мы рады будем помочь. Бонус! все наши ученики записываются в общую группу в Watsapp, где вы сможете консультироваться и делиться опытом. Также у вас будет скидка на другие наши курсы и конечно же сертификат об окончании курсов по ремонту электроники.

Мы подготавливаем опытных и сертифицированных мастеров, полностью подготовленных к работе. Полученный во время обучения опыт и знания дадут вам уверенность в своих способностях для открытия собственной мастерской по ремонту современной электроники.

Научиться можно только тому, что любишь.
Гёте И.

"Как самостоятельно изучить электронику с нуля?" — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку -- будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину... Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: "Раз ты хорош в математике, то тебе надо пойти в электронику". Типичная чушь. Электроника -- это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное -- это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на "метод тыка", но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование -- это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения , владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше - люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать -- это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

  1. Климчевский Ч. - Азбука радиолюбителя.
  2. Эймишен. Электроника? Нет ничего проще.
  3. Б.С.Иванов. Осциллограф - ваш помощник (как работать с осциллографом)
  4. Хабловски. И. Электроника в вопросах и ответах
  5. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  6. Ревич. Занимательная электроника
  7. Шишков. Первые шаги в радиоэлектронике
  8. Колдунов. Радиолюбительская азбука
  9. Бессонов В.В. Электроника для начинающих и не только
  10. В. Новопольский - Работа с осциллографом

Это мой список книг для самых "маленьких". Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  3. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  4. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  5. Шустов М. А. Практическая схемотехника.
  6. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  7. Барнс. Эллектронное конструирование
  8. Миловзоров. Элементы информационных систем
  9. Ревич. Практическое программирвоание МК AVR
  10. Белов. Самоучитель по Микропроцессорной технике
  11. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  12. Ю.Сато. Обработка сигналов
  13. Д.Харрис, С.Харрис. Цифровая схемотехника и архитектура компьютера
  14. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове.
Кстати, более подробные обзоры некоторых книг из списка выше можешь .

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет -- будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель.

Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Да прибует с тобой Ом, Ампер и Вольт:

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.



Рекомендуем почитать

Наверх