Как работать с ОУ LM358: схемы включения и практическое применение. Усилитель термопары на LM358

Помощь 02.03.2019
Помощь
Рассказать в:
Во время очередного похода по просторам Интернета, я попал на форум, на сайте Радиокот, где обсуждалась очень интересная конструкция - Цифровая паяльная станция v2.2. Так как меня не сильно радовали цены на подобные приборы, я решил повторить конструкцию. В результате получилась очень стабильная, простая и функциональная паяльная станция. В качестве контроллера был выбран ATmega8, имеющий встроенные АЦП и ШИМ. Усилитель сигнала термопары на ОУ LM358P. Для такой паяльной станции нужно использовать паяльники с термопарой К-типа, например паяльник фирмы Solomon: SL-ICMC, паял.д/станц.SL-10, 20, 30CMC.

Паяльник имеет керамический нагреватель и встроенную термопару.
Распиновка разъема паяльника: Схема устройства:

Теперь о схеме:


Трансформатор и диодный мост выбирается исходя из напряжения питания и мощности используемого паяльника. У меня это 24 В / 48 W. Для получения +5 В используется линейный стабилизатор 7805. Он обязательно должен иметь радиатор.
На выходе ШИМ (15-я ного МК) - оптопара и тиристор. Радиатор лучше поставить и на тиристор тоже.
Двухцветный светодиод я так и не нашол, я соединил два разных, как показано на схеме. Пищалка со встроенным генератором, используется для озвучивания нажатия кнопок (можно не ставить).
LCD в проекте используется символьный, двухстрочный на 16 символов (WH1602).
Усилитель термопары сделан на микросхеме LM358P, плату нужно экранировать. Резисторы подбирал примерно похожие по номиналу, для нашего случая особая точность не требуется. В крайнем случае, можно подстроить.

Назначение кнопок:

BTN1 (Mem) - переключение температурных режимов, по кругу.
BTN2 (Setup) - вход в режим программирования температурных режимов.
BTN3 (Up) - Увеличение установленной температуры на 1 град.
BTN4 (Down) - Уменьшение установленной температуры на 1 град.

Прошивку контроллера можно осуществить как на внешнем программаторе, так и внутрисхемно. Если МК новый - фьюзы не трогаем. А если нет, то ставим фьюзы на 4 МГц.
Данные EEPROM (так сказать "заводские настройки") восстановить можно. для этого включаем станцию с нажатой кнопкой BTN1 , тогда значения температур примут исходное значение.

Теперь фотосессия:





Отличие в v2.2 и v.2.1, в моем случае, это прошывка.

P.S. Хочу сказать "Спасибо" основателю идеи PavelV, доработке DeNew, помощнику КТ315В (Форум Радиокот).

АРХИВ: Скачать Раздел: 15 февраля 2012 в 18:28

Модернизация промышленной ИК станции, или как нужно делать изначально. Часть 2 От практики к теории

  • DIY или Сделай сам

В предыдущей части я написал о Наполеоновских планах по модернизации. Но не все так просто как кажется на первый взгляд.Под катом схемы, и фотки и умные фразы.

Станция + ПК = плюсы и минусы
Начнем с плюсов модернизации, а именно, управление технологическим процессом с ПК.
Данный репак мод, позволит практически полностью контролировать и автоматизировать процесс установки и съема элементов платы, с точным мониторингом температуры и возможностью подстройки на лету.
Так же убирается надобность в вскрытии станции для рекалибровки или же использования сложно ПО для перепрограммирования.В общем кратко сказать - лепота… но.
Главным и пока что единственным минусом есть тот факт что станция будет зависеть от ПО и ПК, и рано или поздно и то и то может дать сбой, внеся убытки или не дай Ктулуху материальный ущерб. При выходе из строя одного из вариантов мы лишаемся возможности работы с станцией и получаем технологический простой. Для избежания данного момента был принято решение на сборку двойного модуля который позволит в экстренном случае перевести режим управления на ручной, но без возможности расширенного мониторинга, чего в принципе будет более чем достаточно для проведения срочных работ.

Для реализации данного момента, придется увеличить программный код исполняемого микроконтроллера, а в нашем случае Atmega 168, и добавить LCD дисплей и пару элементов управления.
Из минусов то что памяти контроллера может не хватить на последующие апгрейды и мы нехило теряем количество доступных портов контроллера.

Но так как мы используем для быстрой загрузки бутлоадер платформы Arduino, то в процессе отладки ничего не составит труда заменить контроллер на более выгодный причем без каких либо изменений кода.

Отслеживание температуры зон

В процессе ремонта плат, при замене BGA чипов, является очень важным моментом, отслеживание температуры пайки. Для правильной пайки необходимо прогреть всю плату и локально греть саму деталь. Если же греть только деталь без прогрева платы или же при недостаточном прогреве платы и не соблюдении температурных режимов, есть огромный риск порчи детали, что не так страшно, или самой платы (вот тут настает абзац)
На фото примеры не соблюдения температурных режимов. Частые случаи, отрываются «пятки», правильнее сказать канавки, более печальные случаи когда «ведет» плату, обычно ремонту уже не подлежит так как при выгибании ломаются межслойные дорожки внутри платы.


Для того что бы уберечься от этой радости, производиться точный мониторинг температур.

