Лучше tft или ips экран. Чем отличается экран TFT от IPS

На iOS - iPhone, iPod touch 02.09.2019
На iOS - iPhone, iPod touch

Как обычно бывает с аббревиатурами, используемыми для обозначения специфики и теххарактеристик, в отношении TFT и IPS происходит путаница и подмена понятий. Во многом благодаря неквалифицированным описаниям электронных устройств в каталогах потребители ставят вопрос выбора изначально неверно. Так, матрица IPS - разновидность матриц TFT, так что сравнивать между собой эти две категории невозможно. Однако для российского потребителя аббревиатура TFT зачастую обозначает технологию TN-TFT, и в этом случае уже можно делать выбор. Так что, говоря об отличиях экранов TFT и IPS, мы будем иметь в виду TFT-экраны, изготовленные по технологиям TN и IPS.

TN-TFT - технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы, при отсутствии напряжения, поворачиваются друг к другу под углом 90 градусов в горизонтальной плоскости между двумя пластинами. Кристаллы расположены по спирали, и в итоге при подаче максимального напряжения кристаллы поворачиваются таким образом, что при прохождении света через них образуются черные пиксели. Без напряжения - белые.

IPS - технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы расположены параллельно друг другу вдоль единой плоскости экрана, а не спирально. При отсутствии напряжения молекулы жидких кристаллов не поворачиваются.

На практике самое важное отличие IPS-матрицы от TN-TFT-матрицы состоит в повышенном уровне контрастности за счет практически идеального отображения черного цвета. Картинка получается более четкой.

Качество цветопередачи матриц TN-TFT оставляет желать много лучшего. Каждый пиксель в этом случае может иметь собственный оттенок, отличный от других, в результате чего искажаются цвета. IPS уже обращается с изображением гораздо бережнее.

Слева - планшет с TN-TFT матрицей . Справа - планшет с IPS матрицей

Скорость отклика у TN-TFT несколько выше, чем у других матриц. IPS требуется время, чтобы повернуть весь массив параллельных кристаллов. Таким образом, при выполнении задач, где важна скорость прорисовки, гораздо выгоднее использовать матрицы TN. С другой стороны, в повседневном применении разницу во времени отклика человек не замечает.

Мониторы и дисплеи, созданные на базе IPS-матриц, гораздо более энергоемкие. Это обусловлено высоким уровнем напряжения, требуемого для поворота массива кристаллов. Потому задачам экономии энергии в мобильных и портативных устройствах отвечает больше технология TN-TFT.

Экраны, основанные на IPS, обладают широкими углами обзора, то есть не искажают и не инверсируют цвета, если взгляд падает под углом. В отличие от TN, углы обзора IPS составляют 178 градусов как по вертикали, так и по горизонтали.

Еще одно отличие, немаловажное для конечного потребителя - цена. TN-TFT на сегодняшний день представляет собой самый дешевый и самый массовый вариант матрицы, поэтому ее используют в бюджетных моделях электроники.

Выводы сайт

  1. Экраны IPS менее отзывчивы, время задержки отклика у них больше.
  2. Экраны IPS обеспечивают более качественную цветопередачу и контрастность.
  3. Углы обзора экранов IPS существенно больше.
  4. Экраны IPS требуют больше энергии.
  5. Экраны IPS дороже.

Технология LCD TFT матриц предусматривает использование в производстве жидкокристаллических дисплеев специальных тонкопленочных транзисторов. Само название TFT – это сокращение от Thin-film transistor, что в переводе и означает – тонкопленочный транзистор. Такой вид матриц применяет в самых разнообразных устройствах, от калькуляторов, до дисплеев смартфонов.

Наверное, каждый слышал понятия TFT и LCD, но мало кто задумывался, что это такое, из-за чего у непросвещенных людей возникает вопрос, чем отличается TFT от LCD? Ответ на этот вопрос заключается в том, что это две разные вещи, которые не стоит сравнивать. Чтобы понять, в чем разница между этими технологиями, стоит разобрать, что такое LCD, и что такое TFT.

1. Что такое LCD

LCD – это технология изготовления экранов телевизоров, мониторов и других устройств, основанная на использовании специальных молекул, которые называются – жидкие кристаллы. Эти молекулы имеют уникальные свойства, они постоянно находятся в жидком состоянии и способны менять свое положение при воздействии на них электромагнитного поля. Кроме этого, эти молекулы имеют оптические свойства, схожие со свойствами кристаллов, из-за чего эти молекулы и получили свое название.

В свою очередь экраны LCD могут иметь разные типы матриц, которые в зависимости от технологии изготовления имеют различные свойства и показатели.

2. Что такое TFT

Как уже говорилось, TFT – это технология изготовления LCD дисплеев , которая подразумевает использование тонкопленочных транзисторов. Таким образом, можно сказать, что TFT – это подвид LCD монитор ов. Стоит отметить, что все современные LCD телевизоры , мониторы и экраны телефонов относятся к виду TFT. Поэтому вопрос, что лучше TFT или LCD не совсем правильный. Ведь отличие FTF от LCD заключается в том, что LCD – это технология изготовления жидкокристаллических экранов, а TFT – это подвид ЖК дисплеев, к которому относятся все типы активных матриц.

Среди пользователей TFT матрицы имеют название – активные. Такие матрицы обладают существенно более высоким быстродействием, в отличие от пассивных ЖК-матриц. Помимо этого, тип экрана LCD TFT отличается повышенным уровнем четкости, контрастности изображения и большими углами обзоров. Еще один важный момент заключается в том, что мерцание в активных матрицах отсутствует, что означает, что за такими мониторами приятнее работать, глаза при этом меньше устают.

