На кремниевых транзисторах. История транзисторов

Для Андроид 29.04.2019
Для Андроид

Транзистор — это полупроводниковый прибор, предназначенный для усиления, инвертирования , преобразования электрических сигналов , а также переключения электрических импульсов в электронных цепях различных устройств. Различают биполярные транзисторы , в которых используются кристаллы n- и p- типа, и полевые (униполярные) транзисторы , изготовленные на кристалле германия или кремния с одним типом проводимости.

Биполярные транзисторы

Физические процессы в транзисторах p-n-p- типа и n-p-n- типа одинаковы. Отличие их в том, что токи в базах транзисторов p-n-p- типа переносятся основными носителями зарядов — дырками, а в транзисторах n-p-n -типа — электронами.

Каждый из переходов транзистора — эмиттерный (Б-Э ) и коллекторный (Б-К ) можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

  • режим отсечки — оба p-n- перехода закрыты, при этом через транзистор протекает сравнительно небольшой ток I 0 , обусловленный неосновными носителями зарядов;
  • режим насыщения — оба p-n -перехода открыты;
  • активный режим — один из p-n -переходов открыт, а другой закрыт.

В режимах отсечки и насыщения управление транзистором практически отсутствует. В активном режиме транзистор выполняет функцию активного элемента электрических схем усиления сигналов, генерирования колебаний, переключения и т. п.

Если на эмиттерном переходе напряжение прямое, а на коллекторном обратное, то такое включение транзистора считают нормальным, при противоположной полярности напряжений — инверсным.

Подав отрицательный потенциал ЭДС источника на коллектор и положительный на эмиттер (рис. 21) в схеме включения транзистора с общим эмиттером, мы, тем самым, открыли эмиттерный переход Э -Б и закрыли коллекторный Б -К , при этом ток коллектора I К0 = I Э0 = I 0 мал, он определяется концентрацией неосновных носителей (электронов в данном случае). Если между эмиттером и базой приложить небольшое напряжение (0,3-0,5 В) в прямом направлении p-n -перехода Э -Б , то происходит инжекция дырок из эмиттера в базу, образуя ток эмиттера - I . В базе дырки частично рекомбинируют со свободными электронами, но одновременно от внешнего источника напряжения Е Б (Е Б < Е R) в базу приходят новые электроны, образуя ток базы I Б .


Рисунок 21-Схема включения биполярного транзистора

Так как база в транзисторе выполняется в виде тонкого слоя, то только незначительная часть дырок рекомбинирует с электронами базы, а основная их часть достигает коллекторного перехода. Эти дырки захватываются электрическим полем коллекторного перехода, являющегося ускоряющим для дырок. Ток дырок, попавших из эмиттера в коллектор, замыкается через резистор R K и источник напряжения с ЭДС Е K , образуя ток коллектора I К во внешней цепи.

Запишем соотношение токов в схеме включения транзистора (рис. 21), называемой схемой включения с общим эмиттером (ОЭ),

Отношение тока коллектора к току эмиттера называют коэффициентом передачи тока

откуда ток базы

Схема включения транзистора с ОЭ является наиболее распространенной вследствие малого тока базы во входной цепи и усиления входного сигнала как по напряжению, так и по току. Основные свойства транзистора определяются соотношениями токов и напряжений в различных его цепях и взаимным их влиянием друг на друга.

Транзистор может работать на постоянном токе, малом переменном сигнале, большом переменном сигнале и в ключевом (импульсном) режиме.

Семейства входных

и выходных

статических характеристик транзистора в схеме с ОЭ представлены на рис. 22. Они могут быть получены в результате эксперимента или расчёта.

Рисунок 22 - Семейства входных и выходных статических характеристик

Семейства характеристик, которые связывают напряжения и токи на выходе с токами и напряжениями на входе, называют характеристиками передачи или управляющими характеристиками (рис 23).

Рисунок 23-Характеристика передачи

Биполярные транзисторы классифицируют:

  • по мощности рассеяния (маломощные (до 0,3 Вт), средней мощности (от 0,3 Вт до 1,5 Вт) и мощные (свыше 1,5 Вт));
  • по частотным свойствам (низкочастотные (до 3 МГц), средней частоты (3_30 МГц), высокой (30_300 МГц) и сверхвысокой частоты (более 300 МГц));
  • по назначению: универсальные, усилительные, генераторные, переключательные и импульсные.

