Классификация систем электросвязи по назначению (видам передаваемых сообщений) и виду среды распространения сигналов. Назначение систем связи

Новости 11.05.2019
Новости

Назначение систем связи.

Рассмотрим общие принципы построения систем радиосвязи (радиоканала). Достаточно условно все существующие системы радиосвязи можно разделить на два больших класса: симплексные и дуплексные системы связи.

Рис. 6. Структурная схема организации дуплексной связи


Под симплексной связью (simplex - односторонний; связь «один-ко-всем») понимают связь между двумя пунктами, при которой в каждом из них передача и прием сообщений ведутся поочередно на одной несущей частоте. Часто симплексную связь используют для передачи информации только в одном направлении, например радиовещание, телевидение, оповещение и т. д. Дуплексная связь (duplex - двусторонний; связь «один-на-один») - двусторонняя связь между двумя пунктами, при которой передача и прием сообщений осуществляют одновременно на разных несущих частотах (рис. 6).

Сейчас применяют такую разновидность симплексной радиосвязи, как полудуплексная (half-duplex) связь или двухчастотный симплекс, когда система связи обеспечивает поочередно передачу и прием информации на двух разных несущих частотах с использованием ретрансляторов.

Отметим, что ретранслятор (от лат. translator - переносчик) - радиотехническое устройство, используемое как промежуточный приемопередающий пункт линии радиосвязи. По числу используемых каналов различают одноканальные и многоканальные системы связи (системы передачи информации). Об одноканальных системах связи уже в принципе и говорилось. Система связи называется многоканальной, если она способна обеспечить передачу нескольких сообщений по одной общей линии связи (каналу). Основная задача многоканальных систем связи - одновременная передача сообщений от многих источников, т. е. увеличение пропускной способности (часто используется термин «емкость»). Повышение эффективности использования канала связи достигается путем применения разных методов уплотнения каналов связи, за счет сокращения избыточности сообщений и организации так называемого многоканального и многостанционного доступа абонентов. Для увеличения пропускной способности большинства систем связи применяют временное и частотное



уплотнение (multiplexing; от лат. multiplex - сложный, многократный) сигналов (рис. 7).

Рис.7. Структурные схемы модуляторов систем связи с уплотнением:

а - временным; б - частотным

Амплитудная, частотная и фазовая модуляция несущих колебаний позволяет строить многоканальные радиоэлектронные системы с частотным уплотнением (разделением) каналов (ЧРК), обусловленным использованием несущих колебаний с различными частотами. Достоинством системы с ЧРК является сравнительная простота и возможность передачи весьма широкополосных сообщений, например телевизионных.

Импульсная модуляция несущего колебания дает возможность разрабатывать многоканальные радиотехнические системы связи с временным уплотнением (разделением) каналов (ВРК), обладающие заметными преимуществами перед системами связи с ЧРК. К этим достоинствам относится высокая точность передачи сигналов (лучшая помехозащищенность) и возможность передавать совместно сообщения нескольких каналов в одном частотном диапазоне, поскольку сообщению каждого канала будет соответствовать своя последовательность импульсов, не перекрывающаяся с последовательностью импульсов сообщения другого канала. При временном уплотнении, благодаря тому, что сигналы передают не непрерывно, а только их отсчетами (выборками) в очень короткие временные интервалы, на одной несущей частоте можно передавать ряд различных сигналов. Для этого разные сигналы U 1 (t), U 2 (t) …..U n (t), отражающие группу из n передаваемых сообщений, подают на аналоговый мультиплексор (селектор или аналоговый коммутатор) (рис. 7, а). Суммарные сигналы аналогового мультиплексора U Σ (t) с помощью импульсного модулятора и задающего генератора переносят на частоту f 0 и через усилитель мощности подводят к передающей антенне.

Традиционно во многих радиотехнических системах передачи информации широкое применение находит частотное уплотнение сигналов, осуществляемое предварительно (перед основной модуляцией) дополнительной модуляцией на так называемых поднесущих частотах (предварительных; от англ. - subcarrier frequency) -f 1 ,f 2 ,…..f n (рис. 7, б). Поднесущие частоты значительно превышают частоту передаваемого сигнала, но во много раз меньше несущей частоты.

При частотном уплотнении передаваемые сигналы предварительно поступают на модуляторы поднесущих частот, где осуществляется амплитудная, частотная, фазовая или другие виды модуляции.

Необходимые элементы модуляторов поднесущих частот - полосовые фильтры (на рис. 7, б не показаны), настроенные на поднесущие частоты и подавляющие спектральные составляющие соседних каналов. Затем промодулированные сигналы с поднесущими частотами подают на основной модулятор, работающий на основной несущей частоте f 0 , и в виде суммарного сигнала U Σ (t) через антенну излучают в пространство.