Каждый пиксель матрицы TFT оснащен тремя отдельными управляющими транзисторами, благодаря чему достигается значительно более высокая частота обновления экрана, в сравнении с пассивными матрицами. Таким образом, в состав каждого пикселя входит три цветные ячейки, которые управляются соответствующим транзистором. Например, если разрешение экрана составляет 1920х1080 пикселей, то количество транзисторов в таком мониторе будет равно 5760х3240. Применение такого количества транзисторов стало возможным благодаря сверхтонкой и прозрачной структуре – 0,1- 0,01 микрон.

3. Виды матриц TFT экранов

На сегодняшний день, благодаря целому ряду преимуществ, TFT дисплеи используются в самых разнообразных устройствах.

Все известные ЖК телевизоры, которые имеются на российском рынке , оснащены TFT дисплея ми. Они могут различаться своими параметрами в зависимости от используемой матрицы.

На данный момент наиболее распространенными матрицами TFT дисплеев являются:

Каждый из представленных видов матриц обладает своими преимуществами и недостатками.

3.1. Тип ЖК матрицы TFT TN

TN – это самый распространенный тип экрана LCD TFT. Такую популярность данный тип матрицы получил благодаря уникальным особенностям. При своей низкой стоимости, они имеют достаточно высокие показатели, причем в некоторых моментах, такие экраны TN даже имеют преимущества перед другими типами матриц.

Главная особенность – это быстрый отклик. Это параметр, который обозначает время, за которое пиксель способен отреагировать на изменение электрического поля. То есть, время, которое необходимо для полного изменение цвета (от белого к черному). Это очень важный показатель для любого телевизора и монитора, в особенности для любителей игр и фильмов, насыщенных всевозможными спецэффектами.

Недостатком данной технологии является ограниченные углы обзоров. Однако современные технологии позволили исправить этот недостаток. Сейчас матрицы TN+Film имеют большие углы обзоров, благодаря чему такие экраны способны конкурировать с новыми IPS матрицами.

3.2. IPS матрицы

Данный вид матриц имеет наибольшие перспективы. Особенность данной технологии состоит в том, что такие матрицы имеют самые большие углы обзоров, а также наиболее естественную и насыщенную цветопередачу. Однако недостатком этой технологии до сегодняшнего дня был длительный отклик. Но благодаря современным технологиям этот параметр удалось сократить до приемлемых показаний. Более того, нынешние мониторы c IPS матрицами имеют время отклика 5 мс, что не уступает даже TN+Film матрицам.

По мнению большинства изготовителей мониторов и телевизоров, будущее лежит именно за IPS матрицами, благодаря чему они постепенно вытесняют TN+Film.

Кроме этого, производители мобильных телефонов , смартфонов, планшетных ПК и ноутбуков все чаще выбирают TFT LCD модули с матрицами IPS, обращая внимание на отличную цветопередачу, хорошие углы обзора, а также экономичное потребление энергии, что крайне важно для мобильных устройств.

3.3. MVA/PVA

Данный тип матриц – это некий компромисс между TN и IPS матрицами. Ее особенность заключается в том, что в спокойном состоянии молекулы жидких кристаллов располагаются перпендикулярно плоскости экрана. Благодаря этому производители смогли достичь максимально глубокого и чистого черного цвета. Кроме этого данная технология позволяет достичь больших углов обзора, в сравнении с TN матрицами. Достигается это с помощью специальных выступов на обкладках. Эти выступы определяют направление молекул жидких кристаллов. При этом стоит отметить, что такие матрицы имеют меньшее время отклика, нежели IPS-дисплеи, и большее, в сравнении с TN матрицами.

Как ни странно, но данная технология не нашла широкого применения в массовом производстве мониторов и телевизоров.

4. Что лучше Super LCD или TFT

Для начала стоит разобрать, что такое Super LCD.

Super LCD – это технология производства экранов, которая широко распространена среди производителей современных смартфонов и планшетных ПК. По сути, Super LCD – это те же IPS матрицы, которые получили новое маркетинговое название и некоторые улучшения.

Главное отличие таких матриц заключается в том, что они не имеют воздушного зазора между наружным стеклом и картинкой (изображением). Благодаря этому удалось достичь уменьшения бликов. Кроме этого визуально изображение на таких дисплеях кажется ближе к зрителю. Если говорить о сенсорных дисплеях на смартфонах и планшетных ПК, то экраны Super LCD более чувствительны к прикосновениям и быстрее реагируют на движения.

5. TFT / LCD монитор: Видео

Еще одно преимущество данного типа матриц заключается в пониженном потреблении энергии, что опять же крайне важно в случае автономного устройства, такого как ноутбук, смартфон и планшет. Такая экономичность достигается благодаря тому, что в спокойном состоянии жидкие кристаллы расположены так, чтобы пропускать свет, что снижает потребление энергии при отображении светлых картинок. При этом стоит отметить, что подавляющее большинство фоновых картинок на всех интернет сайтах, заставках в приложениях и так далее, являются как раз таки светлыми.

Главной областью применения SL CD дисплеев является именно мобильная техника , благодаря низкому потреблению энергии, высокому качеству изображения, даже при прямых солнечных лучах, а также более низкой стоимости, в отличии, к примеру, от AMOLED экранов.

В свою очередь LCD TFT дисплеи включают в себя тип матрицы SLCD. Таким образом, Super LCD – это тип активной матрицы TFT дисплея. В самом начале данной публикации мы уже говорили о том, что TFT и LCD разницы не имеют, это в принципе одно и то же.

6. Выбор дисплея

Как уже говорилось выше, каждый из типов матриц обладает своими преимуществами и недостатками. Все они также уже оговаривались. В первую очередь при выборе дисплея, стоит учитывать ваши требования. Стоит задать себе вопрос, - Что именно нужно от дисплея, как он будет использоваться и в каких условиях?

Отталкиваясь от требований, и стоит выбирать дисплей. К сожалению, на данный момент не существует универсального экрана, на который можно было бы сказать, что он действительно лучше всех остальных. Из-за этого, если вам важна цветопередача, и вы собираетесь работать с фотографиями, то однозначно ваш выбор – это IPS матрицы. Но если вы заядлый любитель остросюжетных и ярких игр, то предпочтение все же лучше отдать TN+Film.

