Квантовый процессор: описание, принцип работы. Существует ли квантовый компьютер? Квантовый компьютер в России — миф или реальность

Nokia 23.06.2019
Nokia

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

Ученые из Московского физико-технического института, вместе с коллегами из и Швейцарии провели эксперименты, в которых успешно заставили квантовый компьютер вернуться в состояние прошлого. Краткие выводы исследования, в которых описывается возможность проявления этого эффекта, сообщает пресс-релиз, опубликованный на сайте Phys.org. Подробности исследования международной команды физиков в журнале Scientific Reports.

Многие эксперты уверены, что с появлением полноценных квантовых компьютеров эра криптовалют и блокчейна подойдёт к своему логическому концу — системы криптографии, на которых основаны криптовалюты, будут моментально взломаны, а сами криптовалюты обесценятся, ведь первое, что сделает владелец квантового компьютера, — намайнит оставшиеся Биткоины, Эфиры и другие популярные «монеты». Именно так считает Алекс Бит, канадский физик, предсказавший безрадостное криптовалютное будущее в квантовой эре.

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

Начало продаж своего 2000-кубитного квантового компьютера D-Wave 2000Q и уже продала первую модель за 15 миллионов долларов.

Покупателем стала фирма Temporal Defense Systems, занимающаяся вопросами кибербезопасности. Джеймс Буррел (James Burrell), технический директор TDS, говорит , что компания планирует использовать D-Wave 2000Q для разработки новых решений защиты от угроз и идентификации киберпреступников.

Система от D-Wave хранит данные, используя кубиты. Они кодируют информацию нулем, единицей или обоими состояниями одновременно, в отличие от традиционных систем. По этой причине D-Wave способен управлять огромными комбинациями состояний, что позволяет более эффективно решать определенный класс задач.

D-Wave представили свой квантовый компьютер публике еще в сентябре прошлого года, заявив, что новое решение будет содержать 2 тысячи кубитов. Это в два раза больше, чем у квантового компьютера предыдущего поколения - D-Wave X2, запущенного в августе.

D-wave 2000Q представляет собой так называемый адиабатический компьютер, работающий по принципу квантового отжига .

Это квантовая система из большого числа компонентов и контролируемых параметров. Охлаждая её до очень низкой температуры (компьютер предыдущей модели функционировал при температуре в 15 милликельвинов - порядка -273 °C), разработчики предполагают, что система достигает минимальной энергии, и затем, медленно меняя заданные параметры, используют законы квантовой механики для перевода системы из исходного состояния в новое состояние минимальной энергии за счет квантового туннелирования.

В качестве особенности нового D-Wave приводится возможность настраивать частоту отжига отдельных кубитов для повышения производительности. Также новый компьютер сочетает квантовые и классические алгоритмы работы для оптимизации выборки результатов вычислений.

В интервью для N+1 Алексей Устинов, руководитель группы «Сверхпроводящие квантовые цепи» в Российском квантовом центре, рассказал, для чего можно использовать D-Wave. Одна из сфер применения - оптимизация функции затрат.

У вас имеется много параметров, много целей. Скажем, вам нужно посетить миллион клиентов в разных местах, при этом оптимизировав дорогу, расходы, время и так далее.

В пресс-релизе представители D-Wave отметили , что 2000Q способен решать более сложные проблемы по сравнению с предшественником. Также более высокая производительность должна подстегнуть развитие таких сфер, как кибербезопасность, машинное обучение, биотехнологии. В компании отмечают, что специализированные алгоритмы могут выполняться в 1 тыс. и даже 10 тыс. раз быстрее, чем на классических серверах.

При этом D-Wave не только поставляет решения для своих клиентов, но и предлагает арендовать мощности квантовой машины для удаленной работы.

P.S. А вот о чем еще мы пишем в нашем блоге:

Квантовые компьютеры обещают миру гигантскую скорость обработки данных, однако разработать даже простейший «неклассический» экземпляр не так-то просто. Учёные из Йеля сделали ещё один шаг навстречу будущему: им удалось создать двухкубитный твердотельный квантовый процессор и показать, что он способен работать с простейшими квантовыми алгоритмами.

Квантовые свойства частиц позволяют добиться впечатляющих результатов, однако сложно создать квантовый аналог кремниевых устройств из обычных материалов.

Поясним. В классических компьютерах информация зашифрована в виде 0 и 1 (да/нет, включён/выключен). Каждый бит памяти может принимать одно из этих двух значений. Сочетание двух битов может принимать четыре значения 00, 11, 01 или 10.

В случае квантовых битов (кубитов) из-за принципа квантовой суперпозиции в одной ячейке может располагаться как 0, так и 1, а также их комбинация (00, 11, 01 и 10 одновременно) (более подробно мы рассказывали об этом и ). Именно по этой причине квантовые системы могут работать быстрее и с большими объёмами информации.

