Интегральная схема (микросхема)

Скачать на Телефон 19.08.2019
Скачать на Телефон

Классификация интегральных схем

По конструктивно-технологическому исполнению различают полу-проводниковые, пленочные и гибридные ИС.

К полупроводниковым относят ПМС (полупроводниковые интег-ральные микросхемы), все элементы и межэлементные,соединения которой выполнены в объеме или на поверхности полупроводника. В зависимости от способов изоляции отдельных элементов различают ПМС с изоляцией p-n-переходами и микросхемы с диэлектрической (оксидной) изоляцией. ПМС можно изготовить и на подложке из ди-электрического материала на основе как биполярных, так и поле-вых транзисторов. Обычно в этих схемах транзисторы выполнены в виде трехслойных структур с двумя р-n-переходами (n-p-n-типа), а диоды — в виде двухслойных структур с одним р-л-переходом. Иног-да вместо диодов используют транзисторы в диодном включении. Резисторы ПМС, представленные участками легированного полу-проводника с двумя выводами, имеют сопротивление несколько ки-лоомов. В качестве высокоомных резисторов иногда используют об-ратное сопротивление р-n-перехода или входные сопротивления эмнт-терных повторителей. Роль конденсаторов в ПМС выполняют обратно смещенные p-rt-переходы. Емкость таких конденсаторов составляет 50 — 200 пФ. Дроссели в ПМС создавать трудно, поэтому большинство устройств проектируют без индуктивных элементов. Все элементы ПМС полу-чают в едином технологическом цикле в кристалле полупроводника. Соединения элементов таких схем осуществляются с помощью алю-миниевых или золотых пленок, получаемых методом вакуумного на-пыления. Соединение схемы с внешними выводами производят алю-миниевыми или золотыми проводниками диаметром около 10 мкм, которые методом термокомпрессии присоединяют к пленкам, а за-тем приваривают к внешним выводам микросхемы. Полупроводниковые микросхемы могут рассеивать мощность 50 — 100 мВт, работать на частотах до 20 — 100 МГц, обеспечивать время задержки до 5 не. Плотность монтажа электронных устройств на ПМС — до 500 элементов на 1 см3. Современный групповой технологический цикл позволяет обра-батывать одновременно десятки полупроводниковых пластин, каж-дая из которых содержит сотни ПМС с сотнями элементов в кристал-ле, связанных в заданные электронные цепи. При такой технологии обеспечивается высокая идентичность электрических характеристик микросхем.

Пленочными интегральными (или просто пленочными схемами ПС) называют ИС, все элементы и межэлементные соединения кото-рой выполнены только в виде пленок. Интегральные схемы подраз-деляют, на тонко- и толстопленочные. Эти схемы могут иметь коли-чественное и качественное различие. К тонкопленочным условно от-носят ИС с толщиной пленок до 1 мкм, а к толстопленочным — ИС с толщиной пленок выше 1 мкм. Качественное различие определяется технологией изготовления пленок. Элементы тонкопленочной ИС наносят на подложку с помощью термовакуумного осаждения и катод-ного распыления. Элементы толстопленочных ИС изготовляют преи-мущественно методом шелкографии с последующим вжиганием.