Системы радиосвязи принято делить на наземные и спутнико-космические . В наземных системах радиосвязи радиоволны распространяются в пределах земной атмосферы. Такие системы служат для обеспечения связи с самолетами, кораблями, наземным транспортом и другими объектами. Они осуществляют персональную радиосвязь в рамках сотовой, транкинговой и иных видов связи. Особенностью спутнико-космических систем радиосвязи является наличие в их составе искусственных спутников Земли (ИСЗ), на которых располагают ретрансляторы радиосигналов. В целом система состоит из двух основных частей, или сегментов: наземного и космического. С помощью систем космической радиосвязи, работающих, как правило, в диапазоне сверхвысоких частот, передают огромные объемы сообщений: трансляция множества телевизионных каналов, компьютерных данных, телефонных, телефаксных и иных сообщений.

Линии связи

Виды линий связи, по которым передают информацию от источника к получателю, многочисленны и разнообразны. Различают каналы проводной связи (проводные, кабельные, оптоволоконные и др.) и каналы радиосвязи.

Кабельные линии связи являются основой магистральных сетей дальней связи; по ним осуществляется передача сигналов в диапазоне частот от десятков килогерц до сотен мегагерц. Одним из самых совершенных систем передачи информации являются волоконно-оптические линии связи (ВОЛС). Информация по таким каналам передается в виде световых импульсов, посылаемых лазерным излучателем. Они позволяют в диапазоне частот 600 ... 900 ТГц (к = 0,5...0,3 мкм) обеспечить чрезвычайно большую пропускную способность (примерно 120 000 каналов по паре оптических волокон) и создают надежную и скрытую связь с высоким качеством передачи информации. Основными преимуществами оптических волокон (ОВ), или световодов, как физической среды распространения сигналов электросвязи и конструктивной основы оптического кабеля (ОК) являются:



Широкая полоса пропускания, позволяющая передавать сигналы электросвязи со скоростью (битрейтом) до 2,0 ... 2,5 Тбит/с и выше; например, даже при скорости 50 Мбайт/с в течение 1 с передается объем информации, приблизительно равный содержанию 10 школьных учебников.

Низкий уровень потерь на распространение сигналов, обеспечивающих их передачу без регенерации на расстояния до 150 ... 175 км (и в перспективе до 350 км и более);

Абсолютная нечувствительность к электромагнитным помехам;

Отсутствие перекрестных помех (перекрестной модуляции) в ОК;

Малая масса и размеры ОК.

К другим достоинствам ОВ и ОК можно отнести такие, как достаточно высокая защищенность от несанкционированного перехвата передаваемой информации, пожаробезопасность, относительно невысокая стоимость ОК по сравнению с медными кабелями и практически неограниченные запасы сырья для производства ОВ. Все это делает их применение в сетях и системах связи еще более привлекательным и технически и экономически оправданным. Поэтому ОК почти полностью вытесняют в настоящее время другие виды направляющих структур в магистральных линиях цифровых первичных сетей связи. Наряду с проводными линиями связи широко используют радиолинии различных диапазонов (от сотен килогерц до десятков гигагерц). Эти линии более экономичны и незаменимы для связи с подвижными объектами. Для многоканальной системы радиосвязи при передаче, информации на большие расстояния широко используются радиорелейные линии (РРЛ) связи. Радиорелейная связь (радио и франц. relais - промежуточная станция) -радиосвязь, состоящая из группы ретрансляционных станций, расположенных на определенном расстоянии друг от друга, обеспечивающем устойчивую работу. Антенны станций линии радиорелейной связи устанавливают на мачтах (башнях) высотой 70 ... 100 м. Протяженность линии радиорелейной связи может составлять до 10 000 км, емкость - до нескольких тысяч каналов.

В зависимости от используемого метода распространения радиоволн радиорелейные линии связи можно разделить на две основные группы: прямой видимости и тропосферные.

Радиорелейные линии прямой видимости - основные наземные средства передачи сигналов телефонной связи, звукового и телевизионного вещани», цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и телевизионного вещания составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГГц. Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи.

Современные радиорелейные линии связи представляют собой цепочки достаточно мощных приемно-передающих радиостанций - ретрансляторов, последовательно принимающих, усиливающих, преобразовывающих (переносящих) сигналы на другие частоты и передающих далее сигналы от одного конца линии связи к другому (рис.8). На каждой из промежуточных станций происходит восстановление и перенос сигнала на другую частоту, т. е. замена принятого слабого сигнала новым сильным, посылаемым на следующую станцию. Наиболее распространены радиорелейные линии метрового, дециметрового и сантиметрового диапазонов на частотах от 60 МГц до 15 ГГц.

