Методы вычисления определителей n-ого порядка. Перестановки и подстановки. Методы вычисления определителей n-го порядка

Помощь 01.08.2019
Помощь

Основываясь на понятиях определителей второго и третьего порядков, можно аналогично ввести понятие определителя порядка n . Определители порядка выше третьего вычисляются, как правило, с использованием свойств определителей, сформулированных в п. 1.3., которые справедливы для определителей любого порядка.

Используя свойство определителей номер 9 0 введем определение определителя 4-го порядка:

Пример 2. Вычислить, используя подходящее разложение.

Аналогично вводится понятие определителя 5-го, 6-го и т.д. порядка. Значит определитель порядка n:

.

Все свойства определителей 2-го и 3-го порядков, рассмотренные раннее, справедливы и для определителей n-го порядка.

Рассмотрим основные методы вычисления определителей n -го порядка.


Замечание: прежде чем применять этот метод, полезно, используя основные свойства определителей, обратить в нуль все, кроме одного, элементы его некоторой строки или столбца. (Метод эффективного понижения порядка)

    Метод приведения к треугольному виду заключается в таком преобразовании определителя, когда все его элементы, лежащие по одну сторону от главной диагонали, становятся равными нулю. В этом случае определитель равен произведению элементов его главной диагонали.

Пример 3. Вычислить, приведением к треугольному виду.

Пример 4. Вычислить, используя метод эффективного понижения порядка

.

Решение: по свойству 4 0 определителей из первой строки вынесем множитель 10, а затем будем последовательно умножать вторую строку на 2, на 2, на 1 и складывать соответственно с первой, с третьей и четвертой строками (свойство 8 0).

.

Полученный определитель можно разложить по элементам первого столбца. Он будет сведен к определителю третьего порядка, который вычисляется по правилу Саррюса (треугольника).

Пример 5. Вычислить определитель, приведением к треугольному виду.

.

Пример 3. Вычислить, используя рекуррентные соотношения.


.

.

Лекция 4. Обратная матрица. Ранг матрицы.

1. Понятие обратной матрицы

Определение 1. Квадратная матрица А порядка n называется невырожденной, если ее определитель |A | ≠ 0. В случае, когда | A | = 0, матрица А называется вырожденной.

Только для квадратных невырожденных матриц А вводится понятие обратной матрицы А -1 .

Определение 2 . Матрица А -1 называется обратной для квадратной невырожденной матрицыА, если А -1 А = АА -1 = Е, где Е – единичная матрица порядка n .

Определение 3 . Матрица называетсяприсоединенной, ее элементами являются алгебраические дополнения транспонированной матрицы
.

Алгоритм вычисления обратной матрицы методом присоединенной матрицы.


, где
.

    Проверяем правильность вычисления А -1 А = АА -1 = Е. (Е – единичная матрица)

Матрицы А и А -1 взаимообратные. Если | A | = 0, то обратная матрица не существует.

Пример 1. Дана матрица А. Убедиться, что она невырожденная, и найти обратную матрицу
.

Решение:
. Следовательно матрица невырожденная.

Найдем обратную матрицу. Составим алгебраические дополнения элементов матрицы А.







Получаем

.

Для более точного и сложного определения и для того, чтобы говорить об определителях порядка больше третьего, потребуется вспомнить еще кое-что. Нас интересует термин подстановка, даже не столько определение, сколько способ её вычисление.

Для подстановки принята запись:
, т.е. пары чисел, записанные в столбик, причем так, что верхние числа идут последовательно (вообще говоря, столбцы можно менять местами).

Подстановки бывают четными и нечетными. Для того, чтобы выяснить, является данная подстановка четной или нечетной, нужно обратить внимание на вторую строку, а точнее на порядок чисел в ней. Необходимо подсчитать количество пар чисел во второй строке, таких, что число, стоящее левее, больше числа, стоящего правее (). Если количество таких пар нечетно, то и подстановка называется нечетной, и, соответственно, если количество таких пар четно, то и подстановка называется четной.

Пример:
1)


4 стоит левее 3, левее 1, левее 2 — это уже три «неправильные» пары.
3 стоит левее 1 и 2 – еще две пары.
Итого 5 пар, т.е. это нечетная подстановка.
2)

Заметим, что числа в первой строке расположены не по порядку. Выполним перестановку столбцов.

Рассмотрим числа второго ряда.
3 стоит левее 2 и 1 – две пары,
2 стоит левее 1 – одна пара,
5 стоит левее 4 и 1 – две пары,
4 стоит левее1 – одна пара.
Итого 6 пар – подстановка четная.

