Обозначение УЗО на однолинейной схеме. Обозначение на однолинейной схеме дифавтомата. Маркировка устройства защитного отключения (УЗО)

Вайбер на компьютер 17.09.2019
Вайбер на компьютер

Устройство защитного отключения (УЗО) относится к виду выключающих устройств, в основе работы которого лежит автоматическое отключение электросети или ее части, при достижении или превышении определённой отметки дифференциального тока. Его использование в значительной степени повышает электробезопасность потребителя, а также предотвращает возникновение чрезвычайных происшествий, как в домашних условиях, так и на производстве.
Тем не менее, несмотря на то, что схема включения УЗО на первый взгляд кажется простой, даже малейшие недочёты при подключении могут нанести довольно серьёзный урон. Как не превратить средство защиты в источник неприятностей? Ответ на этот вопрос Вы сможете найти в данной статье.

Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО , рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

  • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
  • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
  • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
  • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

Устройство УЗО

Обозначение УЗО на однолинейной схеме

Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

Обозначение УЗО на однолинейной схеме

Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

Это лучший пример того, как подключить УЗО с заземлением . Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

Но всё это характерно для современной электропроводки, с учётом наличия «земли».

Типовая схема УЗО на примере «квартирной» электросети

Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

Подключение УЗО без заземления. Схема и особенности

Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

  • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
  • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
  • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
  • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

  • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
  • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

Схема подключения УЗО в однофазной сети

Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

Схема подключения УЗО в однофазной сети

Ошибки и их последствия при подключении УЗО

Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

  • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник , с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
  • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
  • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
  • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
  • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
  • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Введение

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».


Исходя из этого норматива, все схемы разделены на 8 типов:

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.
  9. Среди существующих 10 видов, указанных в данном документе, выделяют:

    1. Комбинированные.
    2. Деления.
    3. Энергетические.
    4. Оптические.
    5. Вакуумные.
    6. Кинематические.
    7. Газовые.
    8. Пневматические.
    9. Гидравлические.
    10. Электрические.

    Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

    Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

    В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

    «Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

    После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

    Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах


Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:

  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

9 функциональных признаков УГО

УГО Наименование
Дугогашение
Без самовозврата
С самовозвратом
Концевой или путевой выключатель
С автоматическим срабатыванием
Выключатель-разъединитель
Разъединитель
Выключатель
Контактор

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГО Наименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
  • Штырь
  • Гнездо
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

Наименование Обозначение
Выключатель автоматический в силовой цепи QF
Выключатель автоматический в управляющей цепи SF
Выключатель автоматический с дифференциальной защитой или дифавтомат QFD
Рубильник или выключатель нагрузки QS
УЗО (устройство защитного отключения) QSD
Контактор KM
Реле тепловое F, KK
Временное реле KT
Реле напряжения KV
Импульсное реле KI
Фотореле KL
ОПН, разрядник FV
Предохранитель плавкий FU
Трансформатор напряжения TV
Трансформатор тока TA
Частотный преобразователь UZ
Амперметр PA
Ваттметр PW
Частотомер PF
Вольтметр PV
Счетчик энергии активной PI
Счетчик энергии реактивной PK
Элемент нагревания EK
Фотоэлемент BL
Осветительная лампа EL
Лампочка или прибор индикации световой HL
Разъем штепсельный или розетка XS
Переключатель или выключатель в управляющих цепях SA
Кнопочный выключатель в управляющих цепях SB
Клеммы XT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

1. Введение и область действия. 3

2. Устройство и принцип действия УЗО. 4

2.1 Нормальный режим работы УЗО. 4

2.2 Срабатывание УЗО. 4

2.3 Электронные УЗО. 5

2.4 Параметры УЗО. 5

2.5 Обозначение УЗО на электрических схемах. 6

3. Проверка УЗО. 6

3.1 Проверка постоянным током. 6

3.2 Проверка переменным током. 7

4. Назначение УЗО. 7

4.1 Электробезопасность. 8

4.1.1 Защита от прикосновения к токоведущим частям. 8

4.1.2 Быстродействующее отключение при замыкании на корпус. 8

4.2 Противопожарная безопасность. 9

5. Установка УЗО в схему. 9

5.1 Разделение объединенного нулевого (PEN) проводника. 9

5.1.1 Для щитов с металлическим (токопроводящим) корпусом. 10

5.1.2 Типичные ошибки при разделении PEN–проводника в щитах с металлическим корпусом. 11

5.1.3 Для устройств с не проводящим электрический ток корпусом. 13

5.2 Нулевой защитный и нулевой рабочий проводники. 14

5.3 Выбор типоразмера болтового соединения для ноля сети по току нагрузки. 15

6. Поиск причин срабатывания УЗО. 15

6.1 Неверное подключение электроприемников. 16

6.1.1 Ошибки монтажа. 16

6.1.2 Ошибки проектирования. 18

6.2 Неисправность сети или электроприемников. 21

6.3 Алгоритм поиска причин срабатывания УЗО. 23

7. Приложение 1. Универсальный тестер УЗО. 24

7.1 Назначение устройства. 24

7.2 Принцип действия. 24

7.3 Инструкция по эксплуатации. 25

7.3.1 Проверка УЗО под напряжением. 25

7.3.2 Проверка демонтированного УЗО. 25

7.3.3 « Прозвонка» цепей. 26

7.3.4 Меры безопасности при использовании устройства. 26

8. Приложение 2. Контрольные лампы. 27

8.1 Проверка срабатывания УЗО. 27

8.2 Проверка типа УЗО. 28

Введение и область действия.

Прежде всего следует заметить, что устройств защитного отключения существует несколько видов, причем реагируют они на различные параметры электросети и защищают от различных поражающих факторов. В данной методике будут рассматриваться только электромеханические УЗО, реагирующие на дифференциальный ток (выключатели дифференциального тока), в дальнейшем тексте только они подразумеваются под аббревиатурой «УЗО».



Весь материал методики относится к электрическим сетям стандарта TN-C и TN-C-S.


Устройство и принцип действия УЗО.

Устройство УЗО демонстрирует Рисунок 1.

Рисунок 1. Устройство электромеханического дифференциального УЗО.

Нормальный режим работы УЗО.