Рис. 8. Структурная схема радиорелейной линии связи

Все большее применение находят спутниковые линии связи - РРЛ с ретранслятором на искусственном спутнике Земли. В системах спутниковой радиосвязи используются радиоволны СВЧ-диапазона (обычно в пределах частот 1,5...14 ГГц, наиболее используемый диапазон 4...6 ГГц), пронизывающие ионосферу с минимальным затуханием. Передача информации на большое расстояние при одном ретрансляторе на ИСЗ, гибкость и возможность организации глобальной связи - важное преимущество спутниковых систем. Основным преимуществом цифровых систем связи перед аналоговыми системами является их высокая помехоустойчивость. Это полезное качество наиболее сильно проявляется в системах передачи с многократной ретрансляцией (переприемом) сигналов. Типичные системы подобного типа - радиорелейные, волоконно-оптические и кабельные линии большой протяженности. В них сигналы передаются по цепи ретрансляторов, расположенных на таких расстояниях друг от друга, которые обеспечивают надежную связь. В таких системах помехи и искажения, возникающие в отдельных звеньях, как правило, накапливаются. Для простоты положим, что радиосигнал в каждом ретрансляторе только усиливается. Тогда, если аддитивные помехи в каждом звене связи статистически независимы, их мощность на входе последнего звена равна сумме мощностей помех всех звеньев. Если система передачи информации состоит из n одинаковых звеньев, для обеспечения заданной верности связи необходимо обеспечить на входе каждого ретранслятора отношение сигнал/помеха в п раз больше, чем при передаче сигнала без ретрансляций. В реальных системах число ретрансляций п может достигать несколько десятков, а иногда и сотен; накопление помех вдоль тракта передачи становится основным фактором, ограничивающим протяженность линии связи. В цифровых системах передачи для ослабления эффекта накопления помех при передаче с ретрансляциями наряду с усилением применяют регенерацию импульсов, т. е. демодуляцию с восстановлением переданных кодовых символов и повторную модуляцию на переприемном пункте. При использовании регенерации аддитивная помеха с входа ретранслятора не поступает на его выход. Однако она вызывает ошибки при демодуляции. Ошибочно принятые в одном регенераторе символы в таком виде передаются и на следующие регенераторы, так что ошибки все же накапливаются. При цифровой системе передачи непрерывных сообщений можно, кроме того, повысить верность применением помехоустойчивого кодирования. Высокая помехоустойчивость цифровых систем передачи позволяет осуществить практически неограниченную по дальности связь при использовании каналов сравнительно невысокого качества.



План:

    Введение
  • 1 Классификация электросвязи
  • 2 Типы связи
  • 3 Сигнал
  • 4 Линия связи
  • 5 Канал связи
  • 6 Разделение (уплотнение) каналов
  • 7 Сеть связи
  • 8 Стандартизация
  • Литература

Введение

Электросвязь - способ передачи информации с помощью электромагнитных сигналов, например, по проводам, волоконно-оптическому кабелю или по радио.

Принцип электросвязи основан на преобразовании сигналов сообщения (звук, текст, оптическая информация) в первичные электрические сигналы. В свою очередь, первичные электрические сигналы при помощи передатчика преобразуются во вторичные электрические сигналы, характеристики которых хорошо согласуются с характеристиками линии связи . Далее посредством линии связи вторичные сигналы поступают на вход приёмника. В приемном устройстве вторичные сигналы обратно преобразуются в сигналы сообщения в виде звука, оптической или текстовой информации.


1. Классификация электросвязи

По виду передачи информации все современные системы электросвязи условно классифицируются на предназначенные для передачи звука, видео, текста.

В зависимости от среды передачи выделяют электрическую, оптическую и радиосвязь.

В зависимости от назначения сообщений виды электросвязи могут быть квалифицированы на предназначенные для передачи информации индивидуального и массового характера. По временным параметрам виды электросвязи могут быть работающими в реальном времени либо осуществляющими отложенную доставку сообщений.

Основными первичными сигналами электросвязи являются: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный, передачи данных.


2. Типы связи

В зависимости от среды передачи данных линии связи разделяются на:

  • спутниковые
  • воздушные
  • наземные
  • подводные
  • подземные

В зависимости от того, подвижны источники/получатели информации или нет, различают стационарную (фиксированную ) и подвижную связь (мобильную, связь с подвижными объектами - СПО).

По типу передаваемого сигнала различают аналоговую и цифровую связь. Аналоговая связь - это передача непрерывного сигнала (например, звука или речи). Цифровая связь - это передача информации в дискретной форме (цифровом виде). Цифровой сигнал по своей физической природе является «аналоговым», но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа, в результате чего для его обработки становится возможным использование численных методов.

Дискретные сообщения могут передаваться аналоговыми каналами и наоборот. В настоящее время цифровая связь вытесняет аналоговую (происходит оцифровка), поскольку аналоговые сигналы перед отправкой могут быть преобразованы в дискретные и после приема восстановлены без существенных потерь. Условия, обеспечивающие возможность такого преобразования, задаются теоремой Котельникова.


