Напряжение на конденсаторе в цепи. Что такое переменный ток. Емкостное сопротивление конденсатора

Помощь 10.04.2019
Помощь
Details 08 May 2017

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две. Итак, сегодня мы поговорим про . Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

Рисунок 1 - Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t) , и через него течет некоторый ток I(t) . Зная одно, можно без проблем найти другое. Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока , там мы про все это довольно подробно говорили. Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом


Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик. Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная ? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы. Если говорить конкретно, то сейчас нам потребуется показательная запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

то его можно представить в показательной форме вот так

Почему это так, откуда взялось, что здесь какая буковка значит - обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас. Давайте представим, что t=0 . Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным. Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с амплитудой сигнала. Сейчас как раз такой момент. Поэтому полагаем t=0 и получаем комплексную амплитуду напряжения

Давайте раскроем скобки в экспоненте и воспользуемся правилами работы с показательными функциями.

Итак, у нас имеется три множителя. Будем разбираться со всеми по порядку. Объединим первые два и запишем выражение следующего вида

Что мы вообще такое записали? Правильно, комплексную амплитуду тока через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике , не зря ж я ее писал . Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома , у нас ток равнялся напряжению, деленному на сопротивление. Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение - переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор. Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное сопротивление конденсатора переменному току :

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное . Об этом свидетельствует буковка j в знаменателе дроби. А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фаз в 90 градусов между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье . Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент . Формула Эйлера у нас возникла из комплексного представления синусоиды. А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.

Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует , то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах . Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным . И другое оно в первую очередь из-за того самого пресловутого j в знаменателе, то есть из-за сдвига фазы. У «обычных» (которые называют активными ) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.


Рисунок 2 (кликабельно) - Зависимость сопротивления конденсатора от частоты

На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю (то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности. Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора. Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет. Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число. Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая - емкостью (реактивным сопротивлением). Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ . Требуется определить его сопротивление на частоте f 1 =50 Гц и на частоте f 2 =1 кГц . Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна U m =50 В . Ну и построить графики напряжения и тока.

Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f 1 =50 Гц сопротивление, равное

А для частоты f 2 =1 кГц сопротивление будет

По закону Ома находим величину амплитуды тока для частоты f 1 =50 Гц

Аналогично для второй частоты f 2 =1 кГц


Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f 1 =50 Гц следующим образом

А для второй частоты f 2 =1 кГц вот так

и для частоты f 2 =1 кГц

f 1 =50 Гц представлены на рисунке 3


Рисунок 3 (кликабельно) - Напряжение на конденсаторе и ток через конденсаторе, f 1 =50 Гц

Графики тока и напряжения для частоты f 2 =1 кГ ц представлены на рисунке 4


Рисунок 4 (кликабельно) - Напряжение на конденсаторе и ток через конденсаторе, f 2 =1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

Вступайте в нашу

08.11.2014 18:23

Помните, что такое конден сатор? Давайте-ка я вам напомню. Конденсатор, он же в народе "кондёр", состоит из двух изолированных обкладок. При кратковременной подаче на конденсатор постоянного напряжения, он заряжается и сохраняет в себе этот заряд. Емкость конденсатора зависит от того, на сколько "мест" рассчитаны обкладки, а также смотря, какое расстояние между ними. Давайте рассмотрим простейшую схему уже заряженного кондера:

Итак, мы здесь видим на одной обкладке восемь "плюсов", а на другой столько же и "минусов". Ну а как вы знаете, противоположности притягиваются) И чем меньше расстояние между обкладками, тем сильнее "любовь. Следовательно, плюс "любит" минус, а так как любовь взаимная, значит и минус тоже "любит" плюс)). Поэтому, это притяжение не дает разрядиться уже заряженному конденсатору.

Для того, чтобы разрядить конденсатор, достаточно проложить "мостик", чтобы "плюсы" и "минусы" встретились. То есть тупо...