Все современные матрицы имеют достаточно высокие показатели, поэтому простые пользователи разницу могут даже не заметить, ведь IPS матрицы практически не уступают TN по времени отклика, а TN в свою очередь имеют довольно большие углы обзора. К тому же, как правило, пользователь располагается напротив экрана, а не сбоку или сверху, из-за чего большие углы в принципе не требуются. Но выбор все же за вами.

Назначение ЖК-монитора

Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата, электронного переводчика, калькулятора и пр.

Изображение формируется с помощью отдельных элементов , как правило, через систему развёртки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность: отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом . S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями . Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Введение

Текущее развитие рынка LCD (TFT) дисплеев напоминает многим продавцам о прошлых временах, когда уровни прибыли и спрос были на очень высоком уровне. Еще недавно покупатель должен был выложить очень большие деньги за LCD монитор, что бы сэкономить пространство на рабочем столе, снизить потребление энергии и позаботиться о собственном здоровье. Однако уже сегодня рынок изменяет свое направление, и цены начинают подчиняться обычным динамическим рыночным силам.

Эта статья является первой из цикла, посвященного рассмотрению всех вопросов связанных с LCD. В этой части, мы расскажем Вам о развитии рыночной ситуации и некоторых тенденциях развития LCD. Мы рассмотрим технологию, архитектуру и принципы работы. В заключении мы дадим несколько советов покупателям LCD мониторов. Статья будет интересна не только новичкам, но и профессионалам.

Во второй и третьей частях мы углубленно рассмотрим некоторые особенности LCD, т.к. увеличение угла обзора, рассмотрим современные цифровые интерфейсы (DFP и DVI) и отношение пиксельного размера и максимального диагонального размера дисплея.

Позже мы сообщим о наиболее важных компаниях на рынке LCD, рассмотрим некоторые модели, и естественно будем следить за уровнем цен.

Рыночная ситуация

Огромный успех портативных компьютеров стал сильным толчком в развитии TFT дисплеев. Несмотря на это, свой путь на современный рынок LCD пробивали с большим трудом. Так, например, в 1998 объем проданных LCD был далек от объема продаж ЭЛТ мониторов. При этом спрос на LCD был и остается достаточно высоким. В связи со сложностью производства и низким процентом годных матриц производители не могут выполнить 100% заказов. Не секрет, что сегодня наибольшее распространение LCD получили в офисной сфере. Для того чтобы LCD могли занять свою нишу в секторе домашних компьютеров, необходимо выполнение следующих требований:

  • Цены должны быть на уровне ЭЛТ-мониторов
  • Минимальный размер 15" с разрешением 1024 x 768 пикселей
  • Доступность
  • Стандартизированные интерфейсы для цифрового TFT
  • Качество и функциональность для всех приложений

Производство и выход годных матриц

Как мы уже сказали выше, конструкция и производство активной TFT матрицы процесс достаточно сложный. Это приводит к очень высоким требованиям к отклонениям от нормы. Например, для управления элементами матрицы используются очень тонкие транзисторы, которые должны иметь абсолютно идентичные уровни срабатывания. Как Вы можете понять, все это прямым образом влияет не только на цену, но и доступность TFT дисплеев.

Текущая ценовая ситуация и тенденции

Еще недавно цены на LCD в два - три раза превышали цену аналогичного ЭЛТ-монитора. Так, 15.1" LCD монитор (эквивалент 17" ЭЛТ-монитора) стоил от 500 до 1,300$. А 18.1" TFT (эквивалент 21" ЭЛТ дисплея) от $2,800 - $3,500.

В начале 1999 года на рынке LCD наблюдалась кратковременная тенденция повышения цен. Многие производители подняли цена примерно на 100$. В общем эта тенденция отличается от традиционного развития IT рынка, однако сложившаяся ситуация позволила держать цены на высоком уровне.

Недавно на рынке наметилось существенное снижение цен. Так сегодня 15" модель можно купить уже за 399$. Однако, это не предел. Некоторые аналитики утверждают, что при благоприятных условиях 15" LCD могут достичь цены $80. Не верится? Да, действительно, LCD могут стоить значительно дешевле ЭЛТ. Однако когда это произойдет, никто не знает.

Современные технологии

Современные дисплейные технологии подразделяются на традиционные с электронно-лучевой трубкой (ЭЛТ) и плоско панельные дисплеи. Несмотря на развитие ЭЛТ технологии, мониторы, основанные на ней, занимают достаточно много пространства рабочего стола, имеют высокое энергопотребление и негативно влияют на наше здоровье. Плоско панельные дисплеи - т.е. устройства без ЭЛТ - как следует из названия, плоские и занимают минимум площади рабочего стола. Плоско панельные технологии в свою очередь подразделяются на множество различных технологий типа LCD (Жидкокристаллические дисплеи), плазменные дисплеи, LED (светоизлучающие диоды) и различные другие. Среди этих технологий можно выделить те, которые излучают свет и те, которые управляют проходящим через них светом.

На сегодняшний день наиболее интересной и перспективной технологией считаются т.н. TFT-LCD или как их еще называют в народе активные. Эти устройства для формирования изображения используют проходящий через них свет. Кроме активных LCD, существуют пассивные дисплеи STN и DSTN, однако сегодня они применяются только в дешевых ноутбуках.

Рисунок 1: Краткий обзор современных плоско панельных технологий.

Как работает TFT?

TFT расшифровывается как ’Тонкопленочный транзистор (Thin Film Transistor) и описывает элементы, которые активно управляют индивидуальными пикселями.