Характеризуется тем, что результирующий магнитный поток 4-ех проводов электросети, пропущенных через магнитопровод 1, равен нулю или недостаточен для срабатывания электромагнитной защелки 2. Это условие выполняется при любом распределении нагрузки (одно-, двух-, трехфазная), так как любой ток, прошедший слева направо по схеме, вернется и обратно – на магнитопроводе ничего не наведется (магнитные потоки токов «туда» и «обратно» взаимно уничтожатся, ток I 2 равен нулю).

Срабатывание УЗО.

Происходит, если появляется ток утечки (I УТ) , то есть появляется электрическая связь между цепью, защищенной данным УЗО и любой другой цепью . В результате такой связи какая-то часть тока, проходящего через УЗО, вернется к источнику тока (на рисунке – «трансформаторная подстанция») помимо УЗО. В этом случае на магнитопроводе 1 образуется магнитный поток, пропорциональный току утечки, что, в свою очередь, наведет ток I 2 , который вызовет срабатывание электромагнитной защелки 2, которая при помощи механизма расцепления 3 отключит защищаемый участок сети (то, что правее по рисунку) от источника тока («трансформаторная подстанция»).

Ток утечки(I УТ) также называется дифференциальным (разностным, I Д или I ∆ ) током.

Электронные УЗО.

Наиболее дорогая часть УЗО – магнитопровод 1, так как для срабатывания электромагнитной защелки 2 магнитопровод должен иметь очень хорошее качество (или большие габариты). Удешевить магнитопровод оказалось возможно, если питать электромагнитную защелку не от тока I 2 , а непосредственно от сети, а от I 2 питать только электронный ключ, управляющий защелкой. Таким образом, электронные УЗО имеют существенный конструктивный недостаток – при ухудшении качества питающей сети (пропадание ноля, падение напряжения) они не отключаются даже в случае возникновения тока утечки .

Параметры УЗО.

УЗО подразделяются по следующим основным параметрам:

· числу полюсов – два для однофазной (трехпроводной) сети, четыре – для трехфазной (пятипроводной) сети;

· номинальному току нагрузки – 16, 20, 25, 32, 40, 63, 80, 100 Ампер;

· номинальному отключающему дифференциальному току – 10, 30, 100, 300 мА

· по типу дифференциального тока – AC (переменный синусоидальный ток, возникший внезапно либо медленно нарастающий), A (то же, что и AC, плюс выпрямленный пульсирующий ток), B (переменный и постоянный), S (задержка времени срабатывания для обеспечения селективности), G (то же, что и S, но время задержки меньше).

Следует отметить, что ток нагрузки УЗО ограничить не в состоянии и его (УЗО) необходимо защищать от токовых перегрузок и токов короткого замыкания (КЗ) аппаратами защиты (автоматическими выключателями, обеспечивающими как защиту от перегрузки по току, так и от токов КЗ, например, серии ВА-47-29, ВА-101 и т.д.). Ток нагрузки УЗО следует выбирать так, чтобы он был на ступень (номинального ряда токов) больше номинала тока автоматического выключателя защищаемой линии. То есть, если имеется нагрузка, защищенная автоматическим выключателем на ток 16 Ампер, то УЗО следует выбирать на ток нагрузки 25 Ампер.

Обозначение УЗО на электрических схемах.

Рисунок 2. Обозначение УЗО на принципиальных электрических схемах. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу – однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек.

Проверка УЗО.

Настоятельно необходима, так как их высокая стоимость воодушевляет злоумышленников на выпуск и продажу разнообразных имитаций УЗО. Особенно актуальна стала проверка после введения в действие новых ПУЭ, предписывающих в ряде случаев обязательную установку УЗО, что расширяет рынок сбыта фальшивок.

Устройство демонстрирует Рисунок 1.

Рисунок 1 . Устройство электромеханического дифференциального УЗО.

Нормальный режим работы:

Характеризуется тем, что результирующий магнитный поток 4-ех проводов электросети, пропущенных через магнитопровод 1, равен нулю или недостаточен для срабатывания электромагнитной защелки 2. Это условие выполняется при любом распределении нагрузки (одно-, двух-, трехфазная), так как любой ток, прошедший слева направо по схеме, вернется и обратно – на магнитопроводе ничего не наведется (магнитные потоки токов «туда» и «обратно» взаимно уничтожатся, ток I 2 равен нулю).

Срабатывание:

Происходит, если появляется ток утечки - I ут , то есть появляется электрическая связь между цепью, защищенной данным УЗО и любой другой цепью . В результате такой связи какая-то часть тока, проходящего через УЗО, вернется к источнику тока (на рисунке – «трансформаторная подстанция») помимо УЗО. В этом случае на магнитопроводе 1 образуется магнитный поток, пропорциональный току утечки, что, в свою очередь, наведет ток I 2 , который вызовет срабатывание электромагнитной защелки 2, которая при помощи механизма расцепления 3 отключит защищаемый участок сети (то, что правее по рисунку) от источника тока («трансформаторная подстанция»).
Ток утечки - I ут также называется дифференциальным (разностным, I Д или I Δ ) током.

Электронные УЗО:

Наиболее дорогая часть – магнитопровод 1, так как для срабатывания электромагнитной защелки 2 магнитопровод должен иметь очень хорошее качество (или большие габариты). Удешевить магнитопровод оказалось возможно, если питать электромагнитную защелку не от тока I 2 , а непосредственно от сети, а от I 2 питать только электронный ключ, управляющий защелкой. Таким образом, электронные УЗО имеют существенный конструктивный недостаток – при ухудшении качества питающей сети (пропадание ноля, падение напряжения) они не отключаются даже в случае возникновения тока утечки .

Параметры:

Устройства защитного отключения подразделяются по следующим основным параметрам:

  • числу полюсов – два для однофазной (трехпроводной) сети, четыре – для трехфазной (пятипроводной) сети;
  • номинальному току нагрузки – 16, 20, 25, 32, 40, 63, 80, 100 Ампер;
  • номинальному отключающему дифференциальному току – 10, 30, 100, 300 мА, 500 мА
  • по типу дифференциального тока – AC (переменный синусоидальный ток, возникший внезапно либо медленно нарастающий), A (то же, что и AC, плюс выпрямленный пульсирующий ток), B (переменный и постоянный), S (задержка времени срабатывания для обеспечения селективности), G (то же, что и S, но время задержки меньше).