Практика
Так как финансами особо не располагаю, то идея использовать инфракрасные датчики бесконтактного измерения температуры пока что отпала. В нашем проекте мы пока что будем использовать три термопары «К» типа, которые имею пределы измерения от 0 - 1000 градусов Цельсия.
Нам же нужны точные измерения до 350 градусов. Чего нам хватит с головой.
Почему же три термо пары а не две?
Все просто, Одна термопара будет мерить температуру платы, вторая температуру прогреваемого чипа(потому для верхнего нагревателя, еще одна термопара не нужна), и третья контрольная, температура нижнего нагревателя. На основе данных третьей термопары будет вестись установка работы нагревателя.
Для точного показания, нам необходимо усилить сигнал с термодатчиков, потому мною была выбрана схема усилителя, которая обеспечит довольно таки точное усиление без помех.


В качестве ОУ(операционного усилителя), я использую LM358, так как она распространена, имеет одно полярное питание, и дает нам необходимый коэффициент усиления. Для всех термопар нужно собрать три блока, фото которых будет в третьей но не последней части.

Из проблем практически все обсудили, единственный момент который пока что мне не удалось решить это как убрать разнос температур по площади нижнего нагревателя и как заставить программу понимать разные данные которые ей посылает МК.

P.S.: На первом фото изображен инфракрасный термодатчик MLX90614

Термопары широко применяются там где необходимо точно померить высокие температуры, т емпературы вплоть до 2500°C. То есть там, где цифровые датчики бы сразу сдохли от перегрева, применяются термопары. Разновидностей термопар существует достаточно много, но самое большое распространение получили хромель-алюмелевые (тип К) термопары, из-за своей дешевизны и практически линейному изменению термоэдс. Этот вид термопар ставятся в водонагреватели и другие бытовые приборы с контролем температуры, их повсеместно используют для контроля температуры при плавке металла, с помощью этих термопар контролируется нагрев жала в паяльной станции. Поэтому будет весьма полезно познакомиться с ними поближе.

Термопара это два проводника из разных металлов и имеющих общую точку контакта (спай). В точке этого контакта возникает разность потенциалов. Эта разность потенциалов зовется термоэдс и напрямую зависит от температуры, в которой находится спай. Металлы подбираются таким образом, чтобы зависимость термоэдс от температуры нагрева была наиболее линейна. Это упрощает расчет температуры и сокращает погрешность измерений.


Так широко применяемые хромель-алюмелевые термопары имеют достаточно высокую линейность и стабильность показаний на всем диапазоне измеряемых температур.
Ниже приведен график для хромель-алюмелевых термопар (тип К) показывающий, зависимость возникающей термоэдс от температуры спая (в конце статьи будет ссылка на график с большим разряшением):

Таким образом значение термоэдс достаточно умножить на нужный коэффициент и получить температуру, не заморачиваясь с табличными значениями и аппроксимацией - один коэффициент на весь диапазон измерений. Очень просто и понятно.
Но встает вопрос о подключении термопары к микроконтроллеру. Понятно что если на выходе термопары напряжение, тогда задействуем АЦП, но разность потенциалов на выходе термопары слишком мала, чтобы уловить хоть что-то. Поэтому прежде его нужно увеличить, например, применив операционный усилитель.

Берём стандартную схему неинвертирующего включения операционного усилителя:


Отношение входного и выходного напряжений описывается простой формулой:

Vout /Vin = 1 + (R2/R1)

От значений резисторов обратной связи R1 и R2 зависит коэффициент усиления сигнала. Величину усиления сигнала нужно подбирать с учетом того, что будет использоваться в качестве опорного напряжения.

Допустим опорным будет напряжение питания микроконтроллера 5V. Теперь необходимо определится с диапазоном температур, которые собираемся измерять. Я взял пределом измерения 1000 °C. При этом значении температуры на выходе термопары будет потенциал примерно 41,3мВ. Это значение должно соответствовать напряжению в 5 вольт на входе АЦП. Поэтому операционник должен иметь коэффициент усиления не менее 120. В итоге родилась такая схема:


В загашнике у меня нашлась давно собранная плата с этим операционником, собирал как предусилитель для микрофона, ее я и применил:


Собрал на бредборде такую схему подключения двухстрочного дисплея к микроконтроллеру:


Термопара тоже валялась без дела долгое время - она шла в комплекте с моим мультиметром. Спай закрыт в металлическую гильзу.


Код Bascom-AVR для работы с термопарой:

$regfile = "m8def.dat"
$crystal = 8000000

Dim W As Integer

"подключение двухстрочного дисплея

Config Lcdpin = Pin , Rs = Portb . 0 , E = Portd . 7 , Db4 = Portd . 6 , Db5 = Portd . 5 , Db6 = Portb . 7 , Db7 = Portb . 6
Config Lcd = 16 * 2
Cursor Off
Cls

"считывание значения с АЦП по прерыванию от таймера

Config Timer1 = Timer , Prescale = 64
On Timer1 Acp

"конфигурация АЦП

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Enable Interrupts
Enable Timer1

Do

Cls
Rem Температура:
Lcd "Teјѕepaїypa:"
Lowerline
Lcd W


Waitms 200

Loop


"работа с АЦП

Acp :

Start Adc "запуск АЦП
W = Getadc (1 )
W = W / 1 . 28 "подгоняем замеры под действ. температуру
Return

End

Операционный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики , позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах , эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам . Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон . Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Неинвертирующий усилитель и источник опорного напряжения

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина . При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Усилитель

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника . Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 о С с достаточно высокой точностью до 0,02 о С. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод . Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором , эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.



Рекомендуем почитать

Наверх