0 0

Конденсатор (от латинского слова «condensare» - «уплотнять», «сгущать») - это двухполюсное устройство с определённой величиной или переменным значением ёмкости и малой проводимостью, которое способно сосредотачивать, накапливать и отдавать другим элементам электрической цепи заряд электрического тока.

Конденсатор или как его еще называют сокращенно просто «кондер» - это элемент электрической цепи, состоящий в самом простом варианте из двух электродов в форме пластин (или обкладок), которые накапливают противоположные разряды и поэтому они разделены между собой диэлектриком малой толщины по сравнению с размерами самих электропроводящих обкладок.На практике же, все выпускаемые конденсаторы представляют собой многослойные рулоны лент электродов в форме цилиндра или параллелепипеда, разделенных между собой слоями диэлектрика.

Принцип работы конденсатора

По принципу работы он схож с батарейкой только на первый взгляд, но все же он сильно отличается от него по...

0 0

Конденсатор в цепи постоянного тока Заряд конденсатора через резистор

При подключении конденсатора к источнику постоянного тока под действием электрического поля на нижнюю обкладку движутся электроны. В следствии, явления электростатической индукции с верхней обкладки конденсатора заряды уходят к положительному выводу источника питания в цепи возникает ток – ток заряда по мере накопления зарядов в конденсаторе, растёт напряжение, а ток заряда уменьшается, и так, – конденсатор подключённый к источнику тока, заряжается до Uист.

Конденсатор в цепи постоянного тока

Кратковременный ток в цепи называется ток заряда, а так как он существует короткое время, то говорят, конденсатор постоянный ток не пропускает.

Считается что конденсатор заряжается если напряжение на нём составляет 0,63 от Uист и это происходит за время
равное...

0 0

Подписывайтесь на нашу группу Вконтакте - http://vk.com/chipidip,
и Facebook - https://www.facebook.com/chipidip

*
Поведение конденсатора в цепи электрического тока можно рассмотреть на очень простых практических примерах. Конденсатор -- это устройство для накопления заряда и энергии электрического поля. Как заряжается конденсатор. При замыкании цепи пойдет ток заряда, а именно, с левой обкладки конденсатора часть электронов уйдет в правую, а из соединительного проводника правая обкладка пополнится равным количеством тех же электронов. Обе обкладки будут заряжены разноименными зарядами одинаковой величины, и между ними в диэлектрике будет присутствовать электрическое поле. Конденсатор заряжается до такого напряжения, которое приложено к нему источником питания. При разряде конденсатора избыток электронов с правой обкладки уйдет в проводник, а из проводника на левую обкладку войдет недостающее количество электронов, что означает...

0 0

КОНДЕНСАТОР - означает накопитель. В радио и электронной аппаратуре конденсатор является накопителем электрических зарядов. Простейший конденсатор состоит из двух металлических пластинок разделенных слоем диэлектрика. Диэлектрик - это материал который не проводит электрического тока и обладает определенными свойствами о которых поговорим чуть позже.

Так как конденсатор является накопителем, то он должен обладать определенной емкостью (объемом для накопления зарядов). На емкость конденсатора влияют площадь пластин (еще их называют "обкладками"), расстояние между обкладками и качество диэлектрика. К хорошим диэлектрикам относятся вакуум, эбонит, фарфор, слюда, полиэтилен, текстолит и много других синтетических материалов.
На рисунке изображен простейший конденсатор с двумя параллельными обкладками площадью S (S = m * n), которые находятся в вакууме на расстоянии d друг от друга.


Если между верхней и нижней обкладками конденсатора приложить напряжение Uab,...