Следует отметить, что ток нагрузки УЗО ограничить не в состоянии и его (УЗО) необходимо защищать от токовых перегрузок и токов короткого замыкания (КЗ) аппаратами защиты (автоматическими выключателями, обеспечивающими как защиту от перегрузки по току, так и от токов КЗ. Ток нагрузки УЗО следует выбирать так, чтобы он был на ступень (номинального ряда токов) больше номинала тока автоматического выключателя защищаемой линии. То есть, если имеется нагрузка, защищенная автоматическим выключателем на ток 16 Ампер, то УЗО следует выбирать на ток нагрузки больше 16 Ампер.

Обозначение на электрических схемах:


Рисунок 2. Обозначение УЗО на принципиальных электрических схемах. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу – однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек.

Проверка УЗО.

Настоятельно необходима, так как их высокая стоимость воодушевляет злоумышленников на выпуск и продажу разнообразных имитаций УЗО. Особенно актуальна стала проверка после введения в действие новых ПУЭ, предписывающих в ряде случаев обязательную установку УЗО, что расширяет рынок сбыта фальшивок.

Проверка постоянным током:

Обычно подделка заключается в том, что в корпусе электромеханического УЗО стоит электронное. Приведенная ниже методика проверки позволяет выяснить, является ли данное УЗО электромеханическим и убедиться в целостности внутренних сильноточных цепей УЗО.

  1. Берем «пальчиковую» батарейку типоразмера АА (1.5 Вольта). Заготавливаем два отрезка гибкого (многопроволочного) медного провода сечением 0.35-0.75 мм2, зачищаем и облуживаем их на 7-10 мм с обеих сторон. Зачищаем оба полюса батарейки надфилем или шкуркой и мощным паяльником (60-100 Ватт) облуживаем полюса и припаиваем к ним отрезки провода.
  2. Взводим УЗО. Если не взводится – неисправно.
  3. Отрезками провода нашего «тестера» прикасаемся к двум выводам одного из полюсов УЗО (сверху и снизу). Если не срабатывает – меняем полярность (переворачиваем батарейку) и пробуем снова. Если не срабатывает при любой полярности – УЗО неисправно. Если сработало – идем дальше.
  4. Повторяем пункты 2 и 3 для всех полюсов УЗО. Если не сработало хотя бы на одном – УЗО неисправно.

Проверка переменным током:

Позволяет проверить не только тип УЗО, но и соответствие тока срабатывания заявленному. Такую проверку можно проводить как при установленном по месту УЗО, так и при отключенном. Принцип проверки заключается в преднамеренном пропускании переменного тестового тока, имитирующего ток утечки, через полюса УЗО.
Для выполнения подобных проверок используются специализированные тестеры (смотри Рисунок 3). Подробности проверки переменным током смотри в технических описаниях тестеров (Приложение 1.).


Рисунок 3 . Тестер УЗО универсальный.
Возможна также проверка типа и срабатывания смонтированных в электроустановку УЗО при помощи контрольных ламп – смотри Приложение 2. Контрольные лампы..

Назначение:

УЗО предназначены для отключения участка сети, из которого произошла утечка тока, численно равная или большая дифференциального тока данного УЗО.

Электробезопасность.

Наиболее важное применение УЗО – обеспечение электробезопасности людей. УЗО обеспечивает:

  • защиту от прикосновения к токоведущим частям;
  • быстродействующее отключение электроприборов при замыкании на корпус.

Защита от прикосновения к токоведущим частям.

Рассмотрим случай прикосновения человека к фазному проводу сети – Рисунок 1. Через тело человека потечет ток, который для УЗО является током утечки. Если ток утечки превысит дифференциальный ток УЗО, то оно отключит участок сети, чем ограничит время протекания тока через тело пострадавшего. Тут следует отметить, что если человек прикоснется к фазе и к рабочему нулю, то для УЗО сопротивление тела человека ничем не будет отличаться от штатной нагрузки и отключения не произойдет, человек получит электротравму.
Для обеспечения минимально необходимого уровня безопасности людей от прикосновения к токоведущим частям требуется выбирать дифференциальный ток УЗО не более чем 30 мА.

Быстродействующее отключение при замыкании на корпус:

В случае защиты УЗО электроприемников с металлическим корпусом обеспечивается быстродействующая защита от короткого замыкания (КЗ) на корпус. Рассмотрим пример – защиту при помощи УЗО электронагревателя – Рисунок 4.

Рисунок 4 . Защита УЗО электронагревателя.
Схема состоит из УЗО (QF1 по схеме) с дифференциальным током 30 мА, розетки с заземляющим контактом (з/к) XS1 , вилки с з/к XP1 и электрического обогревателя, представляющего собой ТЭН, смонтированный в металлическом корпусе. Аппарат токовой защиты находится выше по схеме и условно не показан. Разделение PEN-проводника на схеме показано условно, для наглядности цепи тока утечки.
Если в электронагревателе произойдет короткое замыкание на корпус, то ток КЗ окажется для УЗО током утечки, и оно быстро сработает, отключив аварийный участок сети.

Тут следует разоблачить один предрассудок: считается, что при двухпроводной сети установка УЗО не имеет смысла. Действительно, в двухпроводной сети при замыкании на корпус электроприбора УЗО не отключит напряжение, так как нет тока утечки – Рисунок 5.

Рисунок 5 . УЗО в двухпроводной сети.
Однако при прикосновении к корпусу аварийного электроприбора человека, стоящего на земле, ток утечки появится, и УЗО спасет человека от электротравмы. Таким образом, УЗО в двухпроводных сетях обеспечивает защиту человека от прикосновения к токоведущим частям, в том числе и при замыкании на корпус.

Противопожарная безопасность:

Некоторая часть пожаров вызывается токами утечки на землю, разогревающими место утечки вплоть до возгорания. Для пресечения подобных пожаров достаточно установить УЗО с дифференциальным током 100 мА или менее.

Установка в схему.

Разделение объединенного нулевого (PEN) проводника:

В тех случаях, когда УЗО устанавливается в электроустановку, питающуюся по 4-ехпроводной схеме (3 фазы + объединенный нулевой проводник, PEN-проводник), то есть по стандарту TN-C, требуется выполнять разделение объединенного нулевого проводника (PEN -проводника) на нулевой рабочий (N ) и нулевой защитный (PE ) проводники (перейти к системе TN-C-S). Подробнее о различиях нулевого рабочего и нулевого защитного проводников смотри в пункте 5.2.
Требования ПУЭ к разделению PEN –проводника гласят:

  1. нулевой рабочий и нулевой защитный проводники запрещено присоединять под один болт;
  2. PEN -проводник для разделения присоединяется к PE -клемме, надежно соединенной с N -клеммой.