Как же формируется изображение? Сам принцип формирования достаточно прост: панель состоит из множества мельчайших пикселей, каждый из которых может формировать любой цвет. Для этого используется задняя подсветка, состоящая из одной или множества флуоресцентных ламп. Для управления проходящим через пиксель светом используется т.н. дверка или затвор. На самом деле технология, которая делает это возможным, значительно сложнее.

LCD (Жидкокристаллический дисплей) означает дисплей основанный на жидких кристаллах, которые могут изменять свою молекулярную структуру, что приводит к изменению уровня света, проходящему через них (они могут полностью блокировать проходящий через них свет). В процессе формирования точки используются два поляризационных фильтра, цветные фильтры и два уровня выравнивания. Все это позволяет точно установить уровень проходящего света и его цвет. Уровень выравнивания расположен между двумя стеклянными панелями. Применив определенное напряжение к уровню выравнивания, создается электрическое поле, которое "выравнивает" жидкие кристаллы. Для формирования цвета каждая точка состоит из трех компонентов, один для красного, зеленого и синего - также как на традиционных ЭЛТ дисплеях.

Наиболее часто, сегодня встречаются т.н. скручивающиеся нематические TFT. Ниже на рисунках 2а и 2b показано как работает стандартный TFT (скручивающийся нематический) дисплей.

Рисунок 2a

Когда на уровень выравнивания не подано напряжение, молекулярная структура находится в своем естественном состоянии и искривлена под углом 90 градусов. Свет, испускаемый задней подсветкой, может спокойно проходить через структуру.

Рисунок 2b

Если подать напряжение, создается электрическое поле, и жидкие кристаллы искривляются так, что бы они были вертикально выровнены. Поляризованный свет поглощается вторым поляризатором, что приводит к отсутствию света в конкретной точке.

Архитектура TFT пикселя

Цветные фильтры интегрированы на стеклянную подложку и расположены рядом друг с другом. Как уже мы говорили выше, каждый пиксель состоит из трех цветных ячеек или под-пиксельных элемента. Это означает, что матрица с разрешением 1280 x 1024 пикселя, имеет 3840 x 1024 транзистора и пиксельных элементов. Точка или пиксельный шаг для 15.1" TFT (1024 x 768 пикселя) составляет около 0.0188" (или 0.30mm), а для 18.1" TFT (1280 x 1024 пикселя) около 0.011" (или 0.28mm).

Рисунок 3: TFT пиксели. В левом верхнем углу каждой ячейки расположен тонкопленочный транзистор. Цветные фильтры позволяют формировать любой RGB цвет.

Говоря о архитектуре пикселя необходимо обратить внимание на физические ограничения TFT. Теоретически, чем меньше интервал между пикселями, тем выше разрешение, однако на 15" (около 38 cm) дисплее с точкой 0.0117" (0.297mm), будет невозможно получить разрешение 1280 x 1024. Об отношении между точечным шагом и диагональным размером мы поговорим в одной из будущих статей.

Проблемы масштабирования

Как Вы смогли понять, каждый пиксель находится в фиксированном положении и поэтому определяет разрешающую способность TFT без каких-либо геометрических проблем. Другими словами: максимальное число пикселей соответствует максимальной разрешающей способности. Но, что происходит при уменьшении разрешения, например, при запуске игр или видео? В этом случае контроллер, отвечающий за масштабирование, уменьшает изображение до размера максимального размера дисплея. Если контроллер не может обрабатывать эту задачу эффективно, результат будет искажен. С технической точки зрения эта задача значительно сложнее изменения масштаба на обычном ЭЛТ-мониторе.

Почему? В случае ЭЛТ, электронный луч может приспосабливаться к новому разрешению простым изменением напряжения отклонения. Кроме того, здесь не имеет значения, если луч сформирует точку между двумя соседними пикселями. В случае TFT все значительно сложнее. Из-за активного управления каждым пикселем, масштабирующий контроллер должен повторно вычислить данные для меньших разрешений. Если используется целый коэффициент масштабирования (например, 2 при переходе на 800 x 600 с 1600 x 1200) все очень просто: высота и ширина каждого пикселя удваивается. В случае не целого коэффициента, например, при переходе к 800 x 600 с 1024 x 768 - 1.28, ситуация значительно усложняется. Контроллер должен сам выбрать где отображать один пиксель, а где два. При математическом округлении, возникают ошибки, которые приводят к неприятным эффектам при отображении текста (см. рисунок ниже). Благодаря новым алгоритмам, современные контроллеры могут уменьшать этот эффект, использую уловку (см. продвинутое масштабирование) уменьшая оптическое впечатление: Если данные не могут быть уникально назначены пикселю, то интенсивность пикселя уменьшается.

Рисунок 5: Примеры масштабирования

Какие характеристики являются важными при оценке LCD?

Реальный диагональный размер экрана

Видимый диагональный размер ЭЛТ-монитора всегда меньше фактического диагонального размера трубки. TFT панели не имеют этой краевой области, поэтому указанный диагональный размер тот же, что и видимый диагональный размер. Это означает, что панель размером 15.1" эквивалентна размеру 17" ЭЛТ-монитора.

Угол видимости

Эта характеристика является критической практически для всех плоско панельных дисплеев. Не каждый LCD может похвастаться углом видимости, эквивалентным стандартному ЭЛТ-монитору. Меньший угол связан в первую очередь с конструктивными особенностями LCD. Напомним, что свет от задней подсветки должен пройти через поляризационные фильтры, жидкие кристаллы и т.н. уровни выравнивания, что придает ему некий направленный характер. Если посмотреть на дисплей сбоку под большим углом, изображение будет казаться очень темным или будет наблюдаться искажение цвета. Несмотря на отрицательность этого эффекта, производители смогли найти ему достойное применение. Мы имеем ввиду безопасность. Наибольшее применение этот эффект получил в банках и других учреждениях, где очень важно, что бы отображаемый документ был виден только оператору.