0 0

Всё достаточно просто =)

Как устроен конденсатор и какие они бывают, думаю, понятно и написали.
Функции:
1. Фильтрация сигналов. Например, у нас есть постоянный сигнал, который нам хотелось бы видеть совсем постоянным. А какие-то приборы в цепи мешают этому - то включаются, то выключаются, немного изменяя напряжение. В этих случаях ставят конденсатор с этой линии на землю - специальный провод, относительно которого все напряжения мы и считаем. В обычном состоянии ток через конденсатор не идёт. Как только будет какие-то возмущения - они все уползут на землю через него, не добравшись до нашего важного агрегата. (иначе это Фильтр нижних частот)
2. Разделение сигнала. Как уже сказали, конденсатор проводит только изменяющийся сигнал, не пуская постоянный. И это пользуют в различных усилителях - например, звуковых. Вывод наушников, например, соединён с устройством воспроизведения через него. И модулированный звуком сигнал пчерез него свободно проходит. Кроме того, это...

0 0

Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.


Рис. 1. Изменение тока и напряжения в цепи с...

0 0

В электронике используется множество различных деталей, которые вместе позволяют осуществлять целый ряд действий. Одной из них является конденсатор. И в рамках статьи будет вестись речь о том, что это за механизм, как работает, для чего нужен конденсатор и что он делает в схемах.

Что называется конденсатором?

Конденсатор – это пассивное электрическое устройство, которое в схемах может выполнять различные задачи благодаря умению копить заряд и энергию электрического поля. Но главный спектр применения – это в фильтрах выпрямителей и стабилизаторов. Так, благодаря конденсаторам осуществляется передача сигнала между усилительными каскадами, задаются временные интервалы для выдержки времени, строят фильтры высоких и низких частот. Благодаря своим свойствам он также используется для подборки частоты в разных генераторах.

В данном случае интерес с материальной точки зрения представляют не одни конденсаторы. Цена на такую необходимую продукцию может находиться в...

0 0

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом целей этого сайта.

Что такое конденсатор Как устроен Как работает Где используется Виды конденсаторов

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток...

0 0

10

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же...

0 0

11

VI. Зависимость емкости конденсаторов от времени и от температуры

V. Поляризация диэлектриков

IV. Номинальная емкость и допускаемые отклонения

III. Емкость

Система условных обозначений и маркировка конденсаторов

II. Классификация конденсаторов

В зависимости от назначения различают конденсаторы общего и специального назначения. Группа общего назначения включает в себя широко применяемые конденсаторы, используемые в большинстве видов и классов аппаратуры (низковольтные конденсаторы). Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, пусковые, дозиметрические и др.

По характеру изменения емкости различают конденсаторы постоянной емкости, переменной емкости и подстроечные. У конденсаторов постояннойемкости – емкость является фиксированной, и в процессе эксплуатации не изменяется. Конденсаторы переменной емкости – допускают изменение емкости в процессе функционирования...

0 0

12

Проходит ли ток через конденсатор

Подписывайтесь на нашу группу Вконтакте - http://vk.com/chipidip, и Facebook - https://www.facebook.com/chipidip

*
Повседневный радиолюбительский опыт убедительно говорит, что постоянный ток через конденсатор не проходит, а переменный - проходит. Например, можно подключить лампу, или громкоговоритель через конденсатор, и они будут продолжать работу. Для того, чтобы понять, почему это происходит, давайте обратимся к устройству конденсатора. Конденсатор представляет собой две или несколько металлических пластин, разделенных диэлектриком. Этим диэлектриком чаще всего бывает слюда, воздух или керамика, являющиеся наилучшими изоляторами. Вполне естественно, что постоянный ток не может пройти через такой изолятор. Но почему же проходит через него переменный ток? Это кажется тем более странным, что такая же самая керамика в виде, например, фарфоровых роликов прекрасно изолирует провода переменного тока, а слюда прекрасно...

0 0

13

4.7. КОНДЕНСАТОР В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

На рис. 4.11 показана цепь электрического генератора, содержащая конденсатор. После включения цепи вольтметр, включенный в цепь, покажет полное напряжение генератора. Стрелка амперметра установится на нуле - ток через изоляцию конденсатора протекать не может.