Для щитов с металлическим (токопроводящим) корпусом:

Разделение PEN -проводника предпочтительно осуществлять на металлическом корпусе щита. Такое разделение демонстрирует Рисунок 6.

6 . Разделение PEN-проводника на корпусе щита.
Совмещенный PEN-проводник вводного кабеля присоединяется к болтовому соединению XN2, смонтированному на корпусе щита. XN2 соединен также с ноль-клеммой «PE», служащей для распределения защитного нуля. Рабочий ноль берется от болтового соединения XN1, также смонтированного на корпусе щита. С XN1 допустимо брать несколько проводников рабочего ноля (например, для нескольких УЗО), но нельзя присоединять к нему PE или PEN проводники нагрузок.
В том случае, если нагрузкой является распределительный щит, питаемый по 4-ехпроводной схеме, то ее PEN-проводник следует присоединять к XN2 (не к ноль-клемме «PE» и не к цепям рабочего ноля).
Типоразмеры болтовых соединений XN1 и XN2 здесь и далее должны соответствовать требованиям пункта 5.3.

Типичные ошибки при разделении PEN–проводника в щитах с металлическим корпусом:

Нельзя разделять PEN-проводник в нулевой клемме входного УЗО – Рисунок 7.

Рисунок 7 . Ввод PEN-проводника во входную клемму "N" УЗО – ОШИБКА!

Запрещено также соединять N, PE и PEN проводники под один болт – Рисунок 8.


Рисунок 8. Объединение N, PE и PEN проводников под один болт – ОШИБКА!

Для устройств с не проводящим электрический ток корпусом:

В случаях, когда разделение PEN-проводника требуется выполнить в устройстве с не проводящим электрический ток корпусом (например, в пластиковом боксе) следует вводить PEN-проводник на ноль-клемму PE – Рисунок 9. При этом особое внимание следует уделить надежности соединения PEN-проводника с ноль-клеммой PE, например, зажать этот проводник под два винта ноль-клеммы. От надежности этого соединения зависит безопасность людей.


Рисунок 9. Разделение PEN-проводника в токонепроводящем корпусе.

Нулевой защитный и нулевой рабочий проводники:

Нулевым рабочим называется проводник, присоединенный к нулевому выводу питающего трансформатора (к общей точке соединенных в «звезду» обмоток трансформатора) и по которому течет ток нагрузки. Рабочий нулевой проводник обозначается “N ”.
Нулевым защитным называется проводник, присоединенный к нулевому выводу питающего трансформатора с одной стороны, и к токопроводящим частям электроприемников, подлежащим защите от появления на них опасного для жизни людей напряжения – с другой. К таким «токопроводящим частям электроприемников» относятся части, к которым при эксплуатации не исключено прикосновение человека – в основном корпуса (подробнее смотри в ПУЭ – «части, подлежащие занулению»). Нулевой защитный проводник обозначается “PE ”. В нормальном режиме работы сети по нулевому защитному проводнику ток не течет.
Из определения рабочего и защитного нолей следует, что до определенной точки это один и тот же проводник (PEN -проводник), присоединенный к нейтрали трансформатора. Для сетей с глухозаземленной нейтралью можно считать, что PEN -проводник и нейтраль трансформатора – одно и тоже (Рисунок 10). Обычно разделение PEN -проводника производится на главной заземляющей шине , устанавливаемой на вводе (по схеме) в электроустановку.


Рисунок 10 . Рабочий и защитный ноль.
Следует отметить, что называть нулевой защитный проводник «землей» неточно, так как с землей соединяются в равной степени оба ноля – и рабочий, и защитный (так как заземляется PEN -проводник – смотри Рисунок 10). Более того, срабатывание защиты при замыкании фазы на корпус электроприбора происходит от тока, идущего по нулевому защитному проводнику, а не от тока через землю.
Резюмируя, следует отметить основное, с точки зрения использования УЗО, различие рабочего и защитного нолей – в рабочем ноле ток течет в нормальном режиме, а в защитном ноле – только при аварии электроустановки.

Выбор типоразмера болтового соединения для ноля сети по току нагрузки:

Для выбора типоразмера болтового соединения, обеспечивающего присоединение защитного (и рабочего) ноля составлена Таблица 1.
Таблица 1 . Типоразмер болтовых соединений защитного зануления.


Тог нагрузки, Ампер.

Типоразмер резьбы
соединения

Наименьший диаметр контактной площадки, мм

свыше 16 до 25

свыше 25 до 100

свыше 100 до 250

свыше 250 до 630

Нейтраль – общая точка трех обмоток трансформатора.

Поиск причин срабатывания УЗО.

Все причины, вызывающие срабатывание УЗО (при эксплуатации электрических сетей), можно уложить в четкую классификацию.

  • Неверное подключение электроприемников:
    • ошибки монтажа;
    • ошибки проектирования.
  • Неисправность сети или электроприемников (падение сопротивления изоляции токоведущих частей электроустановки).

Неверное подключение электроприемников.

Ошибки монтажа:

При подключении электроприемников через УЗО разводка фазных проводников обычно не вызывает затруднений. А вот неверное включение нулевых проводников встречается, при недостаточной квалификации персонала, сплошь и рядом. Типичную «трудность» представляет собой подключение трехфазных электроприемников с металлическим корпусом. Рассмотрим, например, включение через УЗО трехфазного электродвигателя – Рисунок 11.

Рисунок 11. Включение электродвигателя через УЗО.
На схеме условно не показаны аппараты токовой защиты и управления. Слева – верное подключение, справа – типичная ошибка. С токопроводящими корпусами электроприемников должен быть связан защитный, но никак не рабочий ноль.
Подобную ошибку бывает очень тяжело обнаружить, так как срабатывание УЗО происходит без видимых закономерностей. Какое-то время электродвигатель (по схеме справа) работает нормально, затем УЗО отключается, его включают и опять какое-то время электроустановка работает «нормально» и так далее. Причина срабатывания УЗО по схеме Рисунок 11, справа – в утечке тока через рабочий ноль (N). Наличие тока утечки в правой схеме обуславливается тем, что корпус электродвигателя М1 (контакт XN3) так или иначе оказывается связан с землей, а через нее – с PEN-проводником (то есть с контактами XN1 и XN2). Величина тока утечки зависит от напряжения на PEN-проводнике относительно земли, а напряжение, в свою очередь, от тока через PEN-проводник (от того, насколько симметрична трехфазная цепь).
Особенно трудно диагностировать подключение рабочего ноля к корпусу электроприбора в том случае, если к одному УЗО подключена целая группа электроприемников. Достаточно ошибки при подключении только одного из них, и начинает нестабильно работать вся группа. Рассмотрим пример, имевший место на практике – Рисунок 12.