При маркировке биполярных транзисторов вначале записывают букву или цифру, указывающую на исходный полупроводниковый материал: Г или 1 — германиевый, К или 2 — кремниевый; затем цифру от 1 до 9 (1, 2 или 3 — низкочастотные, 4, 5 или 6 — высокой частоты, 7, 8 или 9 — сверхвысокой частоты соответственно в каждой группе малой, средней или большой мощности). Следующие две цифры от 01 до 99 —порядковый номер разработки, а в конце буква (от А и выше) указывает на параметрическую группу прибора, например, на напряжение питания транзистора и т. п.

Например, транзистор ГТ109Г: низкочастотный германиевый, малой мощности с коэффициентом передачи тока h 21Э = 100_250, U К = 6 В, I К = 20 мА (ток постоянный).

Полевой транзистор

Полевой транзистор — это полупроводниковый прибор, в котором ток стока (С ) через полупроводниковый канал п- или р -типа управляется электрическим полем, возникающим при приложении напряжения между затвором (З ) и истоком (И ).

Полевые транзисторы изготавливают:

- с управляющим затвором типа p-n-перехода для использования в высокочастотных (до 12_18 ГГц) преобразовательных устройствах. Условное их обозначение на схемах приведено на рис. 24, а , б ;

- с изолированным (слоем диэлектрика) затвором для использования в устройствах, работающих с частотой до 1_2 ГГц. Их изготавливают или со встроенным каналом в виде МДП_структуры (см. их условное обозначение на рис. 24, в и г ), или с индуцированным каналом в виде МОП_структуры (см. их условное обозначение на рис. 24, д , е ).

Рисунок 24-Виды полевых транзисторов

Схема включения полевого транзистора с затвором типа p-n- перехода и каналом n -типа, его семейство выходных характеристик I С = f (), U З = const и стокозатворная характеристика I C = f (), U С = const изображены на рис. 25.

Рисунок 25 - Схема включения полевого транзистора и его стокозатворной характеристикой

При подключении выходов стока С и истока И к источнику питания Un по каналу n - типа протекает ток I C , так как p-n- переход не перекрывает сечение канала (рис. 25, а ).

При этом электрод, из которого в канал входят носители заряда, называют истоком , а электрод, через который из канала уходят основные носители заряда, называют стоком .

Электрод, служащий для регулирования поперечного сечения канала, называют затвором . С увеличением обратного напряжения U З уменьшается сечение канала, его сопротивление увеличивается, и уменьшается ток стока I C .

Итак, управление током стока I C происходит при подаче обратного напряжения на p-n -переход затвора З . В связи с малостью обратных токов в цепи затвор-исток, мощность, необходимая для управления током стока, оказывается ничтожно малой.

При напряжении -U З = -U ЗО , называемым напряжением отсечки , сечение канала полностью перекрывается обеднённым носителями заряда барьерным слоем, и ток стока I CО (ток отсечки) определяется неосновными носителями заряда p-n -перехода (см. рис. 25, б ).

Схематичная структура полевого транзистора с индуцированным n- каналом представлена на рис 26. При напряжении на затворе относительно истока, равным нулю, и при наличии напряжения на стоке, ток стока оказывается ничтожно малым. Заметный ток стока появляется только при подаче на затвор напряжения положительной полярности относительно истока, больше так называемого порогового напряжения U ЗПОР .

Рисунок 26-Схематичная структура полевого транзистора с индуцированным n-каналом

При этом в результате проникновения электрического поля через диэлектрический слой в полупроводник при напряжениях на затворе, больших U ЗПОР , у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком.

Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, соответственно будет изменяться ток стока. Так происходит управление тока стока в полевом транзисторе с индуцированным затвором. Важнейшей особенностью полевых транзисторов является высокое входное сопротивление (порядка нескольких мегаом) и малый входной ток. Одним из основных параметров полевых транзисторов является крутизна S стоко-затворной характеристики (см. рис. 25, в ). Например, для полевого транзистора типа КП103Ж S = (3...5) мА/В.

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

Во всех сменных блоках приемника и в их возможных вариантах ис­пользовались только германиевые транзисторы в основном структуры p-n-p. Лишь в двухтактном выходном каскаде бестрансформаторного усилителя звуковой частоты (блок 5) один из его транзисторов был структуры n-p-n. Германиевые транзисторы давно завоевали популярность у радиолюбителей и широко ис­пользуются ими в конструируемой аппаратуре. К тому же цены на них за по­следнее время значительно снижены, они почти всегда бывают в магазинах радиотоваров, на торговых базах Посылторга и Центросоюза, откуда их можно выписать по почте.