3. Сигнал

Аналоговый сигнал - физическая величина, изменение (модуляция) которой в пространстве и во времени отображает передаваемое сообщение. Например, изменения напряжения (или тока, частоты, фазы и т. п.) отражают процесс речи. Сигнал имеет следующие измерения: высота H (динамический диапазон), «ширина» F (ширина спектра), длина T (длительность сигнала во времени).

Объёмом сигнала является произведение V = FHT. В процессе передачи сигнала могут происходить изменения измерений как с сохранением объёма, так и без. Это происходит вследствие следующих преобразований сигнала:

  • Ограничение - изъятие из передачи одной или нескольких частей сигнала без сохранения информации, которая содержалась в изъятых частях. Например, ограничение речевого канала диапазоном 300-3400 Гц (канал тональной частоты).
  • Трансформация - изменения одного или нескольких измерений за счёт изменения другого или других измерений с сохранением неизменного объёма (как у кубика пластилина). Например, уменьшить время передачи можно, увеличив ширину спектра сигнала или динамический диапазон, либо и то, и другое.
  • Компандирование - включает два процесса, от которых пошло название: компрессия (сжатие) и экспандирование (расширение). На передающей стороне происходит сжатие сигнала в одном или нескольких измерениях, на приёмной - восстановление. Например, «выкусывание» пауз в речи на передающей стороне и восстановление на приёмной.

4. Линия связи

Цепь связи - проводники/волокно, используемые для передачи одного сигнала. В радиосвязи то же понятие имеет название ствол . Различают кабельную цепь - цепь в кабеле и воздушную цепь - подвешена на опорах.

Линия связи (ЛС) в узком смысле - физическая среда, по которой передаются информационные сигналы аппаратуры передачи данных и промежуточной аппаратуры. В широком смысле - совокупность физических цепей и (или) линейных трактов систем передачи, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения (ГОСТ 22348). Тракт - совокупность оборудования и среды, формирующих специализированные каналы , имеющие определённые стандартные показатели: полоса частот, скорость передачи и т. п.

Линия содержит одну и более цепь связи (ствол). Сигнал, действующий в линии, называется линейным .

Различают два основных типа ЛС:

  • линии в атмосфере (радиолинии, РЛ);
  • направляющие линии передачи (линии связи).

5. Канал связи

Для обеспечения эффективного использования цепей связи на них с помощью каналообразующего оборудования (КОО) организуются каналы связи . В некоторых случаях линия, цепь связи и канал связи совпадают (одна линия, одна цепь и один канал), в некоторых канал состоит из нескольких линий/цепей (как последовательно, так и параллельно). Каналы могут вкладываться друг в друга (групповой канал). Сигнал, «содержащий» несколько индивидуальных каналов, называется групповым сигналом . Каналы можно разделить на непрерывные (аналоговые) и дискретные (цифровые).

Каналы связи по направлению передачи подразделяются на:

  • симплексные - то есть допускающие передачу данных только в одном направлении, пример - радиотрансляция, телевидение;
  • полудуплексные поочерёдно , пример - рации;
  • дуплексные - то есть допускающие передачу данных в обоих направлениях одновременно , пример - телефон.

6. Разделение (уплотнение) каналов

и Модуляция.

Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны.

  • частотное разделение каналов (ЧРК, FDM) - разделение каналов по частоте. Каждому каналу выделяется определённый диапазон частот.
  • временное разделение каналов (ВРК, TDM) - разделение каналов во времени. Каждому каналу выделяется квант времени (таймслот).
  • кодовое разделение каналов (КРК, CDMA) - разделение каналов по кодам. Каждый канал имеет свой код, наложение которого на групповой сигнал позволяет выделить информацию конкретного канала.
  • спектральное разделение каналов (СРК, WDM) - разделение каналов по длине волны.

Возможно комбинировать методы, например ЧРК+ВРК и т. п.


7. Сеть связи

Сеть передачи данных

Сеть (система) электросвязи - совокупность оконечных устройств, линий связи и узлов связи, функционирующих под единым управлением. Например: компьютерная сеть, телефонная сеть.

В общем виде система связи состоит из:

  • оконечного оборудования (ОО, терминальное устройство, оконечное устройство) источника и получателя сообщения, и
  • устройств преобразования сигнала (УПС) с обоих концов линии.

Оконечное оборудование обеспечивает первичную обработку сообщения и сигнала, преобразование сообщений из вида, в котором их предоставляет источник (речь, изображение и т. п.) в сигнал (на стороне источника, отправителя) и обратно (на стороне получателя), усиление и т. п.