Сегодня разработчики работают над технологией, позволяющими увеличить значение угла видимости, однако уже сегодня известны методы, т.к. IPS (in-plane switching), MVA (multi-domain vertical alignment) и TN+film (twisted nematic and retardation film) которые позволяют увеличить угол до 160 градусов и более, что соответствует стандарту для ЭЛТ-мониторов.

Кстати, если Вы не знаете, напоминаем, что максимальный угол обзора равен крайнему значению, при котором коэффициент контрастности снижается до 10:1 от оригинального значения при перпендикулярном положении к плоскости экрана.

Коэффициент контрастности

Коэффициент контрастности получается из значений максимального и минимального значения яркости. На ЭЛТ-мониторах это коэффициент равен 500:1 и позволяет получить фото реалистическое качество. Для LCD этот коэффициент имеет значительно меньшее значение. Особенно это заметно при отображении черного цвета. На ЭЛТ-мониторе черный цвет формируется достаточно просто, изменением уровня всех цветовых составляющих. На LCD свет подсветки обычно не регулируется, и находится постоянно во включенном состоянии. Для отображения черного цвета, жидкие кристаллы должны полностью блокировать прохождение света. Однако, физически это не возможно. Несмотря на полную блокировку, свет частично будет проходить через кристаллы. Разработчики работают на этой проблемой и сегодня приемлемыми значениями для LCD являются 250:1.

Яркость

Здесь TFT дисплеи лидируют. Максимальная яркость определяется возможностями лампы подсветки. Поэтому получить значения в 200 - 250 кандела не проблема. Хотя технически возможно получить еще большее значение яркости, на практике этого не требуется.

Максимальная яркости ЭЛТ-мониторов находится на уровне 100 - 120 cd/m 2 . Большее значение яркости получить возможно, однако это требует поднятия напряжения ускорения, что негативно влияет на срок службы фосфорного покрытия.

Пиксельные ошибки

На некоторых LCD мониторах (даже новых) имеются т.н. "заклинившие" или "мертвые" точки. Это происходит из-за дефектных транзисторов. Т.е. конкретный транзистор не может управлять световым потоком. Он либо всегда блокирует свет, либо всегда пропускает. Этот факт очень раздражает, однако, стандарты учитывают наличие до пяти "мертвых" точек на новом LCD. При этом успокаивает только, то, что в будущем они не появятся. Для тех, кого эта проблема особенно волнует, мы рекомендуем тщательно проверять монитор при покупке.

Время отклика

Одной из критических характеристик многих TFT дисплеев является время отклика жидких кристаллов. Это приводит к видимой задержке при отображении анимированных сюжетов. Для современных систем типичным значением отклика является 20 - 30 миллисекунд.

Для сравнения: Для нормального просмотра видео необходимо отображать 25 кадров в секунду, т.е. каждый кадр может отображаться не более 40 миллисекунд. Это говорит о том, что TFT в принципе подходит для просмотра видео.

Цветовое качество - подготовка аналоговых входных сигналов

П сравнению с цифровыми плоско панельными дисплеями, LCD, оборудованные стандартным VGA разъемом, должны конвертировать аналоговый сигнал обратно в цифровой, что приводит к потере цветового качества. Некоторые производители рекомендуют использовать A/D конвертеры, которые могут передавать только 18 bit (3 x 6 bit на каждый цвет (красный, зеленый и синий)). Это приводит к снижению числа отображаемых цветов до 262,144 (псевдо RGB). Режим "True Color" требует отображения 16.7 миллионов цветов.

Преимущества и недостатки TFT дисплеев

После знакомства с оcновными характеристиками TFT дисплеев, мы хотели бы провести сравнение обычного ЭЛТ монитора и TFT. TFT дисплеи предлагают очень хорошие характеристики фокусировки из-за активного управления пикселями. Кроме того, TFT дисплеи лишены различных геометрических искажений и ошибок сходимости. Также мы хотим отметить отсутствие нежелательного мерцания. Все эти преимущества TFT перед ЭЛТ связаны с технической природой. Так, например, для формирования изображения на экране ЭЛТ, электронный луч должен пройти весь экран с лева на право с верху в низ, после чего экран гаснет, и луч переходит в исходную позицию. В большинстве случаев возникшее мерцание не заметно, однако оно имеет негативное влияние на наши глаза. В случае TFT дисплеев каждый пиксель горит постоянно, меняется только интенсивность свечения.

В таблице ниже мы привели сравнение основных характеристик ЭЛТ и TFT дисплеев.

Плоско панельные дисплеи (TFT)

ЭЛТ-мониторы

(+) 170 - 250 cd/m 2

(~) 80 - 120 cd/m 2

Коэффициент контрастности

(~) 200:1 - 400:1

(+) 350:1 - 700:1

Угол видимости (контрастность)

(~) 110 - 170 градусов

(+) более 150 градусов

Угол видимости (цвет)

(-) 50 до 125 градусов

(~) более 120 градусов

Ошибки сходимости

(~) 0.0079" - 0.0118" (0,20 - 0,30 mm)

(+) очень хороший

(~) удовлетворительный - очень хороший

Геометрические и линейные ошибки

(~) возможны

Пиксельные ошибки

Входной сигнал

(+) аналоговый или цифровой

(~) только аналоговый

Масштабирование для различных разрешений

(-) нет или используются методы интерполяции

(+) очень хорошее

Гамма (настройка цвета)

(~) удовлетворительно

(+) фото реалистично

Однородность

(~) более яркое изображение на гранях

(~) более яркое в центре

Чистота цвета/качество

(~) хорошее

(+) высокое

Мерцание

(~) не видимо на частоте более 85 Hz

Время отклика

(-) 20 - 30 msec

(+) не значимо

Потребление энергии

(+) 25 - 40 Вт

(-) 60 - 150 Вт

Габаритные размеры/вес

(+) плоский дизайн, маленький вес

(-) требует много пространства + большой вес

(+) положительно (~) приемлемо (-) отрицательно

Идеальный TFT: Что выбрать?