Но на сегодняшний день германиевые транзисторы как неперспективные все больше уступают свое место в радиоаппаратуре, в том числе и любительской, кремниевым транзисторам. Объясняется это тем, что приборы и устройства на кремниевых транзисторах работают в различных условиях стабильнее. К этому можно добавить, что выпуск кремниевых транзисторов все время расширяется, а германиевых сокращается.

В связи с этим у вас может возникнуть вопрос: можно ли в сменных бло­ках описанного приемника германиевые транзисторы заменить кремниевыми? Можно, но, разумеется, с учетом некоторых их особенностей.

Наиболее характерной особенностью кремниевых транзисторов является более высокое напряжение смещения, при котором они открываются. Германие­вые транзисторы, как вам известно, открываются при напряжении на эмиттер-ном р-п переходе 0,1… 0,2 В, а кремниевые при напряжении 0,6… 0,7 В. Это значит, что на базе кремниевого транзистора, работающего в режиме усиле­ния, относительно эмиттера должно быть не менее 0,6 В. При более низком на­пряжении смещения кремниевый транзистор будет искажать усиливаемый сиг­нал. Такой исходный режим работы кремниевого транзистора устанавливают, как и германиевого, соответствующим подбором номинала резистора в базо­вой цепи.

Рис. 47. Схема усилителя звуковой частоты (блок 6) на кремние­вых транзисторах

Большая часть кремниевых транзисторов имеет структуру n-p-n. Это зна­чит, что заменяя в блоках германиевые p-n-p транзисторы на кремниевые n-p-n транзисторы надо изменить не только полярность источника питания, но и по­лярность включения электролитических конденсаторов.

Вот, собственно, то основное, что надо иметь в виду при замене германие­вых транзисторов кремниевыми. Что же касается построения принципиальных схем блоков, напряжений источников питания, то они в основном не претерпе­вают изменений.

Для примера на рис. 47 приведена схема блока 6 - то же бестрансформа­торного усилителя звуковой частоты, но на кремниевых транзисторах. Чем она отличается от схемы блока на германиевых транзисторах (см. рис. 38)? Главным образом полярностью включения источника питания и элект­ролитических конденсаторов. Транзисторы 6 V1, 6 V2 и 6 V3 - n-p-n, 6 V4 - p-n-p, Режим работы транзистора 6 V1 устанавливают подбором резистора 6 R1. На­пряжение в точке соединения эмиттеров транзисторов 6 V3 и 6 V4 (точка сим­метрии двухтактного выходного каскада), равное половине напряжения источ­ника питания, устанавливают подбором резистора 6 R4, а ток коллекторной це­пи транзистора 6 V3, равный 3… 4 мА, подбором резистора 6 R7.

Обращаем внимание на включение резистора 6 R6 и динамической головки 1В1. В описанном 1 ! блоке на германиевых транзисторах такой резистор был под­ключен непосредственно к отрицательному, а головка к положительному про­водникам источника питания. И здесь головка подключена к положительному проводнику источника питания, поэтому изменилась полярность включения электролитического конденсатора 6С5, а резистор 6 R6 подключен к точке со­единения головки с этим конденсатором. При таком способе включений этого резистора через него из выходной цепи в базовую цепь транзисторов выходно­го каскада подается так называемая вольтодобавка - небольшое напряжение звуковой частоты, выравнивающее условия работы транзисторов.

Во всех блоках вместо высокочастотных и низкочастотных маломощных p-n-p транзисторов лучше всего использовать n-p-n транзисторы серии КТ315 со статическим коэффициентом передачи тока 80… 100, вместо n-p-n транзистора в блоке 6 (МП37) - p-n-p транзистор из серии КТ361. В выходном каскаде усилителя звуковой частоты повышенной мощности (рис. 40) p-n-p транзисторы-П602 можно заменить n-p-n транзисторами К.Т601, КТ602, КТ603 с любым? буквенным индексом.

Прежде чем начать монтаж того или иного блока, прокорректируйте его принципиальную схему с учетом приведенных здесь рекомендаций. Это преду­предит ошибки и даже возможную порчу транзисторов.

В настоящее время все более широкое применение в качестве основных ключевых приборов для мощной преобразовательной техники находят приборы на основе карбида кремния - мощные диоды Шоттки и MOSFET транзисторы. Карбид-кремниевая технология привнесла значительные усовершенствования в производство MOSFET, что сделало их конкурентами кремниевым IGBT-транзисторам, особенно в области высоких напряжений.