Устройства преобразования сигнала могут обеспечивать защиту сигнала от искажений, формирование канала (каналов), согласование группового сигнала (сигнала нескольких каналов) с линией на стороне источника, восстановление группового сигнала из смеси полезного сигнала и помех, разделение его на индивидуальные каналы, обнаружение ошибок и коррекцию на стороне получателя. Для формирования группового сигнала и согласования с линией используется модуляция.

Линия связи может содержать такие устройства преобразования сигнала, как усилители и регенераторы . Усилитель просто усиливает сигнал вместе с помехами и передаёт дальше, используется в аналоговых системах передачи (АСП). Регенератор («переприёмник») - производит восстановление сигнала без помех и повторное формирование линейного сигнала, используется в цифровых системах передачи (ЦСП). Усилительные/регенерационные пункты бывают обслуживаемыми и необслуживаемыми (ОУП, НУП, ОРП и НРП соответственно).

В ЦСП оконечное оборудование называется ООД (оконечное оборудование данных, DTE), УПС - АКД (аппаратура окончания канала данных или оконечное оборудование линии связи, DCE). Например, в компьютерных сетях роль ООД выполняет компьютер, а АКД - модем.


8. Стандартизация

Стандарты в мире связи исключительно важны, так как оборудование связи должно уметь взаимодействовать друг с другом. Существует несколько международных организаций, публикующих стандарты связи. Среди них:

  • Международный союз электросвязи (англ. International Telecommunication Union , ITU) - одно из агентств ООН.
  • Институт инженеров электротехники и электроники (англ. Institute of Electrical and Electronics Engineers , IEEE).
  • Специальная комиссия интернет-разработок (англ. Internet Engineering Task Force , IETF).

Кроме того, нередко стандарты (как правило, де-факто) определяются лидерами индустрии телекоммуникационного оборудования.

За последнее десятилетие уровень развития территориаль­ных систем связи значительно определил любую другую область телекоммуникаций, ощутимо изменив стиль всей нашей жизни.

Средства связи - это комплект аппаратуры, обеспечиваю­щий взаимное соединение и передачу информации между або­нентами. Средства связи могут быть различны между собой. Виды связи в значительной степени зависят от того, как и где расположены элементы системы, которую они обслуживают.

Существуют системы, которые расположены на некоторой ограниченной территории (как правило, в одном помещении или нескольких помещениях, расположенных недалеко друг от дру­га), для обслуживания их используются локальные средства свя­зи.Они создаются специально для каждого случая и выполняют­ся так, чтобы технически обеспечить взаимодействие элементов системы. Существуют системы, элементы которой расположе­ны на значительных расстояниях. К ним относятся все системы связи, традиционно используемые в быту и на производствах. В таких случаях применяются каналы связи, использующиеся на данной территории. Такие виды связи принято считать террито­риальными, предназначенными для определенных территорий, или глобальными - для межгосударственных контактов.

Современные территориальные системы связи можно разде­лить на следующие группы:

Телеграф;

Телефонная связь;

Радиосвязь различных видов;

Индивидуальные соединительные линии связи. Индивидуальные линии создаются специально для систем, используемых на данной территории или в каком-либо помеще­нии, но технически они выполняются как разновидность одного из перечисленных каналов территориальной или локальной свя­зи.

Для оценки возможностей передачи информации рассмотрим конкретно каждый из видов связи.

8.2. Локальная система связи

Данная система связи выполняется как сеть, которая соеди­няет между собой специально подготовленное оборудование. Та­кая система связи способна передавать непосредственно ту ин­формацию, которая создается всей аппаратурой, сопряженной с ней. Простейшая сеть из двух компьютеров может быть органи­зована путем прямого соединения между собой установленных в этих компьютерах адаптеров. Расстояние между компьютера­ми может достигать 300-800 м. Для объединения компьютеров в вычислительную сеть используют технологию "разветвленная звезда".

Для создания более сложной сети применяют пассивные и ак­тивные разветвители, которые соединяются между собой в раз­личных сочетаниях.

Расстояние от пассивного разветвителя до компьютера или активного разветвителя - до 60 м. Если пассивные разветвите­ли выполняют только функции разветвления соединений сети, то активные разветвители содержат усилители передаваемого сигнала. Расстояния от компьютера до активного разветвителя или от одного активного разветвителя до другого может дости­гать 600-800 м.

Всего в одной локальной сети может работать до 255 ком­пьютеров. С учетом возможности последовательного соединения до 10 активных разветвителей протяженность такой цепочки мо­жет составлять до 6-8 км (рис. 50).

В тех случаях, когда используются территориальные виды связи, прямая передача сведений, создаваемых вычислительны­ми системами, невозможна, так как такие системы связи по сво­им техническим характеристикам не способны передавать ин­формацию с компьютера.