Гибридные интегральные микросхемы (ГИС) представляют со-бой сочетание навесных активных радиоэлементов (микротранзисто-ров, диодов) и пленочных пассивных элементов и их соединений. Обычно ГИС содержат: изоляционные основания из стекла или. ке-, рамики, на поверхности которых сформированы пленочные проводни-ки, резисторы, конденсаторы небольшой емкости; навесные бескор-пусные активные элементы (диоды, транзисторы); навесные пассив-ные элементы в миниатюрном исполнении (дроссели, трансформато-ры, конденсаторы большой емкости), которые не могут быть выпол-нены в виде пленок. Такую изготовленную ГИС герметизируют в пластмассовом или металлическом корпусе. Резисторы сопротивлением от тысячных долей ома до десятков килоомов в ГИС изготовляют в виде тонкой пленки нихрома или тантала. Пленки наносят на изоляционную основу (подложку) и под-вергают термическому отжигу. Для получения резисторов с сопро-тивлением в десятки мегаомов используют металлодиэлектрическив смеси (хрома, монооксида кремния и др.). Средние размеры пленоч-ных резисторов-(1 — 2)Х10~3 см2. Конденсаторы в ГИС выполняют из тонких пленок меди, сереб-ра, алюминия или золота. Напыление этих металлов производят с подслоем хрома, титана, молибдена, обеспечивая хорошую адгезию с изоляционным материалом подложки. В качестве диэлектрика в конденсаторах используют пленку из оксида кремния, бериллия, двуоксида титана и т. д. Пленочные конденсаторы изготовляют ем-костью от десятых долей пикофарады до десятков тысяч пикофарад размером от 10~3 до 1 см2. Проводники ГИС, с помощью которых осуществляют межэле-ментные соединения -и подключение к выводным зажимам, выпол-няют в виде тонкой пленки золота, меди или алюминия с подслоем никеля, хрома, титана, обеспечивающем высокую адгезию к изоля-ционному основанию. Гибридные интегральные схемы, у которых толщина пленок, образующихся при изготовлении пассивных эле-ментов, до 1 мкм с шириной 100 — 200 мкм,-относят к тонкопленоч-ным. Такие пленки получают методом термического напыления на поверхности подложек в вакууме с использованием трафаретов, ма-сок. Гибридные интегральные схемы с толщиной 1 мкм и более от-носят к толстопленочным и изготовляют путем напыления на подложки токопроводящих или диэлектрических паст через сетчатые трафареты с последующим их вжиганием в подложки при высокой температуре. Эти схемы имеют большие размеры и массу пассивных элементов. Навесные активные элементы состоят из гибких или жест-ких «шариковых» выводов, которые пайкой или сваркой присоединя-, ют к пленочной микросхеме.

Плотность пассивных и активных элементов при их многослой-ном расположении в ГИС, выполненной по тонкопленочной техноло-гии, достигает 300 — 500 элементов на 1 см3, а плотность монтажа электронных устройств на ГИС — 60 — 100 элементов на 1 см3. При такой плотности монтажа объем устройства, содержащего-107 эле-ментов, составляет 0,1 — 0,5 м3, а время безотказной работы — 103 — 104 ч. -

Основным преимуществом ГИС является возможность частичной интеграции элементов, выполненных по различной технологии (бипо-лярной, тонко- и толстопленочной и др.) с широким диапазоном электрических параметров (маломощные, мощные, активные, пассив-ные, быстродействующие и др.).

В настоящее время перспективна гибридизация различных типов интегральных схем. При малых геометрических размерах пленочных элементов и большой площади пассивных подложек на их поверхно-сти можно разместить десятки — сотни ИС и других компонентов. Та-ким путем создают многокристальные гибридные ИС с большим чис-лом (несколько тысяч) диодов, транзисторов в неделимом элементе. В комбинированных микросхемах можно разместить функциональ-ные узлы, обладающие различными электрическими характеристи-ками.

Сравнение ПМС и ГИС. Полупроводниковые микросхемы со сте-пенью интеграции до тысяч и более элементов в одном кристалле получили преимущественное. распространение. Объем производства ПМС на порядок превышает объем выпуска ГИС. В некоторых уст-ройствах целесообразно применять ГИС по ряду причин.

Технология ГИС сравнительно проста и требует меньших перво-начальных затрат на оборудование, чем полупроводниковая техно-логия, что упрощает создание нетиповых, нестандартных изделий и аппаратуры.

Пассивная часть ГИС изготовляется на отдельной подложке, что позволяет получать пассивные элементы высокого качества и создавать высокочастотные ИС.

Технология ГИС дает возможность заменять существующие ме-тоды многослойного печатного монтажа при размещении на подлож-ках бескорпусных ИС и БИС и других полупроводниковых компо-нентов. Технология ГИС предпочтительна для выполнения силовых ИС на большие мощности. Предпочтительно также гибридное испол-нение интегральных схем линейных устройств, обеспечивающих про-порциональную зависимость между входными и выходными сигна-лами. В этих устройствах сигналы изменяются в широком интерва-ле частот и мощностей, поэтому их ИС должны обладать широким диапазоном номиналов, не совместимых в едином процессе изготов-ления пассивных и активных элементов. Большие интегральные схе-мы БИС допускают объединение различных функциональных узлов, в связи с чем они получили широкое распространение в линейных устройствах.

Преимущества и недостатки интегральных схем.