Но проследим внимательно за стрелкой амперметра при включении незаряженного конденсатора. Если амперметр достаточно чувствителен, а емкость конденсатора велика, то нетрудно обнаружить колебание стрелки: сразу после включения стрелка сойдет с нуля, а затем быстро вернется в исходное положение.

Рис. 4.11. Цепь электрического генератора, содержащая конденсатор

Этот опыт показывает, что при включении конденсатора (при его зарядке) в цепи протекал ток - в ней происходило передвижение зарядов: электроны с пластины, присоединенной к положительному полюсу источника, перешли на пластину, присоединенную к отрицательному полюсу.

Как только конденсатор...

0 0

14

Что такое конденсатор?

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.

Принцип действия

Назначение конденсатора и принцип его работы – это распространенные вопросы, которыми задаются новички в электротехнике. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, такое устройство получает электрический ток, сохраняет его и впоследствии передает в цепь. Для лучшего понимания принципа работы...

0 0

15

Заряд и разряд конденсатора. Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность...

0 0

16

Конденсатор - это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины. Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Свойства

Емкость. Это основное свойство конденсатора. Измеряется в Фарадах и вычисляется по следующей формуле (для плоского конденсатора):

где С, q, U - это соответственно емкость, заряд, напряжение между обкладками, S –площадь обкладок, d – расстояние между ними, - диэлектрическая проницаемость, - диэлектрическая постоянная, равная 8,854*10^-12 Ф/м..

Полярность конденсатора;

Номинальное напряжение;

Удельная емкость и другие.

Величина емкости конденсатора зависит от

Площадь пластин. Это понятно из...

0 0

КОНДЕНСАТОР - означает накопитель. В радио и электронной аппаратуре конденсатор является накопителем электрических зарядов. Простейший конденсатор состоит из двух металлических пластинок разделенных слоем диэлектрика. Диэлектрик - это материал который не проводит электрического тока и обладает определенными свойствами о которых поговорим чуть позже.

Так как конденсатор является накопителем, то он должен обладать определенной емкостью (объемом для накопления зарядов). На емкость конденсатора влияют площадь пластин (еще их называют "обкладками"), расстояние между обкладками и качество диэлектрика. К хорошим диэлектрикам относятся вакуум, эбонит, фарфор, слюда, полиэтилен, текстолит и много других синтетических материалов.
На рисунке изображен простейший конденсатор с двумя параллельными обкладками площадью S (S = m * n), которые находятся в вакууме на расстоянии d друг от друга.


Если между верхней и нижней обкладками конденсатора приложить напряжение Uab, то на верхней и нижней обкладках конденсатора накопятся одинаковые положительный +q и отрицательный -q заряды, которые называют свободными. Между обкладками возникает электрическое поле обозначенное на рисунке буквой Е.
Емкость нашего конденсатора (обозначается буквой С) будет: С = Eo*S/d, где Ео - электрическая постоянная (для вакуума) Ео=8,854 * 10 -12 Ф/м (Фарад на метр).
Если между обкладками поместить диэлектрик,


то ёмкость конденсатора будет: С = Er * Eo *S / d. В формуле расчета ёмкости добавилась величина Er - относительная диэлектрическая проницаемость введённого диэлектрика.
Из формулы следует, что емкость конденсатора увеличивается на величину Er проницаемости диэлектрика. Итак, чем больше площадь S пластин конденсатора, больше значение Er и меньше расстояние d между пластинами, тем больше емкость конденсатора. Основной единицей емкости в системе единиц СИ является фарад (Ф). Емкость 1Ф очень велика. В электротехнике обычно используют дольные единицы емкости:
микрофарада (мкФ), 1мкФ = 1*10 -6 Ф,
нанофарада (нФ), 1нФ = 1*10 -9 Ф, и
пикофарада (пФ), 1пФ = 1*10 -12 Ф.