Рассмотрим 1200-В 4H-SiC MOSFET. В данном транзисторе используется высококачественная подложка, улучшено качество эпитаксиального слоя, оптимизирована конструкция под процесс производства. Также, посредством азотирования, увеличена подвижность носителей. Карбид-кремниевый транзистор превосходит кремниевые транзисторы за счет расширенной запрещенной зоны. Напряженность электрического поля, при которой происходит пробой, увеличилась в 10 раз, улучшилась теплопроводность, а, следовательно, возросли рабочие температуры. При использовании в полупроводниках с максимально допустимым рабочим напряжением 600 В и выше, карбид кремния также превосходит кремний. На сегодня 600-В и 1200-В карбид-кремниевые диоды Шоттки являются наилучшим решением в повы-шающих преобразователях. За счет более низких потерь на переключение по сравнению с кремниевыми PiN-диодами.
Если же речь идет о силовых ключах, то кремниевые MOSFET уступают 600- и 1200-В IGBT-транзисторам прежде всего из-за значительного сопротивления канала в открытом состоянии (RDSON), которое увеличивается пропорционально квадрату максимально допустимого напряжения сток-исток (VDSMAX). Сопротивление RDSON можно рассматривать как совокупность сопротивлений RJFET и RDRIFT (рис. 1).

Рис.1. Эквивалентная схема DMOSFET.

При этом сопротивление RDRIFT, отражающее дрейф свободных носителей, доминирует и его величина определяется следующим соотношением:

RDRIFT = d/qμND, где d — толщина дрейфового слоя; q — заряд электрона; ND — коэффициент легирования.

В новом поколении карбид-кремниевых MOSFET транзисторов толщина дрейфового слоя d уменьшена примерно в 10 раз; во столько же раз увеличен коэффициент N D . В результате сопротивление R DSON уменьшено почти в 100 раз по сравнению с его кремниевым аналогом.

ПРИМЕНЕНИЕ КАРБИД-КРЕМНИЕВЫХ ТРАНЗИСТОРОВ

Применение приборов данного типа рассмотрим на примере 1200-В, 20-А транзистора с RDSON = 100 мОм и 15-В уровнем управления затвором. Помимо уменьшения сопротивления RDSON при нормальных условиях в карбид-кремниевых транзисторах значительно уменьшено влияние температуры. В диапазоне 25…150°С изменение сопротивления составляет всего лишь 20%, что является весьма малым значением по сравнению с аналогичным значением составляющим 200% или даже 300% у кремниевых MOSFET. В принципе карбид-Хотя максимально допустимую температуру серийных транзисторов (в основном размещаемых в пластмассовых корпусах ТО-247) ограничивают до 150°С, карбид-кремниевые транзисторы могут работать и при температуре свыше 200°С.
По сравнению с кремниевыми IGBT-транзисторами, карбид-кремниевые MOSFET имеют и существенно меньшие потери на коммутацию. MOSFET — униполярные приборы, поэтому не имеют «хвостов» при коммутации, обусловленных рассасыванием неосновных носителей. В таблице 1 отображены значения потерь на переключение обоих типов транзисторов.

Параметр

IGBT, 1200-B Infineon BSM 15 GD 120
DN2 ID (max) = 15 A при 80°С

DMOSFET 1200-B CREE engineering
sample ID (max) = 15 A при 150 °С

Напряжение VDS, В

Индуктивная

Индуктивная (500 мкГн)

Напряжение управления VGE, В

Сопротивление затвора RG, Ом

Потери энергии при включении (коммутируемый ток 10 А), ЕON, мДж

Потери энергии при выключении (коммутируемый ток 10 А), ЕOFF, мДж

Максимальный кпд, ή

Евро-кпд* ήEUR0

Таблица 1. Потери на переключение кремниевых IGBT и карбид-кремниевых MOSFET.

Далее рассмотрим пример применения карбид-кремниевых MOSFET в трехфазных 7-кВт, 16,6-кГц инверторах солнечных батарей. Инвертор имеет топологию В6, разработанную в институте ISE, и использует конденсатор в цепи постоянного тока, соединяющийся с нейтральным проводом. На рисунке 2 показаны результаты сравнительных испытаний. Как видно из приведенных результатов, при использовании карбид-кремниевых транзисторов потери сокращаются почти в 2 раза. Значит уменьшается и температура теплоотвода: 93°С при использовании IGBT-транзисторов и 50°С — при использовании карбид-кремниевых MOSFET.