Для сопряжения компьютеров с такой сетью применяется следующая специальная аппаратура:

1. Модем - это устройство, позволяющее компьютеру выхо­дить на связь с другим компьютером посредством телефонных линий, т. е. модем может модулировать и демодулировать пе­редаваемое сообщение. При пользовании модемом возможен са­мый быстрый способ принять документальный материал с одно­го компьютера на другой без его распечатки. Пересылка файла по модему возможна в течение нескольких минут. При его рас­печатке пересылка его займет значительно больше времени.

2. Факс-модем - это устройство, позволяющее принимать факсимильные сообщения с выводом их на экран компьютера или с печатью на принтере и передавать документы, подгото­вленные на компьютере без их распечатки, а также использовать другие возможности телефаксов.

Рис. 50. Пример организации вычислительной сети

Всякое сообщение является некоторой совокупностью сведений о состоянии какой-либо материальной системы, которые передаются человеком (или устройством), наблюдающим эту систему, другому человеку (или устройству), обычно не имеющему возможности получить эти сведения из непосредственных наблюдений. Эта материальная система, вместе с наблюдателем, представляет собой источник сообщения. Для того чтобы сообщение было передано получателю, необходимо воспользоваться каким-либо физическим процессом. Изменяющаяся физическая величина (например, ток в проводе, электромагнитное поле, звуковые волны и т. п.), отображающая сообщение, называется сигналом. Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Здесь под «средством» можно понимать как устройство, так и физическую среду, в которой распространяется сигнал. Сигнал принимается получателем. Зная закон, связывающий сообщение и сигнал, получатель может выявить содержащиеся в сообщении сведения. Для получателя сообщения сигнал заранее не известен, и поэтому он является случайным процессом.

Помимо передаваемого сигнала в канале всегда присутствуют другие случайные процессы различного происхождения, называемые помехами или шумами. Наличие помех вызывает принципиальную неоднозначность в восстановлении сообщения.

Канал связи вместе с источником сообщения и его получателем при заданных методах преобразования сообщения в сигнал и восстановления сообщения по принятому сигналу называется системой связи.

Иногда канал используется для передачи сообщений от нескольких источников нескольким получателям. Такой канал называется уплотненным и будет рассмотрен в гл. 9.

Рис. 1.1. Схема системы связи.

На рис. 1.1 представлена в самом общем виде схема системы связи. Здесь под передающим устройством понимается вся аппаратура, осуществляющая преобразование сообщения в сигнал, а под приемным устройством - аппаратура, восстанавливающая сообщение. В состав канала может также входить аппаратура, например ретрансляционные усилители.

Рис. 1.2. К определению канала.

Заметим, что понятие «канал» не является строго определенным. Пусть, например, сигнал, передаваемый из точки в точку (рис. 1.2), проходит последовательно через некоторые звенья которые могут представлять собой, например, усилители, отрезки кабеля, среду, в которой распространяются электромагнитные или акустические колебания, и т. д. Можно всю совокупность этих звеньев называть каналом. По можно считать каналом часть звеньев, например от до , отнеся звенья и к передающему устройству, а звено - к приемному. В общей теории связи удобно называть каналом любую часть системы связи, которую по условиям решаемой задачи невозможно или нежелательно изменять. В этом смысле мы и будем понимать термин «канал».

С математической точки зрения задать канал - значит указать, какие сигналы можно подавать на его вход и каково распределение вероятностей сигнала на его выходе при известном сигнале на входе. Общей задачей теории связи является нахождение таких методов преобразования сообщения в сигналы данного канала и обратного преобразования принятого сигнала в сообщение, при которых обеспечивается в некотором смысле наилучшая передача сообщений.

Любая реальная материальная система, входящая в источник сообщений, может иметь непрерывный ряд состояний. Однако сведения, передаваемые о ней, никогда не исчерпывают всех особенностей состояния и могут во многих случаях образовывать дискретное (т. е. конечное или счетное) множество . В этом случае говорят, что источник сообщений является дискретным.

Для того чтобы судить о том, является ли некоторый источник сообщении дискретным или непрерывным, необходимо, выбрав конечный интервал времени длительностью , рассмотреть все множество сообщений , которое данный источник мог бы создавать за это время. Если это множество конечно, то источник сообщений является дискретным, в противном случае он непрерывный.

Разумеется, с ростом увеличивается и число различных сообщений , которое может создать дискретный источник, причем это число для любых источников возрастает приблизительно по экспоненциальному закону . Поэтому если не ограничивать интервал времени , то множество окажется всегда бесконечным. Однако для дискретного источника сообщений оно всегда будет счетным. Это значит, что все мыслимые сообщения можно расположить по некоторому закону в ряд и перенумеровать. Так, например, для источника, создающего сообщения в виде текста, записанного, скажем, русским алфавитом, можно разделить все возможные сообщения на группы, отличающиеся количеством букв в сообщении, расположить эти группы в порядке возрастания числа букв, а внутри каждой группы расположить сообщения в алфавитном порядке и полученную последовательность сообщений пронумеровать. Следовательно, такой источник сообщений является дискретным. Любые два сообщения этого источника, если они не тождественны, отличаются по меньшей мере одной буквой.