При выборе диэлектрика для конденсаторов, кроме относительной диэлектрической проницаемости диэлектрика, учитывают еще два важных параметра:
1) Электрическую прочность - прочность диэлектрика при подаче на прокладки конденсатора высокого напряжения. При низкой электрической прочности может произойти электрический пробой, и диэлектрик станет проводником электрического тока;
2) Удельное объемное сопротивление - электрическое сопротивление диэлектрика постоянному току. Чем больше удельное сопротивление диэлектрика, тем меньше утечка накопленных зарядов в конденсаторе.

КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО ТОКА. На графике накопление заряда конденсатором выглядит как показано на рисунке 1.

Время заряда конденсатора зависит от ёмкости конденсатора (при одинаковом приложенном напряжении). Чем больше ёмкость конденсатора, тем больше время заряда. Аналогичная картина (Рис. 2) наблюдается при разрядке конденсатора на сопротивление. При одинаковом сопротивлении время разряда больше у конденсатора с большей ёмкостью.

КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА. Если напряжение приложенное к емкостному элементу, будет изменяться по амплитуде (переменное напряжение),то будет изменяться и заряд конденсатора, то есть в емкостном элементе появится ток.


Ток Ic проходящий через конденсатор зависит от частоты f приложенного переменного напряжения и ёмкости С конденсатора. Если для постоянного тока сопротивление конденсатора можно считать равным бесконечности, то для переменного тока конденсатор обладает определённым сопротивлением. Сопротивление конденсатора переменному току Rc рассчитывается по формуле показанной на рисунке.
В формуле расчета емкостного сопротивления переменному току частота выражается в герцах, а емкость конденсатора в фарадах. Из формулы видно, что с увеличением частоты f при неизменной емкости конденсатора сопротивление Rc снижается, аналогично с увеличением емкости конденсатора при неизменной частоте сопротивление Rc так же снижается. Конденсаторы, так же как и резисторы, для получения заданной емкости Со можно включать параллельно и последовательно. Формулы расчета результирующей емкости показаны на рисунке.


КОНСТРУКЦИЯ, ПАРАМЕТРЫ И ТИПЫ КОНДЕНСАТОРОВ. Предположим, что мы конструируем конденсатор и попробуем, уже обладая определенными знаниями, рассчитать емкость конденсатора. Как известно, емкость конденсатора зависит от площади обкладок S, расстояния между обкладками d и диэлектрической проницаемости применяемого диэлектрика Er. Обкладки конденсатора изготавливаются из металлов с хорошей электрической проводимостью - алюминий, медь, серебро, золото. Емкость конденсатора не зависит от толщины обкладок, поэтому чем тоньше обкладки конденсатора, тем лучше - экономим металл и уменьшаем геометрический объём конденсатора.


Расстояние d не должно быть слишком малым, во избежание электрического пробоя диэлектрика.
Выберем в качестве диэлектрика наиболее распространенный материал - гетинакс с Er равной 6 ... 8. Примем Er для нашего конденсатора равной 7.


Площадь S вычисляется для одной обкладки конденсатора при условии, что линейные размеры обкладок одинаковы. Если одна из обкладок имеет меньшие длину или ширину то площадь вычисляется для меньшей обкладки.
Все размеры - длина и ширина обкладок и расстояние между ними должны быть выражены в метрах. Примем размеры такие, какие показаны на рисунке. Подставим в формулу расчета емкости конденсатора наши данные: C = Er * Eo * S / d;
C = 7 * 8.854*10 -12 * 0.0025 / 0.001= 0.000000000155Ф (фарады).
Возведем полученный результат в 12 степень чтобы получить значение емкости в пикофарадах:
C = 0.000000000155 12 = 155пФ.
Полученная нами ёмкость конденсатора 155пф очень мала, обычно такие ёмкости используются в аппаратуре работающей на высоких частотах переменного тока порядка 1 - 600 МГц (мегагерц).
Представьте себе, что мы разрабатываем миниатюрный карманный радиоприемник в котором требуется порядка 30 таких конденсаторов.