Рис.2. Сравнение потерь в 1200-В MOSFET и IGBT

Преимущества использования карбид-кремниевых MOSFET в фотоэлектрических преобразователях:
- низкая стоимость индуктивных компонентов. Размеры индуктивных компонентов зависят от частоты преобразования. Их стоимость уменьшается примерно на 50% при увеличении частоты преобразования в 2—3 раза. С увеличением частоты преобразования увеличивается и частота третьей гармоники, а уменьшить мощность третьей гармоники частотой 150 кГц гораздо проще, чем частотой 50 кГц;
- более низкие требования к теплоотводу. Использование карбид-кремниевых MOSFET позволяет уменьшить их температуру на 50%, что приведет к уменьшению размеров и, соответственно, стоимости всего изделия приблизительно на 5% в нашем примере;
- увеличение прибыли за счет сокращения потерь энергии.

На рисунке 3 показана стандартная схема трехфазного выпрямителя с изолированным DC/DC-преобразователем с коммутацией при нулевом токе. В качестве ключей S1, S2 в испытаниях были использованы 1200-В, 25-А IGBT-транзисторы, 1200-В, 40-А IGBT-транзисторы и 1200-В, 25-А карбид-кремниевые MOSFET. Результаты работы системы на максимальную нагрузку 3 кВт приведены на рисунке 4. Как видно, при работе с MOSFET КПД системы увеличивается на 2,2%. Корпус MOSFET имеет меньшую температуру: на 25°С ниже, чем 40-А IGBT и на 36°С ниже чем у 25-А IGBT.


Рис. 3. Трехфазный 3-кВт инвертор с большей величиной коэффициента мощности и с прямоходовым преобразователем Рис. 4. График изменения КПД в зависимости от выходной мощности при частоте преобразования 67 кГц.

Выше были показаны достоинства 1200-В MOSFET. Однако и при более высоких напряжениях — 6,5 кВ и даже выше карбид-кремниевые транзисторы также имеют преимущества перед их кремниевыми аналогами. Недавно был разработан 10-кВ, 10-А карбид-кремниевый MOSFET. При напряжении управления затвором 20 В и токе через канал 10 А падение напряжении на открытом канале составляет всего лишь 4,1 В, что эквивалентно сопротивлению 127 мОм/см2. Утечка тока сток-исток составляет 124 нА при напряжении 10 кВ.
В ходе проведения сравнительного эксперимента было установлено, что, при работе на индуктивную нагрузку, потери на переключение в карбид-кремниевом транзисторе в 200 раз меньше, чем в 6,5-кВ IGBT! Задержка включения составляет всего лишь 94 нс, а задержка на выключение — 50 нс; у IGBT — 1,4 мкс и 540 нс соответственно!
При использовании 10-кВ карбид-кремниевых MOSFET и диода Шоттки в повышающем преобразователе (входное напряжение — 500 В, выходное — 5 кВ) КПД 600-Вт преобразователя составил 91%. По итогам произведенных расчетов установлено, что та же схема с обычным кремниевым MOSFET могла бы работать лишь с частотой всего несколько сотен Гц. На рисунке 5 показаны графики токов и напряжений при выключении MOSFET. Из рисунка видно, насколько быстро протекают переходные процессы в приборе.

Рис. 5. Процесс коммутации 10-кВ карбид-кремниевого MOSFET при частоте 20 кГц и мощности преобразователя 600 Вт.

При возросшем интересе к альтернативным источникам энергии карбид-кремниевая технология имеет широкие перспективы. За счет снижения потерь мощности применение карбид-кремниевых транзисторов является привлекательным в фотоэлектрических преобразователях, а также в преобразователях генераторов энергии из органического топлива в будущем.

Одним из значительных изобретений XX века по праву считается изобретение транзистора , пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы - транзисторы, лишенные всех упомянутых недостатков.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые - физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Рис. 1. Первый транзистор

Рис. 2. Джон Бардин, Уильям Шокли и Уолтер Браттейн. За сотрудничество в разработке первого в мире действующего транзистора в 1948 году они разделили Нобелевскую премию 1956 года.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Рис. 3. Транзистор и электронная лампа

Первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов - проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда - электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля. В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит - железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» - огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 - 1930 годы.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn - перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).

Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния (обычный песок на пляже) в природе безграничны, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого - в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век», не надо путать с каменным!

Рис. 4. Эволюция транзисторов

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.



Рекомендуем почитать

Наверх