Определение 2 (для студентов математических специальностей, раскрывающее всю суть определяемого понятия):

Определителем n-го порядка, соответствующим матрице
,
называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» — . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» — рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» — рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).
Пример («Сборник задач по алгебре» под ред. А.И. Кострикина, №1001):

Выяснить, какие из следующих произведений входят в развернутое выражение определителей соответствующих порядков и с какими знаками.
а)
Обратим внимание на часть определния «по одному из каждой строки и каждого столбца». Все первые индексы сомножителей различны от 1 до 6(1, 2, 3, 4, 5, 6). Все вторые индексы сомножителей различны от 1 до 6 (3, 2, 1, 4, 5, 6).
Вывод – это произведение входит в развернутое выражение определителя 6-го порядка.

3 левее 2, 1 – две пары,
2 левее 1 – одна пара,
6 левее 5, 4 – две пары,
5 левее 4 – одна пара.
Итого 6 пар, т.е. перестановка четная и слагаемое входит в развернутую запись определителя со знаком «плюс».

б)
Все первые индексы сомножителей различны от 1 до 5(3, 1, 5, 4, 2). Все вторые индексы сомножителей различны от 1 до 5 (1, 3, 2, 5, 4).
Вывод – это произведение входит в развернутое выражение определителя 5-го порядка.
Определим знак этого слагаемого, для этого составим перестановку из индексов сомножителей:

Переставим столбцы так, чтобы числа в первой строке шли по порядку от меньшего к большему.

3 левее 1, 2 – две пары.
4 левее 1, 2 – две пары,
5 левее 2 – одна пара.
Итого 5 пар, т.е. перестановка нечетная и слагаемое входит в развернутую запись определителя со знаком «минус».
в) — обратим внимание на первый и шестой сомножители: и . Они оба взяты из 4-го столбца, а значит, это произведение не может входить в развернутое выражение определителя 7-го порядка.

Рассматривая развернутое выражение для определителей

замечаем, что в каждое слагаемое входят в качестве сомножителей по одному элементу из каждой строки и по одному из каждого столбца определителя, причем всевозможные произведения этого вида входят в состав определителя со знаком плюс или минус. Это свойство полагается в основу обобщения понятия определителя на квадратные матрицы любого порядка. Именно: определителем квадратной матрицы порядка или, короче, определителем порядка называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки и по одному из каждого столбца, причем полученные произведения снабжены знаками плюс и минус по некоторому вполне определенному правилу. Это правило вводится

довольно сложным образом, и мы не будем останавливаться на его формулировке. Существенно отметить, что оно устанавливается так, что обеспечивается следующее важнейшее основное свойство определителя:

1. При перестановке двух строк определитель меняет знак на противоположный.

Для определителя 2 и 3-го порядков это свойство легко проверяется непосредственным вычислением. В общем случае оно доказывается на основе не сформулированного нами здесь правила знаков.

Определители обладают целым рядом других замечательных свойств, которые дают возможность с успехом использовать определители в разнообразных теоретических и численных расчетах, несмотря на чрезвычайную громоздкость определителя: ведь определитель n-го порядка содержит, как нетрудно видеть, слагаемых, каждое слагаемое состоит из сомножителей и слагаемые снабжены знаками по некоторому сложному правилу.

Переходим к перечислению основных свойств определителей, не останавливаясь на их подробных доказательствах.

Первое из этих свойств уже сформулировано выше.

2. Определитель не меняется при транспонировании его матрицы, т. е. при замене строк на столбцы с сохранением порядка.

Доказательство основано на подробном исследовании правила расстановки знаков в слагаемых определителя. Это свойство дает возможность всякое утверждение, касающееся строк определителя, перенести на столбцы.

3. Определитель есть линейная функция от элементов какой-либо его строки (или столбца). Подробнее

где представляют собой выражения, не зависящие от элементов строки.

Это свойство с очевидностью следует из того, что каждое слагаемое содержит по одному и только одному сомножителю из каждой, в частности строки.

Равенство (5) называется разложением определителя по элементам строки, а коэффициенты называются алгебраическими дополнениями элементов в определителе.

4. Алгебраическое дополнение элемента равно, с точностью до знака, так называемому минору определителя, т. е. определителю

долю порядка, получающемуся из данного посредством вычеркивания строки и столбца. Для получения алгебраического дополнения минор нужно взять со знаком . Свойства 3 и 4 сводят вычисление определителя порядка к вычислению определителей порядка

Из перечисленных основных свойств вытекает ряд интересных свойств определителей. Перечислим некоторые на них.

5. Определитель с двумя одинаковыми строками равен пулю.

Действительно, если определитель имеет две одинаковые строки, то при их перестановке определитель не изменяется, ибо строки одинаковые, но вместе с тем он, в силу первого свойства, меняет знак на обратный. Следовательно, он равен нулю.

Сумма произведений элементов какой-либо строки на алгебраические дополнения другой строки равна нулю.