Примером непрерывного источника является устройство, передающее результат измерения какой-либо непрерывной величины, скажем атмосферного давления в некотором месте. Если два сообщения такого источника не тождественны, то они могут отличаться друг от друга сколь угодно мало. При этом, как бы мало не отличалось сообщение от сообщения , всегда возможно некоторое сообщение , которое будет отличаться от еще меньше, чем . Такое множество сообщений образует континуум и не может быть пронумеровано.

Однако этот непрерывный источник превратится в дискретный, если наложить на него два ограничения. Во-первых, он должен выдавать сообщение о величине атмосферного давления в определенные, заранее обусловленные, моменты времени. Во-вторых, он должен округлять измеренные значения с определенной точностью (скажем, до 0,01 мм рт. ст.). Легко убедиться, что такой видоизмененный источник оказывается дискретным. В то же время, если указанные моменты времени расположены достаточно часто, а точность приближенного представления достаточно велика, то с точки зрения практики такой дискретный источник нисколько не уступает непрерывным. Тем не менее к дискретизации или квантованию сообщения прибегают далеко не всегда. Так, например, источник, передающий величину звукового давления перед микрофоном (в телефонии или в радиовещании), остается в большинстве случаев непрерывным.

В настоящей работе рассматриваются только сообщения, создаваемые дискретными источниками, которые для краткости называются дискретными сообщениями.

Как дискретные, так и непрерывные источники, можно подразделить на два типа: источники с управляемой скоростью и источники с фиксированной скоростью . В источниках первого типа сообщения хранятся в записанном виде и выдаются по требованиям передающего (кодирующего) устройства. В источниках второго типа сообщения выдаются в некоторые моменты времени, определяемые самим источником и не зависящие от работы передающего устройства.

Примерами источников с управляемой скоростью являются текст телеграммы, подлежащей передаче по телеграфной линии связи, бланк фототелеграммы, перфорированная лента и т. д. Примерами источника с фиксированной скоростью являются многие датчики в телеметрических системах, электронные вычислительные машины, человек, говорящий перед микрофоном, сцена, передаваемая по телевидению, и т. д.

Часто между источником с фиксированной скоростью и передающим устройством включается элемент буферной памяти. Если емкость буферной памяти беспредельно увеличивать, то условия передачи сообщений приближаются к тем, которые имеют место при источниках с управляемой скоростью.

Совокупность всех средств, служащих для передачи информации, будем называть системой передачи информации. Источник и потребитель информации являются абонентами этой системы. Абонентами могут быть ЭВМ, системы хранения информации, различного рода датчики и исполнительные устройства, а также люди. В составе структуры системы передачи информации можно выделить: канал передачи (канал связи), передатчик информации, приемник информации. Передатчик служит для преобразования поступающего от абонента сообщения в сигнал, передаваемый по каналу связи; приемник -для обратного преобразования сигнала в сообщение, поступающее абоненту.

Основными качественными показателями системы передачи информации являются: пропускная способность, достоверность, надежность работы.

Пропускная способность системы передачи информации - наибольшее теоретически достижимое количество информации, которое может быть передано по системе за единицу времени. Пропускная способность системы обусловливается скоростью преобразования информации в передатчике и приемнике и допустимой скоростью передачи информации по каналу связи, определяемой физическими свойствами канала связи и сигнала.

Достоверность передачи информации - передача информации без ее искажения. В идеальном случае при передаче должно быть однозначное соответствие между передаваемым и получаемым сообщениями. Однако под действием помех, возникающих в канале связи, в приемнике и передатчике, это соответствие может быть нарушено, и тогда говорят о недостоверной передаче информации.

Надежность капала связи - полное и правильное выполнение системой всех своих функций.

Каналы связи являются общим звеном любой системы передачи информации. По физической природе каналы связи делятся следующим образом:

  • механические - используются для передачи материальных носителей информации;
  • акустические - передают звуковой сигнал;
  • оптические - передают световой сигнал;
  • электрические - передают электрический сигнал.

Электрические каналы связи могут быть проводные и беспроводные (или радиоканалы).