Итак, если Вы решили купить LCD, мы настоятельно рекомендуем проконсультироваться с продавцом и ознакомиться с описанием конкретной модели. Вам необходимо удостовериться, что выбранный Вами монитор отвечает следующим требованиям:

Заключение

Итак, какие выводы можно сделать из нашей первой статьи.

Во-первых, LCD мониторы стали дешевле, и уже практически достигли уровня традиционных ЭЛТ-мониторов. Во-вторых, мы выяснили, что характеристики современных LCD не только не отстают, но и в некоторых случаях превосходят ЭЛТ-мониторы. LCD мониторы лишены таких недостатков ЭЛТ мониторов, как сходимость и геометрические искажения, не имеют неприятного мерцания и излучения, они занимают минимум площади рабочего места, и потребляют в три раза меньше энергии.

Все это говорит о том, что современные LCD могут свободно применяться не только для работы с офисными приложениями, но и дома при просмотре видео, 3D играх и в других современных приложениях, экономя потребление энергии, сохраняя Ваше здоровье, и не портят дизайн Вашей рабочей комнаты.

Как ни странно, выбрать качественный дисплей монитора компьютера или ноутбука можно только опытным путем. Данная статья поможет вам разобраться в параметрах, на которые следует обратить внимание при выборе монитора или ноутбука.

Как выбрать монитор или дисплей ноутбука с идеальными характеристиками?

Качественный дисплей имеет огромное преимущество в мультимедиа задачах на ПК, а в отношении ноутбука — это половина. Взгляните на небольшой список недостатков дисплея, которых стоит опасаться при покупке нового мобильного компьютера или монитора для ПК:

  • низкие характеристики яркости и контраста
  • небольшие углы обзора
  • блики

Заменить экран ноутбука (лэптопа) весьма затруднительно, чем купить новый монитор для настольного компьютера, не говоря уже о том, чтобы установить новую ЖК-матрицу в мобильный компьютер, что можно сделать далеко не во всех случаях, поэтому к выбору экрана портативного ПК следует подходить со всей ответственностью.

Еще раз напомню, что верить обещаниям рекламных материалов торговых сетей и производителей компьютеров нельзя. Дочитав руководство по выбору монитора и дисплея мобильного компьютера , вы сможете найти отличие между TN-матрицей и матрицей IPS , дать оценку контрастности, определить необходимый уровень яркости и другие важные параметры жидкокристаллического экрана. Вы сэкономите время и средства на поиски монитора для ПК и дисплея ноутбука, выбрав качественный жидкокристаллический экран вместо посредственного.

Что лучше: IPS или TN матрица?

В экранах ноутбуков, ультрабуков, планшетов и других портативных компьютеров обычно используются жидкокристаллические панели двух типов:

  • IPS (In-Plane Switching)
  • TN (Twisted Nematic)

У каждого типа есть свои преимущества и недостатки, но стоит учесть, что и предназначены они для разных групп потребителей. Давайте узнаем, какой тип матрицы подойдет именно вам.

IPS-дисплеи: отличная цветопередача

Дисплеи на основе матриц стандарта IPS обладают следующими преимуществами :

  • большие углы обзора - вне зависимости от стороны и угла человеческого взгляда, изображение не будет блеклым и не потеряет насыщенности цветов
  • великолепная цветопередача — IPS-дисплеи передают цвета диапазона RGB без искажений
  • отличаются довольно высокой контрастностью.

Если вы собираетесь с предварительной или заниматься видеомонтажом, вам понадобится устройство с экраном данного типа.

Недостатки технологии IPS по сравнению с TN:

  • длительное время отклика пикселей (по этой причине дисплеи этого типа в меньшей степени подходят для динамичных 3D-игр).
  • мониторы и мобильные компьютеры с IPS-панелями как правило стоят дороже, чем модели с экранами на основе матриц TN.

TN-дисплеи: недорогие и быстрые

Наибольшее распространение в настоящее время получили жидкокристаллические матрицы, изготовленные по технологии TN . К их преимуществам относятся:

  • низкая стоимость
  • небольшая потребляемая мощность
  • время отклика.

TN-экраны хорошо проявляют себя в динамичных играх - например, шутерах от первого лица (FPS) с быстрой сменой сцен. Для подобных приложений требуется экран со временем отклика не более 5 мс (у IPS-матриц оно обычно больше). В противном случае на дисплее могут наблюдаться различного рода визуальные артефакты, такие как шлейфы у быстро движущихся объектов.

В том случае, если вы желаете использовать на мониторе или ноутбуке со стереоэкраном, вам также лучше отдать предпочтение TN-матрице. Некоторые дисплеи данного стандарта способны обновлять изображение со скоростью 120 Гц, что является необходимым условием для работы стереоочков активного типа.

Из недостатков TN дисплеев стоит выделить следущие:

  • панели стандарта TN имеют ограниченные углы обзора
  • посредственную контрастность
  • не способны отображать все цвета пространства RGB, поэтому они непригодны для профессионального редактирования изображений и видео.

Очень дорогие TN-панели, однако, лишены некоторых характерных недостатков и по качеству приближаются к хорошим IPS-экранам. Например, в Apple MacBook Pro с Retina используется TN-матрица, почти не уступающая дисплеям IPS в плане цветопередачи, углов обзора и контрастности.

Если на электроды не подается напряжение, жидкие кристаллы, выстроенные в линию, не меняют плоскость поляризации света, и он не проходит через передний поляризационный фильтр. При подаче напряжения кристаллы поворачиваются на 90°, плоскость поляризации света меняется, и он начинает проходить.

Когда на электроды не подается напряжение, молекулы жидких кристаллов выстраиваются в винтовую структуру и меняют плоскость поляризации света таким образом, чтобы он проходил через передний поляризационный фильтр. Если напряжение подать, кристаллы расположатся линейно и свет проходить не будет.