Действительно, такай сумма является результатом разложения определителя с двумя одинаковыми строками по одной из них.

Общий множитель элементов какой-либо строки можно вынести за знак определителя.

Это следует из свойства 3.

8. Определитель с двумя пропорциональными строками равен нулю.

Достаточно вынести множитель пропорциональности, и мы получим определитель с двумя равными строками.

9. Определитель не меняется, если к элементам какой-либо строки добавить числа, пропорциональные элементам другой строки.

Действительно, в силу свойства 3 преобразованный определитель: равен сумме исходного определителя определителя с двумя пропорциональными строками, который равен нулю.

Последнее свойство дает хорошее средство для вычисления определителей. Используя это свойство можно, не менян величины определителя, преобразовать его матрицу так, чтобы в какой-либо строке (или столбце) все элементы, кроме одного, оказались равными нулю. Затем, разложив определитель но элементам этой строки (столбца), мы сведем вычисление определителя порядка к вычислению одного определителя порядка именно, алгебраического дополнения единственного отличного от нуля элемента выбранной строки.

Пусть дана матрица

Определение: Определителем n-го порядка называется алгебраическая сумма n! слагаемых, каждое из которых является произведением n сомножителей, взятых по одному из каждой строки и каждого столбца матрицы А. Знак перед слагаемым определяется по правилу знаков:

Определение: Пусть – произвольная перестановка чисел 1,2,3...n. Говорят, что элементы и образуют инверсию (нарушение порядка), если, а. Перестановка чисел 1,2,3...n называется четной, если число инверсий, образованных ее элементами, четно, в противном случае она называется нечетной.

Чтобы определить знак перед слагаемым, нужно расположить сомножители, в него входящие, в порядке возрастания первых индексов и рассмотреть перестановку, образованную вторыми индексами. Если эта перестановка четная, то ставим ²+², если нечетная, то ²–².

Определение: Рассмотрим перестановку:

Поменяем местами и, получим перестановку:

Говорят, что перестановка В получается из А транспозицией элементов и.

Утверждение: Всякая транспозиция меняет четность перестановки на противоположную.

Доказательство: Частный случай: транспозиция соседних элементов меняет четность перестановки.

Все элементы перестановок А и В, кроме и, образуют одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Если элементы и в перестановке А не образовывали инверсии, то в В – образуют, если в А – образовывали, то в В уже не будут образовывать. Таким образом, в результате транспозиции соседних элементов число инверсий либо увеличилось, либо уменьшилось на единицу. Четность поменялась.

Общий случай. Чтобы совершить транспозицию двух произвольных элементов перестановки, будем последовательно переставлять соседние элементы. Для того, чтобы поменять местами элементы и, сначала k раз меняем элемент с, ..., затем раз меняем до. Таким образом, перестановка совершается раз. Четность меняется на противоположную.

Утверждение: Рассмотрим все перестановки n символов 1,2,3,...,n. Число четных перестановок равно числу нечетных перестановок и равно .

Доказательство: Выпишем все четные перестановки и зададим отображение с нечетными по правилу:

Все перестановки являются нечетными согласно предыдущей теореме.

Указанное нами отображение является биекцией множества всех четных перестановок на множество всех нечетных перестановок, в самом деле, по указанному правилу каждой четной перестановке ставится в соответствие единственная нечетная, т.е. это отображение, очевидно, инъективно: . Указанное отображение сюрьективно, в самом деле, каждая нечетная перестановка В является образом той четной перестановки А, которая получается из В заменой в В местами первого и второго символов, следовательно, отображение биективно, следовательно, число четных перестановок равно числу нечетных равно.



Определение: Всякое биективное отображение множества на себя называется подстановкой.

Подстановку, заданную на множестве 1,2,3,...,n удобно записывать виде: или, где первая и вторая строчки – подстановки.

Подстановка определяется с точностью до расположения столбцов: если в подстановке поменять местами любые два столбца, то получится та же подстановка.

Определение: Подстановка называется четной, если перестановки, записанные в первой и второй строчках либо обе четные, либо обе нечетные. В противном случае подстановка называется нечетной. Четность подстановки не изменится, если поменять в ней любые два столбца, следовательно, число четных подстановок равно числу нечетных, равно.

Теперь правило знаков в определении определителя можно сформулировать так: – произведение n сомножителей, взятых по одному из различных строчек и различных столбцов. Рассмотрим подстановку. Если она четная, то перед слагаемым ставится знак ²+², если нечетная, то ²–².

Пример:

1) Пусть дана матрица, тогда через обозначим транспонированную матрицу:

Докажем, что определитель равен определителю А. ().