  • Преимуществом ИС являются высокая надежность, малые размеры и масса. Плот-ность активных элементов в БИС достигает 103 — 104 на 1 см3. При установке микросхем в печатные платы и соединении их в блоки плотность элементов составляет 100 — 500 на 1 см3, что в 10 — 50 раз выше, чем при использовании отдельных транзисторов, диодов, ре-зисторов в микромодульных устройствах.
  • Интегральные схемы безынерционны в работе. Благодаря не-большим, размерам в микросхемах снижаются междуэлектродные емкости и индуктивности соединительных проводов, что позволяет использовать их на сверхвысоких частотах (до 3 ГГц) и в логичес-ких схемах с малым временем задержки (до 0,1 не).
  • Микросхемы экономичны (от 10 до 200 мВт) и уменьшают рас-ход электроэнергии и массу источников питания.

Основным недостатком ИС является малая выходная мощность (50 — 100 мВт).

В зависимости от функционального назначения ИС делят на две основные категории — аналоговые (или линейно-импульсные) и цифровые (или логические).

Аналоговые интегральные схемы АИС используются в радио-технических устройствах и служат для генерирования и линейного усиления сигналов, изменяющихся по закону непрерывной функции в широком диапазоне мощностей и частот. Вследствие этого анало-говые ИМС должны содержать различные по номиналам пассивные и по параметрам активные элементы, что усложняет их разработку. Гибридные микросхемы уменьшают трудности изготовления аналого-вых устройств в микроминиатюрном исполнении. Интегральные мик-росхемы становятся основной элементной базой для радиоэлектрон-ной аппаратуры.

Цифровые интегральные схемы ЦИС применяются в ЭВМ, уст-ройствах дискретной обработки информации и автоматики. С по-мощью ЦИС преобразуются и обрабатываются цифровые коды. Ва-риантом этих схем являются логические микросхемы, выполняющие операции над двоичными кодами в большинстве современных ЭВМ и цифровых устройств.

Аналоговые и цифровые ИС выпускаются сериями. В серию входят ИС, которые могут выполнять различные функции, но имеют единое конструктивно-технологическое исполнение и предназначают-ся для совместного применения. Каждая серия содержит несколько различающихся типов, которые могут делиться на типономиналы, имеющие конкретное функциональное назначение и условное обозна-чение. Совокупность типономиналов образует тип ИС.

Чтобы работала любая мало-мальски сложная электроника, обычно необходимо много деталей. Когда их много, то они могут «объединяться», скажем, в интегральные схемы. Что они собой являют? Как классифицируются? Каким образом изготавливаются, и какие сигналы передают?

Чем являются логические интегральные схемы (ИС)

По сути, это микроэлектронное устройство, которое базируется на кристалле произвольной сложности, что изготовлено на полупроводниковой плёнке или пластине. Оно помещается в неразборный корпус (хотя может обойтись и без него, но только когда он является частью микросборки). Первая интегральная схема была запатентована в 1968 году. Это стало своеобразным прорывом в промышленности, хотя предоставленное устройство и не очень сильно соответствовало современным представлениям по своим параметрам. Интегральные схемы в массе своей изготавливаются для поверхностного монтажа. Часто под ИС понимают один только кристалл или плёнку. Наибольшее распространение получила интегральная схема на пластине кремния. Так вышло, что его применение в промышленности имеет ряд преимуществ, например, эффективность передачи сигналов.

Уровни проектирования

Данные устройства являются сложными, что прекрасно отображается. Сейчас они создаются при помощи специальных САПР, которые автоматизируют и значительно ускоряют производственные процессы. Итак, при проектировании прорабатывается:

  1. Логический уровень (инверторы, И-НЕ, ИЛИ-НЕ и им подобные).
  2. Системо- и схемотехнический (прорабатываются триггеры, шифраторы, АЛУ, компараторы и прочее);.
  3. Электрический (конденсаторы, транзисторы, резисторы и им подобные устройства).
  4. Топологический уровень - фотошаблоны для производства.
  5. Физический - как реализовывается один транзистор (или небольшая группа) на кристалле.
  6. Программный - создаются инструкции для микроконтроллеров, микропроцессоров и ПЛИС. Разрабатывается модель поведения с помощью вертикальной схемы.

Классификация

Говоря о том, как различают интегральные схемы, нельзя избрать только один параметр вида сложности техники, о которой ведётся речь. Поэтому в рамках статьи было отобрано целых три.