Как отличить IPS от TN

Если вам понравился монитор или ноутбук, а технические характеристики дисплея не известны, то следует посмотреть на его экран под различными углами. В том случае, если изображение при этом тускнеет, а его цвета сильно искажаются, перед вами монитор или мобильный компьютер с посредственным TN-дисплеем. Если же, несмотря на все ваши старания, картинка не потеряла своих красок - данный монитор с матрицей, изготовленной по технологии IPS, либо с TN высокого качества.

Внимание: избегайте ноутбуков и мониторов с матрицами, на которых заметны сильные искажения цветов под большими углами. Для игр выбирайте компьютерный монитор с дорогим TN-дисплеем, для остальных задач лучше отдать предпочтение IPS-матрице.

Немаловажные параметры: яркость и контрастность монитора

Рассмотрим еще два важных параметра дисплея:

  • максимальный уровень яркости
  • контрастность.

Яркости мало не бывает

Для работы в помещении с искусственным освещением достаточно дисплея с максимальным уровнем яркости 200–220 кд/м2 (кандел на квадратный метр). Чем ниже значение этого параметра, тем темнее и тусклее будет изображение на дисплее. Не советую покупать мобильный компьютер с экраном, у которого максимальный уровень яркости не превышает 160 кд/м2. Для комфортной работы вне помещений солнечным днем понадобится экран с яркостью не менее 300 кд/м2. В общем случае, чем выше яркость дисплея, тем лучше.

При покупке также следует проверить равномерность подсветки экрана. Для этого стоит воспроизвести на экране белый или темно-синий цвет (это можно сделать в любом графическом редакторе) и убедиться в отсутствии светлых и темных пятен по всей поверхности экрана.

Статическая и шахматная контрастность

Максимальный уровень статической контрастности экрана - это соотношение яркости последовательно отображаемых черных и белых цветов. Например, значение контрастности 700:1 означает, что при выводе белого цвета яркость дисплея будет в 700 раз выше, чем при демонстрации черного.

Тем не менее на практике картинка почти никогда не бывает полностью белой или черной, поэтому для более приближенной к реальности оценки используют понятие контрастности по шахматному полю.

Вместо того чтобы последовательно заливать экран черным и белым цветами, на него выводят тестовый шаблон в виде черно-белой шахматной доски. Это гораздо более трудный для дисплеев тест, поскольку вследствие технических ограничений нельзя отключить подсветку под черными прямоугольниками и одновременно освещать с максимальной яркостью белые. Хорошей контрастностью по шахматному полю для ЖК-дисплеев считается значение 150:1, отличной - 170:1.

Чем выше контрастность, тем лучше. Для ее оценки выведите на дисплей ноутбука шахматную таблицу и проверьте глубину черного цвета и яркость белого.

Матовый или глянцевый экран

Наверное, многие обращали внимание на различие в покрытии матриц:

  • матовое
  • глянцевое

Выбор зависит от того, в каком месте и для каких целей вы планируете использовать монитор или ноутбук. Матовые ЖК-дисплеи имеют шероховатое покрытие матрицы, плохо отражающее внешний свет, поэтому они не бликуют на солнце. К явным недостаткам следует отнести так называемый кристаллический эффект, проявляющийся в легкой дымчатости изображения.

Глянцевое покрытие гладкое и лучше отражает свет, испускаемый внешними источниками. Глянцевые дисплеи, как правило, ярче и контрастнее матовых, а цвета на них кажутся насыщеннее. Однако такие экраны бликуют, что приводит к преждевременному утомлению при долгой работе, особенно если у дисплея недостаточный запас яркости.

Экраны с глянцевым покрытием матрицы, имеющие недостаточный запас яркости, отражают окружающую обстановку, что приводит к преждевременному утомлению пользователя.

Сенсорный экран и разрешение

Windows 8 стала первой операционной системой Microsoft, оказавшей огромное влияние на развитие экранов мобильных компьютеров, в которой отчетливо видна оптимизация графической оболочки под сенсорные экраны. Ведущие разработчики выпускают ноутбуки (ультрабуки и гибриды), моноблоки с тачскринами. Стоимость таких устройств обычно выше, но и управлять ими удобнее. Тем не менее вам придется смириться с тем, что экран будет быстро терять презентабельный внешний вид из-за жирных следов отпечатков пальцев, и регулярно протирать его.

Чем меньше экран и выше его разрешение, тем большее количество точек, формирующих изображение, приходится на единицу площади и тем выше его плотность. Например, 15,6-дюймовый дисплей с разрешающей способностью 1366×768 пикселей имеет плотность 100 точек на дюйм.

Внимание! Не покупайте мониторы с экранами, обладающими плотностью точек менее 100 точек на дюйм, поскольку на них будет заметна зернистость изображения.

До выхода Windows 8 высокая плотность пикселей приносила скорее больше вреда, чем пользы. Мелкие шрифты на маленьком экране с высоким разрешением было очень сложно разглядеть. В Windows 8 заложена новая система адаптации к экранам с различной плотностью, поэтому теперь пользователь может выбирать портативный компьютер с такими диагональю и разрешающей способностью дисплея, которые сочтет нужными. Исключение составляют поклонники видеоигр, поскольку для запуска игр со сверхвысокими разрешениями потребуется мощная графическая карта.

IPS или TFT — что лучше выбрать? Совсем недавно я столкнулся с необходимостью дать человеку обоснованный ответ на этот вопрос при покупке планшета. Однозначно зная то, что и так у всех на слуху, я был готов сразу дать ответ. Но все же, решил немного проработать данную тему, дабы сказанное подкрепить вескими доводами. Пришлось немного перелопатить информации и даже . Для понимания ситуации, сразу скажу, что шла речь о покупке надежного б/у планшета. Как оказалось, это тоже вносит свою лепту в принятие окончательного решения относительно того, что, все-таки лучше — IPS или TFT матрица. Даже если нужно купить новый планшет или смартфон, приведенная ниже информация также окажется актуальной и полезной. Итак, начнем наш небольшой обзор.