Если мы установим в схему 30 разработанных нами конденсаторов, не считая других необходимых радиодеталей, то наш радиоприемник никак не получится миниатюрным. Все дело в том, что объём только наших конденсаторов получится таким, что его никак нельзя будет назвать приемлемым.
Объем одного конденсатора Vc равен Vc = 5см * 5см * 0,1см
Vc = 2,5см в кубе. Тогда объем 30 конденсаторов будет равен:
V = 30 * 2,5 = 75см в кубе.
Что делать, как быть, как уменьшить геометрический объем конденсатора для применения в миниатюрной радиоаппаратуре? Для решения этой проблемы максимально уменьшают расстояние между обкладками, тогда увеличивается емкость и уменьшается геометрический объем конденсатора. Но расстояние уменьшают до определенных пределов иначе конденсатор будет пробиваться даже при низком напряжении подаваемом на конденсатор. В связи с этим на каждом конденсаторе указывается напряжение которое он может выдержать.

Для уменьшения площади обкладок конденсатор делают многослойным состоящим как бы из нескольких параллельно включенных конденсаторов (вспомните формулу параллельного включения конденсаторов).
В качестве диэлектрика в миниатюрных конденсаторах используют тонкие пленки из синтетических материалов, а в качестве обкладок металлическую фольгу, чаще всего из алюминия.


На корпусе конденсатора, обычно, указывается его тип, емкость и рабочее напряжение. Остальные параметры конденсатора определяются из справочников. Емкость конденсатора указывается не так, как на электрических схемах. Например емкость 2,2пФ обозначается 2П2, емкость 1500 пФ - 1Н5, емкость 0,1 мкФ - М1, емкость 2,2 мкФ - 2М2, емкость 10 мкФ - 10М.
У обычных конденсаторов КМ, КД, МБМ и так далее трудно получить большую ёмкость при малых габаритах поэтому были разработаны так называемые электролитические конденсаторы у которых в качестве диэлектрика используется специальная электролитическая жидкость с очень большим Er. Ёмкость таких конденсаторов может достигать сотен тысяч микрофарад. К недостатку таких конденсаторов следует отнести низкое рабочее напряжение (до 500V) и обязательное соблюдение полярности при включении в схему.
Для настройки и подстройки некоторых типов радиоаппаратуры, например радиоприемник или телевизор, применяют специальные конденсаторы с изменяемой ёмкостью.

В зависимости от назначения такие конденсаторы называют "подстроечные" и "конденсаторы переменной емкости".
Емкость переменных и подстроечных конденсаторов изменяется механическим способом, путем изменения расстояния между обкладками или изменения площади пластин. В качестве диэлектрика в таких конденсаторах используется воздух или фарфор.
В заключение следует отметить, что в настоящее время, в связи с бурным развитием радиоэлектроники подстроечные и переменные конденсаторы практически не применяются. Их с успехом заменяют специальные фильтры и полупроводниковые приборы которые не требуют механического изменения параметров.

Это легко подтвердить опытами. Можно зажечь лампочку, присоединив ее к сети переменного тока через конденсатор. Громкоговоритель или телефонные трубки будут продолжать работать, если их присоединить к приемнику не непосредственно, а через конденсатор.

Конденсатор представляет собой две или несколько металлических пластин, разделенных диэлектриком. Этим диэлектриком чаще всего бывает слюда, воздух или керамика, являющиеся наилучшими изоляторами. Вполне естественно, что постоянный ток не может пройти через такой изолятор. Но почему же проходит через него переменный ток? Это кажется тем более странным, что такая же самая керамика в виде, например, фарфоровых роликов прекрасно изолирует провода переменного тока, а слюда прекрасно выполняет функции изолятора в ах, электроутюгах и других нагревательных приборах, исправно работающих от переменного тока.