Кроме того, кубиты могут быть запутаны: когда квантовое состояние одного кубита может быть описано только во взаимосвязи с состоянием другого (в твердотельных системах квантовая запутанность была впервые осуществлена в алмазе). Это свойство квантовых систем используется для обработки информации.

Физикам под предводительством Леонардо Дикарло (Leonardo DiCarlo) из Центра квантовой и информационной физики Йеля (Yale Center for Quantum and Information Physics) впервые удалось создать квантовый твердотельный процессор.

Наконец-то квантовые процессоры стали похожи на обычные компьютерные микросхемы (фото Blake Johnson/Yale University).

Ранее для проведения операций с кубитами необходимо было использовать лазеры, ядерный магнитный резонанс и ионные ловушки, пишут авторы в своей статье , опубликованной в журнале Nature (её препринт также можно найти на сайте arXiv.org).

Но чтобы приблизить появление настоящего квантового компьютера, необходимо создать более простую и менее чувствительную к колебаниям внешних условий машину. Это значит, что одну из основных рабочих частей (процессор) желательно создать из классических твёрдых материалов.

Дикарло и его коллеги занялись именно этим. Они построили устройство, которое оперирует двумя трансмонными кубитами (transmon qubit). Трансмон – это два фрагмента сверхпроводника, соединённых туннельными контактами.

В данном случае процессор представляет собой плёнку сверхпроводящего материала (в его составе присутствует ниобий), нанесённую на подложку из корунда (оксида алюминия). На поверхности вытравлены канавки, ток может туннелировать сквозь них (опять же в силу квантовых эффектов).

Два таких кубита (представляющих собой миллиарды атомов алюминия, находящихся в одном квантовом состоянии и действующих как единое целое) в новом чипе разделены полостью, которая является своего рода «квантовой шиной».

«Наши прежние эксперименты показали, что два искусственных атома можно связать резонансной шиной, которая является передатчиком микроволн», — говорит один из авторов работы Роберт Шёлькопф (Robert Schoelkopf).

Что очень важно — для создания процессора учёные использовали стандартную технологию, применяемую в современной промышленности.

Единственный минус нового чипа – низкая рабочая температура. Для поддержания сверхпроводимости устройство необходимо охлаждать. Этим занимается особая система, которая поддерживает вокруг него температуру чуть выше абсолютного нуля (порядка нескольких тысячных долей кельвина).


Схема двухкубитного устройства из Йеля, наложенная на фотографию процессора. На врезках внизу показаны трансмоны (иллюстрация Nature).

Кубиты эти могут находиться в состоянии квантовой сцепленности (что достигается с помощью микроволн определённой частоты). Как долго сохраняется это состояние, определяет импульс напряжения.

Учёные добились длительности сохранения в одну микросекунду (в отдельных случаях даже три микросекунды), что пока является пределом. Но всего десять лет назад это значение не превышало наносекунды, то есть было в тысячу раз меньше.

Отметим, что чем дольше держится запутанность, тем лучше для квантового компьютера, так как «длительные» кубиты могут решать более сложные задачи.

В данном случае для выполнения двух различных задач процессор использовал квантовые алгоритмы Гровера (Grover"s algorithm) и Дойча - Джоза (Deutsch-Jozsa algorithm). Процессор давал верный ответ в 80% случаев (при использовании первого алгоритма) и в 90% случаев (со вторым алгоритмом).

Кстати, считывание результата (состояния кубитов) также происходит с помощью микроволн: если частота колебаний соответствует той, что присутствует в полости, то сигнал проходит сквозь неё.

«Резонансная частота полости зависит от того, в каком состоянии находится кубит. Если пропускаемое излучение проходит насквозь, значит, он находится в „правильном“ состоянии», — говорит Дикарло.

Данная работа физиков из Йеля (а также учёных из канадских университетов Ватерлоо и Шербрука и технического университета Вены) является несомненно уникальной, однако используемая технология считывания может подкачать в более сложных системах с большим количеством кубитов.

Дикарло считает, что 3-4-кубитовый процессор (на базе данной разработки) будет создан уже в скором времени, но для того чтобы сделать следующий шаг (довести количество кубитов до 10), необходимо совершить не менее значимый прорыв.

«Наш процессор пока может выполнять лишь несколько простейших операций. Но у него есть одно важное достоинство – он полностью электронный и куда больше похож на обычный микропроцессор, чем все предыдущие разработки», — говорит в пресс-релизе университета Шёлькопф.

Джорди Роуз (Geordie Rose), главный директор по технологиям D-Wave Systems, показывает последний квантовый компьютер, построенный в его компании (фото NY Times).

Непонятно только, как новое достижение соотносится с продуктами компании

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт конфидециальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?


Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам. Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!



Рекомендуем почитать

Наверх