Степень интеграции

  1. Малая интегральная схема. Содержит меньше ста элементов.
  2. Средняя интегральная схема. Количество элементов колеблется в диапазоне сотня/тысяча.
  3. Большая интегральная схема. Содержит от тысячи до 10 000 элементов.
  4. В них есть свыше десяти тысяч элементов.

Как правило, для бытовых устройств часто используется большая интегральная схема. Ранее использовались и другие категории:

  1. Ультрабольшая интегральная схема. В неё зачисляли те образцы, которые могли похвастаться количеством элементов в диапазоне от 1 млн. до 1 млрд.
  2. Гигабольшая интегральная схема. Сюда относили образцы, количество элементов которых превышало 1 млрд. элементов.

Но в данный момент времени они не применяются. А все образцы, которые раньше относили к УБИС и ГБИС, сейчас проходят как СБИС. В целом, это позволило значительным образом сэкономить на количестве групп, поскольку две последних типа обычно используются специфически в больших научно-исследовательских центрах, где работают компьютерные системы, мощность которых измеряется в десятках и сотнях терабайт.

Технология изготовления

Ввиду различных возможностей производства интегральные схемы также классифицируются по тому, как они изготавливаются и из чего:

1. Полупроводниковые. В них все элементы и соединения выполняются на одном и том же полупроводниковом кристалле. Полупроводниковые интегральные схемы используют такие материалы, как кремний, германий, арсенид галлия и оксид гафния.

2. Пленочные. Все элементы и соединения сделаны как плёнки:

Толстоплёночные.

Тонкоплёночные.

3. Гибридная. Имеет бескорпусные диоды, транзисторы или иные электронные активные компоненты. Пассивные (как то резисторы, катушки индуктивности, конденсаторы) размещены на общей керамической подложке. Все они помещаются в один герметизированный корпус.

4. Смешанная. Здесь есть не только полупроводниковый кристалл, но и тонкоплёночные (или толстоплёночные) пассивные элементы, которые размещаются на его поверхности.

Вид обрабатываемого сигнала

И третий, самый последний вид, основывается на том, какие сигналы обрабатывает интегральная схема. Они бывают:

  1. Аналоговые. Здесь входные и выходные сигналы меняются согласно закону Они могут принимать значение в диапазоне от отрицательного до положительного напряжения питания.
  2. Цифровые. Здесь любой входной или выходной сигнал может иметь два значения: логической единицы или нуля. Каждому из них соответствует свой заранее определённый уровень напряжения. Так, микросхемы типа ТТЛ диапазон 0-0,4В оценивают в ноль, а 2,4-5В в единицу. Могут быть и другие разделения, всё зависит от конкретного образца.
  3. Аналогово-цифровые. Совмещают в себе преимущества и особенности предыдущих образцов. К примеру, в них могут быть усилители сигналов и аналого-цифровые преобразователи.

Правовые особенности

Что говорится про интегральные схемы в законодательстве? У нас в стране предоставлена правовая охрана топологий интегральных микросхем. Под ней подразумевают зафиксированное на определённом материальном носителе геометрически-пространственного расположения определённой совокупности конкретных элементов и связей меж ними (согласно статье 1448 Гражданского кодекса Российской Федерации). Автор топологии имеет такие интеллектуальные права на своё изобретение:

  1. Авторские.
  2. Исключительное право.

Кроме этого автору топологии могут принадлежать и другие преференции, в том числе - возможность получения вознаграждения за её использование. действует на протяжении десяти лет. За это время изобретатель, или человек, которому этот статус был уступлен, может зарегистрировать топологию в соответствующей службе интеллектуальной собственности и патентов.

Заключение

Вот и всё! Если у вас возникло желание собрать свою схему - можно только пожелать успеха. Но одновременно хочется обратить ваше внимание на одну особенность. Если есть желание собрать микросхему, то необходимо основательно подготовиться к этому процессу. Дело в том, что для её создания требуется исключительная чистота на уровне хирургической операционной, к тому же, из-за мелкости деталей поработать паяльником в обычном режиме не получится - все действия осуществляются машинами. Поэтому в домашних условиях можно создавать только схемы. При желании можно приобрести промышленные разработки, которые будут предлагаться на рынке, но идею с их изготовлением дома без значительных финансов лучше оставить.