Посредством некоторых опытов мы могли бы «доказать» еще более странный факт: если в конденсаторе заменить диэлектрик со сравнительно плохими изоляционными свойствами другим диэлектриком, который является лучшим изолятором, то свойства конденсатора изменятся так, что прохождение переменного тока через конденсатор будет не затруднено, а, наоборот, облегчено. Например, если включить лампочку в цепь переменного тока через конденсатор с бумажным диэлектриком и затем заменить бумагу таким прекрасным изолятором; как стекло или фарфор такой же толщины, то лампочка начнет гореть ярче. Подобный опыт позволит прийти к заключению, что переменный ток не только проходят через конденсатор, но что он к тому же проходит тем легче, чем лучшим изолятором является его диэлектрик.

Однако, несмотря на всю кажущуюся убедительность подобных опытов, электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Диэлектрик, разделяющий пластины конденсатора, служит надежной преградой на пути тока, каким бы он ни был — переменным или постоянным. Но это еще не означает, что тока не будет и во всей той цепи, в которую включен конденсатор.

Конденсатор обладает определенным физическим свойством, которое мы называем емкостью. Это свойство состоит в способности накапливать на обкладках электрические заряды. Источник электрического тока можно грубо уподобить насосу, перекачивающему в цепи электрические заряды. Если ток постоянный, то электрические заряды перекачиваются все время в одну сторону.

Как же будет вести себя в цепи постоянного тока конденсатор?

Наш «электрический насос» будет качать заряды на одну его обкладку и откачивать их с другой обкладки. Способность конденсатора удерживать на своих обкладках (пластинах) определенную разницу количества зарядов и называется его емкостью. Чем больше емкость конденсатора, тем больше электрических зарядов может быть на одной обкладке по сравнению с другой.

В момент включения тока конденсатор не заряжен — количество зарядов на его обкладках одинаково. Но вот ток включен. «Электрический насос» заработал. Он погнал заряды на одну обкладку и начал откачивать их с другой. Раз в цепи началось движение зарядов, значит в ней начал протекать ток. Ток будет течь до тех пор, пока конденсатор не зарядится полностью. По достижении этого предела ток прекратится.

Следовательно, если в цепи постоянного тока есть конденсатор, то после ее замыкания ток в ней будет течь столько времени сколько нужно для полного заряда конденсатора.

Если сопротивление цепи, через которую заряжается конденсатор, сравнительно невелико, то время заряда оказывается очень коротким: оно длится ничтожные доли секунды, после чего течение тока прекращается.

Иное дело в цепи переменного тока. В этой цепи «насос» перекачивает электрические заряды то в одну, то в другую сторону. Едва создав на одной обкладке конденсатора превышение количества зарядов по сравнению с количеством их на другой обкладке, насос начинает перекачивать их в обратно направлении. Заряды будут циркулировать в цепи непрерывно, значит в ней, несмотря на присутствие не проводящего ток конденсатора, будет существовать ток — ток заряда и разряда конденсатора.

От чего будет зависеть величина этого тока?

Под величиной тока мы понимаем количество электрических зарядов, протекающих в единицу времени через поперечное сечение проводника. Чем, больше емкость конденсатора, тем больше зарядов потребуется для его «заполнения», значит тем сильнее будет ток в цепи. Емкость конденсатора зависит от ве-, личины пластин, расстояния между ними и рода разделяющего их диэлектрика, его диэлектрической проницаемости. У фарфора диэлектрическая проницаемсклъ больше, чем у бумаги, поэтому при замене в конденсаторе бумаги фарфором ток в цепи увеличивается, хотя фарфор является лучшим изолятором, чем бумага.

Величина тока зависит также от его частоты. Чем выше частота, тем больше будет ток. Легко понять, почему это происходит, представив себе, что мы наполняем водой через трубку сосуд емкостью, например, 1 л и затем выкачиваем ее оттуда. Если этот процесс будет повторяться 1 раз в секунду, то по трубке в секунду будет проходить 2 л воды: 1 л в одну сторону и 1 л — в другую. Но если мы удвоим частоту^ процесса: будем наполнять и опорожнять сосуд 2 раза в секунду, то по трубке в секунду пройдет уже 4 л воды — увеличение частоты процесса при неизменной емкости сосуда привело к соответствующему увеличению количества воды, протекающей по трубке.