Немного об используемых технологиях производства IPS-экранов

Хотя большая часть современных дисплеев имеет жидкие кристаллы, в каждом случае могут применять немного различные технологии, приводящие к различиям в характеристиках конечного продукта. Терминология, используемая повсеместно, может различаться. Поэтому чтобы не оказаться в заблуждении относительно мониторов TFT или IPS, нужно отметить следующее.

Первое и самое главное – отделяем сорняки от плевел: технология IPS не является чем-то другим, по сравнению с TFT. Она и есть TFT – точнее, одной из ее реализаций. С другой стороны, «наш» человек под названием TFT понимает TFT-TN.

Таким образом, сравнение ведется между двумя представителями TFT матриц: IPS или TN. Что касается применяемых технологий:

  • TFT (понимаем, что речь о TFT-TN). Дисплей на жидких кристаллах (тонкопленочные транзисторы). Кристаллы расположены в теле матрицы спирально между двумя пластинами. Образование изображения происходит за счет проворачивания молекул кристаллов. Если напряжения нет – их угол поворота по горизонтали составляет 90 градусов, при этом они имеют белый цвет. При максимально подаваемом напряжении поворот осуществляется на угол, при котором при прохождении через кристалл света, он становится черным. Итак, в зависимости от напряжения, подаваемого на кристаллы, они меняют свой цвет.
  • IPS (фактически TFT-IPS). Те самые кристаллы, только их расположение параллельно друг другу. Когда нет напряжения, молекулы кристаллов не повернуты.

Теперь перейдем к главному вопросу: ? Какой дисплей нужно выбирать?

IPS или TFT — что лучше? Различия между экранами в качестве изображения

Ключевые особенности любого монитора, дисплея, экрана IPS или TFT, прежде всего, определяются качеством отображения картинки. В свою очередь качество можно разложить на такие показатели, как контрастность и угол обзора.

Когда речь идет о матрице IPS, она ощутимо выигрывает у TFT по контрастности изображения. Достигается это почти идеальным воспроизведением кристаллами черного цвета. А именно отображение черного непосредственно влияет на такой показатель, как контрастность. В TFT дисплеях отдельные пиксели (при отображении черного и других цветов) могут иметь немного «свой» оттенок, что приводит к искажениям цветности изображения.

Важным фактором, влияющим на выбор экрана мобильных устройств, является угол обзора. Этот показатель особенно важен, если устройство предстоит использовать вместе с другими, например, демонстрируя фото недавней поездки на море. При угле обзора в 178 градусов с любой стороны, IPS-матрица, несомненно, выигрывает, позволяя без искажений наслаждаться изображением сразу нескольким вашим друзьям или коллегам. Это также важно учитывать при покупке того или иного устройства.

Скорость реакции IPS и TFT дисплея

Кажущимся преимуществом TFT дисплея перед IPS-экраном является высокая скорость отклика. Здесь ему нет конкурентов. В то же время, для поворота массива кристаллов, которые расположены параллельно, IPS-матрице нужно больше времени.

Данный факт приводит к очевидному выводу, что в устройствах, предназначение которых критично к скорости отображения, лучше, все-таки, использовать TFT. С другой стороны, когда речь идет об обыденном предназначении (в качестве инструмента для учебы, общения через интернет и других задач), данное различие практически незаметно для человеческого глаза, и выявляется только благодаря применению специальных технических тестов. Поэтому при выборе типа экрана в большинстве случаев предпочтение следует отдать IPS-матрице.

Какой матрице нужно больше энергии – IPS или TFT?

Есть и другие отличия, которые мы продолжаем перечислять. Как расходуется энергия аккумуляторов экранов, изготовленных по разным технологиям? Есть очевидные различия. Энергоемкость у IPS реально выше. Не только больше времени, но и большее напряжение необходимо для поворота кристаллов матрицы этого типа. Закономерным выводом является повышенная нагрузка на аккумулятор. Поэтому, при покупке б/у устройств, когда очевидно, что батарея уже не новая, этот факт необходимо внимательно взвесить. Если же приобретается новый телефон, планшет или смартфон, а при этом его использование предполагает длительное пребывание вне досягаемости от электросети, лучше остановиться именно на качественных TFT матрицах.

Стоимость устройств с дисплеями разного вида

Стоимость IPS экранов всегда выше. Можете обратить на это внимание, отфильтровав в любом интернет-магазине устройства с наличием такого типа матрицы. Следует сказать, что IPS применяется почти во всех современных устройствах, постепенно вытесняя TFT. В то же время, если вам нужно оборудование, чтобы только позвонить, какой смысл переплачивать за экран, преимущества которого не будут использоваться? Тем более, если это повышает общее энергопотребление смартфона или планшета.

TFT или IPS — что лучше? Какую матрицу выбрать?

Итак, если нужен современный высококачественный планшет, с которым можно не только поработать, но и комфортно продемонстрировать высококачественные фото друзьям, однозначно выбирайте только устройства с IPS-матрицей. Обращая внимание на маркировку производителей, не забывайте, что TFT включает в себя и TN и IPS матрицы. Но и это еще далеко не все их виды. Зная, что лучше из этих двух типов матриц — TFT или IPS, и желая купить планшет, смартфон или телефон обращайтесь в любой из проверенных интернет-магазинов (Rozetka, Eldorado, Citrus и другие), которые предоставляют полный ассортимент данной продукции, с возможностью фильтрации по наиболее значимым параметрам.

Кстати, человек, купивший планшет с IPS-матрицей, который доставили ему из Польши, остался им доволен и постоянно восхищается комфортом использования устройства даже в солнечный день. Факты, говорят, вещь упрямая.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В.


Рекомендуем почитать

Наверх