В ранних электрических компьютерах компонентами схемы, выполнявшими операции, были вакуумные трубки. Эти трубки, напоминавшие электрические лампочки, потребляли много электроэнергии и вьщеляли много тепла. Все изменилось в 1947 году с изобретением транзистора. В этом маленьком устройстве использовался полупроводниковый материал, названный так за способность как проводить, так и задерживать электрический ток, в зависимости от того, есть ли электрический ток в самом полупроводнике. Эта новая технология позволила строить все виды электрических переключателей на кремниевых микросхемах. Схемы на транзисторах занимали меньше места и потребляли меньше энергии. Для более мощных компьютеров были созданы интегральные схемы, или ИС.

В наше время транзисторы стали микроскопически малы, и вся цепь ИС помещается на кусочке полупроводника площадью 1 дюйм квадратный. Маленькие блоки, рядами смонтированные на печатной плате компьютера, и есть интегральные схемы, заключенные в пластиковые корпуса. Каждая микросхема содержит набор простейших элементов схемы, или устройств. Большую их часть занимают транзисторы. ИС может также включать диоды, которые позволяют электрическому току идти только в одном направлении, и резисторы, которые блокируют ток.
Неподвижные части. Во внутренних отделах компьютера ряды интегральных схем в защитных корпусах, как показано внизу, смонтированы на печатной плате компьютера (зеленый цвет). Каждая бледно-зеленая линия обозначает дорожку, по которой идет электрический ток; все вместе они образуют «магистрали», по которым от схемы к схеме проводится электрический ток.

Крошечные связные. По краю микросхемы сильно намагниченные проводки, напоминающие человеческие волоски, посылают электрические сигналы от электрической цепи (им. сверху). Эти золотые или алюминиевые проводки практически не подвержены коррозии и хорошо проводят электричество.

Анатомия транзистора
Транзисторы - основные микроскопические элементы электронной схемы - это переключатели, которые включают и выключают электрический ток. Маленькие металлические дорожки (серый цвет) проводят ток (красный и зеленый цвета) из этих устройств. Организованные в комбинацию, называемую логическими «воротами» (логической схемой), транзисторы реагируют на электрические импульсы разнообразными предустановленными способами, позволяя компьютеру выполнять широкий спектр задач.

Логическая схема. В случае если поступающий электрический ток (красные стрелки) активизирует базу каждого транзистора, питающий ток (зеленые стрелки) устремится к проводку вывода.

Коняев Иван Сергеевич,студент 3 курса Армавирского механикотехнологического института(филиала) ФГБОУ ВПО КубГТУ, г. Армавир[email protected]

Моногаров Сергей Иванович,кандидат технических наук, доцент кафедры внутризаводского электрооборудования и автоматики Армавирского механикотехнологического института(филиала) ФГБОУ ВПО КубГТУ, г. Армавир[email protected]

Принципыпостроения больших интегральных схем

Аннотация. Данная статья посвящена вопросампринципов построения больших интегральных схем(БИС). Ключевые слова: БИС,большая интегральная микросхема, базовые матричные кристаллы, программируемые логические устройства.

В настоящее время в микроэлектронной аппаратуре используются как специализированные, так и универсальные микросхемы различной степени интеграции. В то же время наблюдается определённая тенденция широкого применения интегральных микросхем высокой степени интеграции –больших интегральных микросхем (БИС), о которых и пойдёт речь в данной статье.Универсальные микросхемы выпускаются большими тиражами и применяются в широком диапазоне электронных устройств, в то время как специализированные микросхемы выпускаются ограниченными тиражами и имеют строго определённую область применения.Специализированные БИС, выполненные на базовых матричных кристаллах(БМК)и программируемых логических устройствах(ПЛУ)имеют особенно широкое применение. Столь широкое применение обусловлено тем, что автоматизированное проектирование таких БИС занимает относительно короткий промежуток времени: порядка нескольких недель для БИС на основе БМК, нескольких дней –для БИС на основе ПЛУ.Рассмотрим принципы построения и параметры базовых матричных кристаллов. В состав БМК входят заранее сформированная матрица базовых ячеек (располагается в центральной части), а так же группу буферных ячеек, которые располагаются по периферии кристалла (рис. 1).В свою очередь в состав ячеек входят группы нескоммутированных элементов (транзисторов, конденсаторов, резисторов) и отрезков полупроводниковых шин, предназначенных для реализации пересекающихся электрических связей.Из элементов ячеек с помощью электрических связей в виде металлических (проводниковых) и полупроводниковых шин формируются различные функциональные элементы (триггеры, счетчики, регистры и др.), буферные элементы, а так жесоединения между ними.