По форме представления передаваемой информации каналы связи делятся на аналоговые и дискретные. По аналоговым каналам передается информация, представленная в непрерывной форме, т. е. в виде непрерывного ряда значений какой-либо физической величины. По дискретным каналам передается информация, представленная в виде дискретных (цифровых, импульсных) сигналов той или иной физической природы. Скорость передачи цифровой информации по каналу связи измеряется в бодах. Один бод - это такая скорость, когда передается один бит в секунду (1 бод= 1 бит/с). Объем цифровой информации, передаваемой по каналу связи за определенный период времени, называют трафиком (от англ, traffic - «движение, транспорт, торговля»).

Связь может быть односторонней (симплексной ), с попеременной передачей информации в обоих направлениях (полудуплексной ) или одновременной в обоих направлениях {дуплексной). С помощью всего одной линии связи можно обеспечить реализацию сразу нескольких каналов связи. Такая связь называется многоканальной.

В системах административно-управленческой связи каналы связи по пропускной способности классифицируют на следующие виды:

  • низкоскоростные, скорость передачи информации в которых от 50 до 200 бод; это дискретные (телеграфные) каналы связи, как коммутируемые (абонентский телеграф), так и некоммутируемые;
  • среднескоростные, использующие аналоговые (телефонные) линии связи; скорость передачи в них от 300 до 9 600 бод, а в новых стандартах до 33 600 бод (стандарт V.34 бис);
  • высокоскоростные (широкополосные), обеспечивающие скорость передачи информации выше 36 000 бод; по этим каналам связи можно передавать и дискретную, и аналоговую информацию.

Физической средой передачи информации в низкоскоростных и среднескоростных проводных каналах связи обычно являются группы либо параллельных проводов, либо скрученных, называемых витой парой (скручивание проводов уменьшает влияние внешних помех).

В широкополосных проводных каналах связи используются коаксиальные кабели, оптоволоконные кабели, радиоволноводы. К широкополосным относятся и беспроводные радиоканалы связи. Возможности широкополосных каналов связи огромны. Например, по одному каналу-радиоволноводу для миллиметровых волн можно одновременно организовать несколько тысяч телефонных каналов, несколько тысяч видеотелефонных и около тысячи телевизионных, при этом скорость передачи может составлять несколько миллионов бод. Не меньше возможности и у волоконно-оптических каналов.

По виду передаваемой информации (способу ее представления) выделяют следующие виды связи.

  • Телефонная связь, обеспечивающая прием и передачу речевой информации.
  • Видеотелефонная связь, при которой абоненты не только слышат, но и видят друг друга.
  • Факсимильная связь - процесс дистанционной передачи неподвижных изображений и текста (дистанционное копирование документов). Иногда ее рассматривают как подвид видеотелефонной связи.
  • Телеграфная связь, обеспечивающая обмен буквенно-печатной информацией.
  • Телекодовая связь, представляющая собой передачу и прием закодированной информации, предназначенной для обработки на ЭВМ или иными цифровыми устройствами.

В зависимости от того, подвижны источники/получатели информации или нет, различают стационарную (фиксированную) и подвижную связь (мобильную связь с подвижными объектами).

В ряде случаев связь осуществляется через промежуточные рет-расляторы - приемо-передатчики, принимающие и передающие далее сигнал в нужном направлении, чаще всего усилив его. При этом говорят о спутниковой связи (связь с применением космического ретранслятора), радиорелейной связи (связь с применением наземного ретранслятора) и сотовой связи (связи с использованием сети наземных базовых станций).

Прежде всего, электронная связь осуществляется с помощью сетей электросвязи - технологических систем, обеспечивающих передачу информации. Единое централизованное управление взаимоувязанной сетью связи Российской Федерации осуществляется Министерством связи России. Последняя представляет собой систему технологически сопряженных сетей связи общего пользования и ведомственных сетей электросвязи. Абонентами сетей связи общего пользования могут быть любые юридические или физические лица. В отличие от них ведомственные сети электросвязи предназначены исключительно для удовлетворения информационных потребностей соответствующих ведомств. На территории Российской Федерации любыми юридическими или физическими лицами могут создаваться выделенные сети связи, не имеющие выхода на сеть связи общего пользования.

Для административно-управленческой связи большое значение имеет ее деление на системы передачи документированной и недокументированной информации. К электронным системам передачи документированной информации относят телеграфную и факсимильную связь. Основной электронной системой передачи не документированной информации является телефонная связь. В отдельный вид выделяют системы с документированием информации при приеме.

Рис. 7.1.

электронной связи

Отдельного внимания и с точки зрения организации, и с точки зрения использования заслуживают цифровые сети, особенно такой информационный монстр, как Интернет со своими многочисленными службами и услугами. Именно ему и применяемым при этом технологиям мы обязаны появлением самых современных систем связи. Эти технологии требуют постоянного совершенствования каналов связи, что не обходится без растущих затрат на их организацию. На рис. 7.1 показана относительная взаимосвязь различных современных систем организации связи с требованиями по пропускной способности каналов и затратами.



Рекомендуем почитать

Наверх