Рисунок 12. Часть схемы цеха.

Рисунок 12 демонстрирует часть схемы цеха, предназначенную для питания нескольких трехфазных станков. Через УЗО QF1, автоматический выключатель QF2 и клеммные коробки Кр1-Кр2 5-типроводным кабелем запитаны 5-тиконтактные розетки XS1-XS3. К розеткам при помощи вилок XP1-XP2 подключаются станки (число жил в кабеле от вилки к станку определяется схемой станка). Схемы станков показаны упрощенно. На схеме XN1 и XN3 – болтовые соединения, смонтированные на корпусе щита, а XN2 и XN4 смонтированы на корпусах соответствующих электроприемников.
Первым был включен станок М2 в XS3, при этом электрик, подключавший вилку с кабелем, допустил ошибку – соединил корпус станка (XN4) с рабочим нулем розетки. Однако электроприемник заработал нормально и электрик сдал его в эксплуатацию. УЗО срабатывало 1-2 раза за смену и включалось электротехнологическим персоналом, не сумевшим верно оценить характер (да и сам факт наличия) неисправности.
Затем был подключен станок М1 в XS1. При включении выключателя SA1 (в реальности схема управления пускателя КМ1 была гораздо сложнее) и срабатывания контактора УЗО отключалось, причем не всегда мгновенно. Был сделан ошибочный вывод о том, что в станке М1 происходит утечка тока в PE-проводник: либо в схеме ниже контактора, либо в цепях управления. Проверка сопротивления изоляции этих цепей оказалась весьма трудоемкой и не дала результатов – сопротивление изоляции электрической части станка было в норме.
Тогда в свободную розетку XS2 между фазой и рабочим нолем была включена «контролька» EL1. УЗО мгновенно отключилось. Был сделан вывод, что рабочий ноль заземлен, проверено сопротивление изоляции рабочего ноля станка М2 относительно РЕ-проводника и неисправность, наконец, была найдена и устранена.

Ошибки проектирования.

Электроприемники с PEN-проводником:

До сих пор выпускаются и продаются электроприемники, которые не предназначены для работы в сетях, оборудованных УЗО. Рассмотрим, например, упрощенную схему некоторых тепловентиляторов – Рисунок 13.

Рисунок 13 . Электроприемник, не предназначенный для работы под УЗО.
Схема показана упрощенно – не показаны аппараты токовой защиты и ТЭНы. Цепи управления магнитного контактора (пускателя) КМ1 представлены выключателем SA1, подающим напряжение 220 Вольт на катушку пускателя. От выходных контактов КМ1 подается на электродвигатель М1, установленный на металлическом корпусе тепловентилятора. XN1, XN2 и XN3 – болтовые соединения, установленные на корпусе электроприемника, то есть электрически соединенные между собой. Таким образом, в объединенном нулевом проводнике при работе тепловентилятора течет ток катушки пускателя КМ1. Подключить такое устройство к УЗО не удастся – подключай PEN-проводник хоть к рабочему, хоть к защитному нулю – УЗО сработает.
Для подключения подобных нагрузок следует модернизировать электроприемник одним из двух способов.
Если все элементы электроприемника, кроме катушки пускателя (для нашего примера – электродвигатель вентилятора и ТЭНы) штатно работают без подключения ноля, то целесообразно установить катушку магнитного контактора на линейное напряжение сети – 380 Вольт, так, как показывает Рисунок 14. В этом случае в нулевом проводнике тока не будет и он подключится как защитный нулевой проводник (PE).


Рисунок 14 . Модернизация тепловентилятора на 4-ехпроводную схему.
Здесь (Рисунок 14) XN1 и XN3 – болтовые соединения, установленные на корпусе щита, а XN2 и XN4 – болтовые соединения, установленные на корпусе электроприемника.
Если же в электроприемнике имеется несколько элементов, требующих токоведущего (рабочего) ноля, то целесообразно разделить цепи нулевого рабочего и нулевого защитного проводников, так, как показывает Рисунок 15.

Рисунок 15 . Модернизация тепловентилятора на 5-типроводную схему.
Здесь (Рисунок 15) XN1 и XN3 – болтовые соединения, установленные на корпусе щита, а XN2 и XN4 – болтовые соединения, установленные на корпусе электроприемника.

Электроприемники с утечкой в защитный проводник:

Существуют электроприемники, у которых небольшой ток утечки в защитный проводник присутствует в нормальном режиме работы. Обычно это электротехнические изделия, спроектированные под сети, отличные от отечественных. Наиболее ярким примером таких приборов являются наиболее распространенные на рынке блоки питания персональных компьютеров. Причины утечки тока в защитный проводник демонстрирует Рисунок 16.

Рисунок 16. Источник тока утечки в блоке питания.
Аппарат токовой защиты находится выше по схеме и условно не показан. Разделение PEN-проводника на схеме показано условно, для наглядности цепи тока утечки.
На входе в импульсный блок питания (БП) для фильтрации высокочастотных помех установлены два конденсатора – С1 и С2. Как видно из схемы, их общая точка соединена с корпусом БП и, соответственно с корпусом всего устройства (корпус БП и корпус компьютера используется в качестве экрана). Утечка происходит через конденсатор (С2 по схеме) и определяется его емкостью.
Величина тока утечки составляет единицы миллиампер и одиночный компьютер не вызывает срабатывания УЗО с дифференциальным током 30 мА. Однако при питании от одного УЗО нескольких компьютеров их токи утечки суммируются и линия питания начинает работать нестабильно.
Возможно несколько безопасных путей преодоления подобных затруднений:

  • Заменить оборудование (или модернизировать существующее) на аналогичное, но не создающее утечки тока в защитный проводник.
  • Если стоит УЗО с дифференциальным током 10 мА, то есть смысл рассмотреть возможность его увеличения до 30 мА (однако не выше, так как при дифференциальном токе более 30 мА электробезопасность пользователей техники не обеспечивается).
  • Разбить группу компьютеров на несколько отдельных линий электропитания так, чтобы одно УЗО с дифференциальным током 30 мА защищало не более 2-ух потребителей с утечкой (в идеале – одного потребителя).