Доказательство: Рассмотрим слагаемое входящее в det A. Элемент а является произведением сомножителей, принадлежащих разным строкам и столбцам матрицы А, и, следовательно, разным строкам и столбцам матрицы, следовательно, каждый элемент является слагаемым и в и наоборот. Знак элемента а в определителе определяется четностью подстановки, а в – четностью подстановки. Но эти две подстановки одновременно либо четные либо нечетные.

2) Если в определителе все элементы какой-либо, скажем i-ой строки равны 0, то этот определитель равен 0.

Доказательство: В самом деле, по определению определителя все элементы нулевой строки будут входить в каждое слагаемое, из которых состоит определитель, следовательно, определитель есть сумма n! нулей.

3) Если в определителе поменять местами i и j строчки, то его значение изменится на противоположный.

В самом деле, пусть получена из матрицы а заменой двух строк: i и j. Все слагаемые вида входят и в определитель матрицы А и в определитель матрицы, знак перед этим слагаемым определяется с помощью подстановки: , а знак перед этим же слагаемым в определяется с помощью подстановки

Эти подстановки различной четности.

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с

Лекция №8 (2 семестр)

Тема: Ранг матрицы. Базисные строки – база векторов – строк. Определитель Грамма и линейная зависимость.

Определение: Дана матрица

Пусть в А выделены строчки с номерами и столбцы. Элементы, стоящие на пересечении выбранных столбцов и строк образуют матрицу k-того порядка. Определитель М этой матрицы называется минором k-того порядка. Если в матрице А вычеркнуты выбранные строки и столбцы, то оставшиеся элементы образуют матрицу n-k-того порядка. Определитель этой матрицы называется дополнительным минором к минору М.

Определение: Пусть выбраны строки с номерами и столбцы с номерами. Выражение называется алгебраическим дополнением минора М.

Теорема Лапласа: Пусть в квадратной матрице А выбраны k строк с номерами , где . Сумма произведений всевозможных миноров k-того порядка, расположенных в выбранных строках на их алгебраические дополнения равны определителю матрицы А.

Очевидно, что для системы из n линейных уравнений с n неизвестными получим матрицу коэффициентов размером :

Введем понятие определителя n -го порядка.

Определение 4.1:

Определителем n -го порядка называется число равное

Сумме n ! слагаемых;

Каждое слагаемое есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца;

Каждое слагаемое берется со знаком «+», если перестановка из вторых индексов четная, и со знаком «-», если перестановка из вторых индексов нечетная, при условии, что первые индексы образуют натуральный ряд чисел.

Т.о.

Здесь å берется по всем возможным перестановкам , составленным из чисел 1,2,…,n .

5. Основные свойства определителей.

Установим основные свойства определителей, которые для простоты будем показывать на определителе 2-го порядка.

1. При замене строк соответствующими столбцами (именуемой транспони­рованием ) определитель остается неизменным. Действительно:

Следовательно, , что и требовалось доказать.

Примечание : Полученный выше результат дает нам право утверждать, что строки и столбцы определителя, именуемые в дальней­шем рядами, равноправны.

2. При перестановке двух рядов определитель меняет знак на противоположный.

Действительно, Поменяем местами строки и вычислим определитель

что и требовалось доказать.

3. Если в определителе два параллельных ряда одинаковы, то он равен нулю. Действительно, поменяем местами две одинаковых строки. Тогда величина определителя не изменится, а знак в силу свойства 2. поменяется. Единственное число, которое не меняется при изменении знака – ноль.

4. Общий множитель членов любого ряда можно вынести за знак определителя.

Что и требовалось доказать.

5. Если все элементы любого ряда являются суммами одинакового числа слагаемых, то определитель равен сумме определителей, в которых элементами рассматриваемого ряда служат отдельные слагаемые.

что и требовалось доказать.

6. Определитель не изменится, если к элементам любого ряда прибавить соответствующие элементы параллельного ряда, умноженные на не­которое число.



Умножим вторую строку на и прибавим ее к первой строке:

Действительно, в силу свойств 3,4,5

=

что и требовалось доказать.

6. Миноры и алгебраические дополнения элементов оп­ределителя.

Рассмотрим определитель n -го порядка:

.

Выделим в определителе i -ю строку и j -й столбец. На пересечении этих рядов стоит элемент

Если в определителе мы вычеркнем i -юстроку и j -йстолбец, то получим определитель по­рядка п -1 (т. е. имеющий порядок, на единицу меньший по сравнению с исходным определителем), называемый мино­ром элемента определителя . Будем обозначать мино­р элемента символом .

Определение 6.1. А лгебраическим дополнением эле­мента определителя называется минор , взятый со знаком , и обозначается символом . Согласно определению получим

.

Пример 6.1. Найти минор и алгебраическое дополнение определителя



Рекомендуем почитать

Наверх