Из всего сказанного можно сделать следующие выводк: электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Но в цепи, соединяющей источник переменного тока с конденсатором, течет ток заряда и разряда этого конденсатора. Чем больше емкость конденсатора и выше частота тока, тем сильнее будет этот ток.

Эта особенность переменного тока чрезвычайно широко используется в радиотехнике. На ней основано и излучение радиоволн. Для этого мы возбуждаем в передающей антенне высокочастотный переменный ток. Но почему же ток течет в антенне, ведь она не представляет собой замкнутую цепь? Он течет потому, что между проводами антенны и противовеса или землей существует емкость. Ток в антенне представляет собой ток заряда и разряда этой емкости, этого конденсатора.

Подключен к резистору, то ток и напряжение в цепи в любой точке временной диаграммы будут пропорциональны друг другу. Это означает, что кривые тока и напряжения будут достигать "пикового" значения одновременно. При этом мы говорим, что ток и напряжение находятся в фазе.

Рассмотрим теперь, как будет себя вести конденсатор в цепи переменного тока.

Если к источнику переменного напряжения подключен конденсатор, максимальное значение напряжения на нем будет пропорционально максимальному значению тока, протекающего в цепи. Однако пик волны синусоиды напряжения не будет наступать в то же самое время, что и максимум тока.

В этом примере мгновенное значение тока достигает своего максимального значения на четверть периода (90 эл.град.) раньше, чем это сделает напряжение. В таком случае говорят, что «ток опережает напряжение на 90◦».

В отличие от от ситуации в цепи постояннго тока, значение V/I здесь не является постоянным. Тем не менее, отношение V является весьма полезной величиной и в электротехнике называется емкостным сопротивлением (Хс) компонента. Поскольку эта величина по-прежнему отображает отношение напряжения к току, т.е. в физическом смысле является сопротивлением, ее единицей измерения является Ом. Значение Хс конденсатора зависит от его емкости (С) и частоты переменного тока (f).

Так как на конденсатор в цепи переменного тока подается среднеквадратичное значение напряжения, в этой цепи протекает такой же переменный ток, который ограничивается конденсатором. Это ограничение обусловлено конденсатора.

Поэтому значение тока в цепи, не содержащей никаких других компонентов, кроме конденсатора, определяется альтернативной версией Закона Ома

I RMS = U RMS / X C

Где U RMS - среднеквадратическое (действующее) значение напряжения. Обратите внимание, что X с заменяет величину R в версии закона Ома для

Теперь мы видим, что конденсатор в цепи переменного тока ведет себя совсем не так, как постоянный резистор, и ситуация здесь, соответственно, обстоит сложнее. Для того чтобы лучше понять процессы, происходящие в такой цепи, полезно ввести такое понятие, как вектор.

Основная идея вектора - это представление о том, что комплексное значение изменяющегося во времени сигнала может быть представлено ​​как произведение (которое не зависит от времени) и некоего комплексного сигнала, являющегося функцией времени.

Например, мы можем представить функцию A cos(2πνt + θ) просто как сложную постоянную A∙e jΘ .

Так как векторы представлены величиной (или модулем) и углом, то графически они представляются стрелкой (или вектором), вращающейся в плоскости XY.

С учетом того, что напряжение на конденсаторе «запаздывает» по отношению к току, представляющие их векторы расположены в комплексной плоскости так, как показано на рисунке выше. На этом рисунке векторы тока и напряжения вращаются в направлении, противоположном движению часовой стрелки.

В нашем примере ток на конденсаторе обусловлен его периодическим перезарядом. Поскольку конденсатор в цепи переменного тока обладает способностью периодически накапливать и сбрасывать электрический заряд, между ним и источником питания происходит постоянный обмен энергией, которая в электротехнике называется реактивной.



Рекомендуем почитать

Наверх