Чего не стоит делать в такой ситуации:

  • Ни в коем случае нельзя отключать от корпусов электроприемников защитный ноль, так как это резко снизит уровень электробезопасности.
  • Нельзя «обходить» УЗО по аналогичной причине.

Неисправность сети или электроприемников.

Выражается в падении сопротивления изоляции фазных проводников и рабочего ноля от земли ниже определенного уровня, при котором ток утечки становится достаточным для срабатывания УЗО. Схему, демонстрирующую включение сопротивлений изоляции токоведущих проводников, демонстрирует Рисунок 17.


Рисунок 17. Сопротивление изоляции.
На схеме (Рисунок 17):

  • R L – сопротивление изоляции фазного проводника;
  • R N – сопротивление изоляции нулевого рабочего проводника;
  • R Н – сопротивление нагрузки;
  • I УТЕЧКИ – ток в защитном нулевом проводнике PE , вызванный включением в схему R L и R N .

Срабатывание УЗО происходит, когда ток утечки через поврежденную изоляцию становится больше, чем дифференциальный ток УЗО (QF1 по схеме). Примерно определить сопротивление изоляции фазного проводника, при котором УЗО отключит участок сети, можно из формулы:
, где
– минимальное сопротивление изоляции фазы, при котором УЗО не срабатывает;
U Ф – фазное напряжение сети (напряжение между фазой и PE-проводником);
I Δ – дифференциальный ток срабатывания УЗО.

Определить аналогичное сопротивление изоляции для рабочего ноля не удастся, так как напряжение на нем относительно PE неизвестно (обычно единицы Вольт).
Частный случай срабатывания УЗО при R L =0 (КЗ на корпус) рассмотрен в пункте 4.1.2. Аналогично, срабатывание УЗО при R N =0 (рабочий ноль на корпусе) рассмотрен в пункте 6.1.1.
К основным причинам, вызывающим снижение сопротивления изоляции электроустановок, следует отнести: старение изоляции; повреждение изоляции (механическое, термическое или химическое); попадание воды (конденсация, затекание) на токоведущие части.


Алгоритм поиска причин срабатывания.


Универсальный тестер.


Рисунок 18. Универсальный тестер УЗО.

Назначение устройства:

Тестер устройств защитного отключения универсальный (далее – тестер) предназначен для проверки устройств защитного отключения (УЗО) как до монтажа (например, при покупке), так и при приемке электроустановки в эксплуатацию. Тестер имеет два режима:

  • режим проверки УЗО под напряжением (смонтированным в схему) – в этом случае проверяются как электронные, так и электромеханические УЗО вместе с цепями защитного ноля к месту подключения тестера;
  • режим проверки обесточенных (демонтированных) УЗО – он применяется при покупке, перед монтажом в схему и позволяет отличить электромеханические УЗО от электронных (то есть выявить часто встречающуюся подделку).

Тестер позволяет проверять как однофазные (двухполюсные), так и трехфазные (четырехполюсные) УЗО.
Тестер УЗО универсальный изготавливается для проверки УЗО током 30 мА, однако может быть изготовлена модификация для проверочного тока 10 мА.

Принцип действия:

Проверка УЗО производится намеренным пропусканием через полюс УЗО переменного тока достаточной для срабатывания величины. При проверке смонтированного в схему УЗО тестовый ток носит емкостной характер, при проверке демонтированного УЗО (щупами) – активный с гальванической развязкой от сети. Проверочный ток выбран величиной в 31 мА ±5%, то есть не сработавшее при испытаниях настоящим тестером УЗО подлежит отбраковке.

Инструкция по эксплуатации.

Проверка под напряжением:

Для проверки смонтированного в схему УЗО следует включить тестер в розетку с заземляющим контактом (находящуюся под напряжением), защищенную проверяемым УЗО. Щупы тестера должны быть разомкнуты. Зеленый светодиод должен загореться, если не загорелся – в розетке нет напряжения (зеленый светодиод служит индикатором сетевого напряжения). Нажать кнопку тестера – загоревшийся красный светодиод индицирует протекание тестового тока. Далее возможны 4 варианта:

  • После вспышки красного светодиода оба светодиода погасли. УЗО, равно как и цепи защитного ноля, исправны. Включить УЗО и перейти (при необходимости) к следующей розетке.
  • Светятся одновременно (при нажатой кнопке) оба светодиода – и зеленый и красный. Данная розетка не защищена УЗО, или УЗО неисправно. Защитный ноль подведен. Если испытуемое УЗО является электромеханическим, то демонтировать его и проверить щупами.
  • Зеленый светодиод светится, красный (при нажатой кнопке) – не светится. К розетке не подведен защитный ноль. До устранения неисправности проверка УЗО невозможна.
  • Зеленый светодиод погас, красный (при нажатой кнопке) светится. УЗО исправно, но схема собрана неверно (или имеет место неисправность) – при отключенном УЗО в розетках сохраняется напряжение.

Проверка демонтированного устройства защитного отключения:

Такой проверке подвергаются только электромеханические УЗО, соответственно, тестером может быть выявлена часто встречающаяся подделка – продажа электронного УЗО под видом электромеханического.
Для проверки устройства защитного отключения следует вставить тестер в находящуюся под напряжением розетку с заземляющим контактом. Зеленый светодиод (если щупы разомкнуты) загорится, индицируя наличие сети. Далее следует для каждого полюса выполнить приведенную ниже последовательность действий:

  • Взвести УЗО.
  • Щупами прикоснуться к выводам (ко входу и к выходу) одного из полюсов (фаз) УЗО. Погасание зеленого светодиода свидетельствует о протекании тестового тока через цепь УЗО. Далее возможны 3 варианта:
    • зеленый светодиод погас, но УЗО не сработало – выбраковать УЗО;
    • зеленый светодиод не гаснет при касании щупами полюса взведенного УЗО – обрыв данного полюса, УЗО отбраковать;
    • зеленый светодиод кратковременно погас, УЗО сработало, зеленый светодиод вновь зажегся – УЗО исправно.
  • Перейти к проверке следующего полюса.

«Прозвонка» цепей:

Допустимо использовать тестер для проверки целостности цепей, например, для «прозвонки» предохранителей. Погасание зеленого светодиода указывает на протекание в испытуемой цепи тока и соответственно, ее исправность. На выходе тестера в режиме холостого хода (при разомкнутых щупах) действует переменное напряжение с амплитудным значением 4 Вольта, что нужно учитывать при проверке цепей с некоторыми полупроводниковыми приборами.

Меры безопасности при использовании устройства:

  • При использовании тестера соблюдайте Правила Техники Электробезопасности и Межотраслевые Правила Охраны Труда, а также настоящую инструкцию по эксплуатации. Проверки по §7.3.2 и 7.3.3 проводите только при ПОЛНОМ снятии напряжения с проверяемых цепей.
  • Тестер предназначен для работы через розетку с заземляющим контактом. Запрещено использовать тестер при подключении любым другим способом, так как при нажатии кнопки на контакте «PE» тестера появляется напряжение 110 Вольт относительно земли, что опасно для жизни.
  • Не допускайте попадания внутрь тестера инородных предметов и любых жидкостей, так как это может привести к утрате гальванической развязки между сетью и щупами тестера.
  • Не подключайте щупы тестера к любым источникам напряжения (тока), так как это приведет к выходу тестера из строя.
  • Не изменяйте электрическую схему прибора.
  • Не эксплуатируйте тестер с поврежденным корпусом.


2. Контрольные лампы


Рисунок 19. Контрольные лампы для электроустановок 220/380 Вольт.

Проверка срабатывания:

Такая проверка позволяет убедиться, что защищающее розетки УЗО и цепи защитного ноля исправны. Для проверки рекомендуется выбирать ток через контрольные лампы (смотри §6.2) при U=220 Вольт как первый номинал в сторону увеличения от дифференциального тока проверяемого УЗО. Например, для проверки УЗО с дифференциальным током в 10 или 30 мА следует вкрутить в контрольку лампы мощностью 10 Вт; для УЗО на 100 мА – 40 Вт.
Для проверки следует:

  1. Проверить, что данная розетка находится под напряжением (убедиться, что контролька светится при присоединении к рабочему нулю и фазному контакту розетки, УЗО при этом не должно срабатывать).
  2. Присоединить контрольку к фазному контакту проверяемого разъема и к контакту защитного ноля. Далее возможны 3 варианта:
    1. УЗО отключило напряжение на линии. УЗО и цепи защитного ноля исправны.
    2. Контрольные лампы светятся. Данная розетка не защищена УЗО, или УЗО неисправно. Цепи защитного ноля исправны.
    3. УЗО не отключает линию, контрольные лампы не светятся. К розетке не подведен защитный ноль.
  3. Перейти к следующей розетке.

Проверка типа УЗО:

Проводится для того, чтобы отличить электронные УЗО от более безопасных электромеханических. Основана проверка на свойстве (и преимуществе) электромеханических УЗО срабатывать от протекающего через них тока (электронным УЗО для срабатывания требуется на входе напряжение сети).
Для проверки следует:

  1. Отключить от входа УЗО все проводники, кроме одной (любой) фазы.
  2. Взвести УЗО.
  3. К выходу запитанного полюса УЗО присоединить контрольку (обеспечивающую достаточный для срабатывания УЗО ток), другим щупом присоединенную к защитному нолю сети (к PE-проводнику).
  4. Электромеханическое УЗО отключится, электронное – нет

В современном мире сложно прожить без электричества. Но для подобных видов энергии требуется максимальная защита. Поэтому всегда создаются качественные установки, способные это реализовать. Современные разработки в этой отрасли создают все условия для взаимного контакта. УЗО - это устройство, без которого сложно обойтись.

Не каждый человек понимает, что это такое. Для ясности стоит узнать обозначение, назначение, принцип работы. Информация об этом будет изложена в данной статье.

О защите

Без электричества сложно представить жизнь человека, но требуется и создавать условия для защиты от поражения. Самое элементарное - это изоляция проводки, но полностью все обернуть не получится. Потому что схема должна иметь технические разрывы и контактные группы. Но никто не исключает вероятность:

  • Износа изоляции.
  • Порыва проводки.
  • Нарушения техники безопасности.
  • Неправильной эксплуатации и т. д.

Поэтому создать изоляцию и заземление - это самое лучшее решение. Но не всегда этого хватало. Поэтому много лет назад в Германии появилось первое УЗО. Обозначение его - на схеме, что представлена ниже.

Как устроена эта система? Она предполагает наличие:

  • минимального размера.
  • Поляризованного магнитного реле. Его чувствительность не более 99 миллиампер.

Создать что-то уникальное и более скоростное в прошлые века не получалось из-за отсутствия соответствующих материалов. Но уже в двадцатом веке появились усовершенствованные разработки. Главное, что была создана защита от ложного срабатывания в период непогоды. Помимо этого, от большого размера пришли к более компактному, способному расположиться на небольших подставках.

Сегодня разработчики не останавливаются на достигнутом, и в скором будущем будут сделаны системы защиты от поражения электрическим током с искусственным интеллектом. Благодаря разработкам устройство будет выполнять максимум функций и при необходимости оповещать пользователей.

Что за устройство и как функционирует?

Каждый желает знать обозначение УЗО. Как мы уже отметили, это От чего защищает УЗО? Аппарат имеет функцию защиты человека от удара током, а также от вероятности возгорания проводов и прочих установок.

УЗО - что это такое в электрике? В основе действия идут законы, которые основываются на входящей и выходящей электроэнергии в замкнутых цепях с максимальными нагрузками.

Это говорит о том, что ток должен иметь одно значение, независимо от фазы прохождения. Дальше все просто. Когда происходит касание человека или разрыв, то показатель в электропроводке меняет свое значение и перескакивает. Для УЗО это сигнал к тому, чтобы выключиться. Именно такая система берется за основу и реализуется в установках.

Весь процесс продуман до мелочей, поэтому даже незначительные утечки электроэнергии фиксируются. Чтобы понять принцип действия, это происходит так:


В этом условном обозначении каждое имеет свое значение - входной ток и выходной. УЗО обозначения имеет свои. Они применяются в электрических схемах, и люди с опытом о них знают.

Принцип работы

Назначение УЗО мы уже знаем - это защита от замыканий. Защита осуществляется в следующих направлениях:

  • Замыкание. Когда фазный провод дает сбой, это есть на многих бытовых приборах - машинках-автоматах, водонагревателях, посудомоечных машинах и т. д. Поломка часто происходит в момент нагрева основного элемента.
  • Нарушение монтажных правил при прокладке электропроводки. Если ее убрали под штукатурку, то УЗО будет срабатывать, пока не выполнится ремонт.
  • Нарушение соединения в электрическом щите. Если создаются условия, при которых происходит незначительная потеря тока, то эффективность работы всей установки в целом под вопросом. По этой причине идет срабатывание защиты.

Если посмотреть на схему, то увидеть нарушение не получается, а УЗО срабатывает. Это говорит о его точности и мельчайших фиксациях. Бывает и так, что неопытный человек не может найти, в чем причина отключения. Только тщательный анализ приведет к результату.

Исключения

Хотя бывают исключения из правил. Есть ситуации, в которых при попадании животного или человека в электроустановку реакции не происходит (из-за попадания на фазу и ноль). По этой причине иногда требуется вспомогательная защита.

Где встречается?

Важно понять назначение УЗО и принцип работы. Устройство получило расширенное применение в быту, на многих установках. Иногда схема разрабатывается на входе, но не исключается и на каждом приборе. Дело в том, что УЗО для мощных устройств небольшого размера дешевле. Но в местах группового пребывания людей будет целесообразно применять его обширно. При этом разделение происходит по группам - вся проводка не отключается, что удобно.

Чаще всего применяют типа. В его основе лежит та же система работы, но период срабатывания медленнее. Принцип в том, чтобы не выключать всю сеть, а вести работы по секциям (где прошла потеря, там система и обесточилась). К примеру, если в ресторане играет музыка, там происходит замыкание и различный заряд энергии, то выключится лишь аппаратура, а остальной свет останется работать.

В установках с переменным током должна быть повторная защита с применяемым УЗО для розеток. Это относится к разной бытовой технике. Большое значение при выборе имеет разрядность. Знать, как все функционирует, может не каждый, но понимать правила безопасности нужно обязательно. Система УЗО встречается не так часто, поэтому некоторые ее сами монтируют.

Самый простой прибор к пониманию - это водонагревательный агрегат. Какой тип УЗО и его применение здесь? Есть несколько вариантов:

  • По возникновению напряжения.
  • По утечке тока.
  • По времени срабатывания.

Когда человек находится в душе или просто моет руки теплой водой, будет утечка электроэнергии. Его уже ток не ударит, так как происходит срабатывание УЗО. Специалисты считают, чтобы эта установка функционировала в доме, важно грамотно распределить проводку. Иногда на старой не получается это сделать из-за неверного ввода от столбов.

Работа устройства

При нажатии кнопки "Пуск" начинается работа УЗО. Происходит измерение напряжения двух точек. Одна - это поток энергии, а вторая - требуемая защита. На втором участке не должно присутствовать напряжение. При появлении напряжения на участке под защитой достижения его заданной величины УЗО отключает ввод. Это защита по напряжению.

Защита по силе тока

Через встроенные трансформаторы происходит измерение входного и выходного тока. В нормальном режиме разница этих показателей должна равняться нулю. При создании аварийной ситуации, когда происходит утечка тока и величина несет опасность для человека или животного, УЗО отключает ввод.

Дифференциальное УЗО

Буквенно-цифровое обозначение УЗО в данном случае - QFD1. Оно характеризует себя с точки зрения быстрого действия. Чем больше показатель утечки тока, тем быстрее скорость отключения. Другие виды УЗО срабатывают по заданным временным отрезкам. Всегда при любых показателях время отключения стандартное. Преимущества дифференциального УЗО в том, что происходит измерение тока и напряжения.

Часто при подключении жилого строения проверяющие по предписанию заставляют сделать УЗО на счетчике. Это прописано в техприсоединении, проводка выполняется с учетом требований. В распредщите ставится УЗО и автомат. Как правило, занимаются этим люди без опыта, и когда это видит мастер, то выявляется много ошибок. По этой причине не происходит срабатывание. Перед установкой стоит понимать работу УЗО. Что это такое в электрике, мы уже рассмотрели.

Подключение без ошибок

Важно произвести грамотное подключение не только к источнику энергии, но и друг к другу. Есть два основных варианта:

  1. Самый распространенный и часто применяемый - основной автомат - счетчик учета - УЗО.
  2. Что будет работать эффективнее: основной автомат - счетчик учета - УЗО селективного типа - групповой автомат - групповое УЗО.

Условное обозначение УЗО на электрической схеме имеет свой символ - D. Специалисты по ним прочитывают и понимают, как функционирует вся система. Есть правила, которые не стоит нарушать:

  • После выхода из провод с нулевым показателем не должен соединяться клеммой заземления. Потому что это дает вероятность утечки тока и ложных отключений.
  • Важно подключить УЗО полностью. Когда провод от запитки идет мимо, появляется ток в Это воспринимается системой как нарушение, и идет срабатывание защиты.
  • Есть нулевые провода розеток, которые проверяются УЗО. Они не должны быть зафиксированы с заземлением. Потому что будет происходить отключение сети при маленьких колебаниях.
  • Когда создаются групповые защитные установки, то нельзя перехлестывать нулевые провода на входящих клеммах. Это приведет к защитной реакции всей установки.

Именно по этой причине всегда выполняется предварительная схема. Иначе можно запутаться даже специалисту. Не всегда процесс сложный, есть такие устройства, работа которых настраивается просто. Важно учесть все ошибки, способные происходить в сети. Когда в схему все внесено грамотно, работа УЗО приносит эффект. Сегодня имеются и аналоги такой системы защиты. Но перед выбором стоит понять, как они работают.

Обратите внимание

Теперь мы знаем расшифровку маркировки УЗО. В любом случае при работе с электроприборами и установками нужно не забывать о технике безопасности. Стоит периодически делать визуальный осмотр всех проводов. В случае их повреждения не нужно медлить с ремонтом. В противном случае подача энергии прекратится, так как в помещении сработает защитное устройство.



Рекомендуем почитать

Наверх