А) б) в)Рисунок 1 –Типовые структуры БМК: а) со сплошным массивом однородных ячеек; б) с массивом однородных ячеек или макроячеек, разделённых вертикальными и горизонтальными каналами для проводников; в) с массивом неоднородных ячеек, разделённых горизонтальными каналами; 1 –матрица базовых ячеек; 2 –матрица буферных ячеек; 3,5,8 –ячейки матриц, 4,7,10 –буферные ячейки, 6,9 –макроячейки; 11,12 –горизонтальные каналы; 13 –вертикальные каналы

В данном типе БИС, как правило, основные функциональные элементы потребляют малое количество энергии, достаточное для обеспечения необходимого быстродействия. В свою очередь, буферные элементы, которые осуществляют внешние связи матричное БИС, потребляют более высокую мощность, что обусловлено необходимостью для согласования по уровням логического напряжения определённой величины, нагрузочной способности и помехоустойчивости. В состав ячеек входит множестворазнообразных активных и пассивных элементов. При этом к параметрам пассивных элементов предъявляются требования достаточно высокой точности и стабильности. В состав БМК, предназначенных для изготовления аналогоцифровых БИС, входят обычно две матрицы ячеек, для формирования соответственно аналоговых и цифровых устройств. Базовые матричные кристаллы для цифровых и аналоговых БИС формируютсяна основе биполярных транзисторов и полевых транзисторов с изолированным затвором. В аналоговых БИС широкое применение получили биполярные транзисторы с высокой крутизной проходной вольтамперной характеристики.В свою очередь матрицы могут состоять из однородных или неоднородных ячеек. В БМК, предназначенныхдля реализации цифровых БИС с невысокой степенью интеграции (около 1000 логических элементов)используются однородные ячейки, в то время как для цифровых БИС с высокой степенью интеграции (около 10000 логических элементов) и цифроаналоговых БИС –матрицы с неоднородными ячейками. Применяются два способа организации ячеек матрицы БМК:1.На основе элементов ячейки может быть сформирован один базовый логический элемент, выполняющий элементарную функцию (НЕ, ИНЕ, ИЛИНЕ с разветвлениями по входам и выходам). Для реализации более сложных функций используют несколько ячеек. Число, разновидности и параметры элементов определяются электрической схемой базового логического элемента.2.На основе элементов ячейки может быть сформирован любой функциональный элемент библиотеки. Типы элементови их число определяются электрической схемой самого сложного функционального элемента.При первом способе построения ячеек можно получить достаточно высокие коэффициент их использования в составе матрицы, коэффициент использования площади БМК и, соответственно,повышенную степень интеграции БИС. При втором способе построения ячеек БМК упрощается система автоматизированного проектирования БИС, так как посадочные места одинаковых по форме и размерам ячеек заранее определены. Однако, если в проектируемой БИС используется достаточно много простых функциональных элементов библиотеки с низким коэффициентом использования элементов ячейки, снижается коэффициент использования площади кристалла, а значит истепень интеграции БИС.В матричных БИС электрические соединения выполняются с помощью металлических (проводниковых) и полупроводниковых (монои поликристаллических) шин. Шины цепей питания и заземления, как правило, выполняются из алюминия, который характеризуется низким удельным сопротивлением. Легированные полупроводниковые шины, имеющие повышенноеудельное сопротивление, в основном применяются для реализации коротких слаботочных сигнальных цепей.Для создания электрических связей между элементами используется однои многоуровневая металлизация. По окончании проектирования, набор параметров и характеристик БМК должен быть достаточно полным для потребителя. К типовым параметрам и характеристикам БМК относятся:1.технология изготовления;2.число ячеек в кристалле;3.структура (набор элементов) ячейки;4.наименование, типовые электрические параметры, схемы и фрагменты типовых функциональных элементов, формируемых на основе элементов ячеек;5.параметры элементов вводавывода;6.число периферийных контактных площадок;7.требования к источнику питания;8.указания по расположению и использованию контактных площадок для цепей питания и заземления и др.;БМК могут послужить основой для цифровых, аналоговых, цифроаналоговых и аналогоцифровых больших интегральных схем. В то же время, совокупность элементов БМК, предназначенных для применения в аналоговых БИС, позволяетформировать усилители, компараторы, аналоговые цифровые ключи и другие устройства.Не так давно основнымприменением БМК являлисьсредства вычислительной техники исистемы управления технологическими процессами. Некоторые БМК, например Т34ВГ1(КА1515ХМ1216), применялись в советских клонах компьютера ZX Spectrumв качестве контроллера внешних устройств. Аналог БМК -микросхема ULA в компьютерах Синклера. В настоящее время БМК в большинстве применений вытеснены ПЛИС(программируемая логическая интегральная схема–примечание автора), не требующими заводского производственного процесса для программирования и допускающими перепрограммирование. Далее рассмотрим программируемые логические матрицы.Программируемые логические устройства имеют матричную структуру и шинную организацию элементов (каждый элемент соединяется вертикальными и горизонтальными шинами). В ПЛУ используются программируемые матрицы И, ИЛИ и их комбинации:непрограммируемое И –программируемое ИЛИ;программируемое И –непрограммируемое ИЛИ;программируемое И –программируемое ИЛИ.Существует две разновидности программируемых логических устройств:

программируемые в условиях производства специализированных БИС на основе кристалловполуфабрикатов с помощью одного заказного фотошаблона по технологии, подобной технологии изготовления матричных БИС;

программируемые потребителемизготовителем аппаратуры ©загрузкойª (введением информации) внутренних регистров или физическим воздействием на отдельные элементы матриц (пережигание перемычек, пробой диодов, изменение режимов работы полупроводниковых приборов).Логические устройства, программируемые потребителем, являются универсальными микроэлектронными устройствами, которые ©настраиваютсяª на заданную функцию с помощью автоматических программаторов.В практике широко используются такие разновидности ПЛУ, как программируемые логические матрицы (ПЛМ) и программируемые постоянные запоминающие устройства (ППЗУ).Применение ПЛМ позволяет уменьшить количество логических элементов и связей в логических устройствах, что особенно важно для регулярных структур, реализуемых на кристаллах БИС.Разработаны и применяются однократно программируемые ПЛМ и многократно программируемые –репрограммируемые ПЛМ (РПЛМ). Развиваются методы проектирования и производства матричных БИС с реконструируемыми соединениями (МаБИСРС) и с программируемой архитектурой (МаБИСПА) –субсистемына пластинах.Программирование с использованием масок (фотошаблонов) металлизации или контактных окон в оксиде широко применяется в ПЛМ на основе биполярных транзисторов и диодов. На рис.2 показана схема соединений элементов в диодной ПЛМ. Входные сигналы положительной полярности подаются на входы а –е, произведения М0 –М2 снимаются с нагрузочных резисторов R. Преимуществами диодных матриц являются простота и малая занимаемая на кристалле площадь, а недостатком –значительные токи, потребляемые по входам матрицы.Использование многоэмиттерных транзисторов вместо диодов позволяет существенно уменьшить входные токи (в BN раз, BN –нормальный коэффициент передачи тока транзистора) и повысить быстродействие ПЛМ. На рис.3 представлена схема фрагмента ПЛМ на биполярных многоэмиттерных транзисторах.Матрицы на основе МОПтранзисторов обеспечивают наиболее высокую плотность компоновки элементов, имеют минимальную потребляемую мощность, однако уступают по быстродействию матрицам на биполярных транзисторах.Достоинством ПЛМ с масочным программированием являются малая площадь и высокая надежность, что обусловило их широкое применение в составе специализированных и микропроцессорных БИС. Такие ПЛМ однократно программируются изготовителем в процессе производствамикросхемы, что сужает область их применения.Большей гибкостью, особенно при использовании в периферийных устройствах, обладают электрически программируемые ПЛМ, “настройка” которых на реализацию заданных функций выполняется пользователем.

Рисунок 2 –Фрагмент диодной ПЛМ

Рисунок 3 –Фрагмент ПЛМ на БТ

На рис.4 показанынаиболее распространенные элементы матрицс электрическим программированием. Программирование осуществляется расплавлением перемычек (обычно нихромовых или поликремниевых) или пробоем диодов (pn переходов или барьеров Шотки).

Рисунок 4 –Элементы ПЛМ с электрическим программированием

Перемычки имеют сопротивление около 10 Ом и расплавляются (размыкаются) при пропускании через них импульса тока, амплитуда которого значительно больше амплитуды тока считывания. Для разрушения нихромовых или поликремниевых перемычек достаточно тока 20…50 мА; время расплавления составляет 10…200 мс.Диоды пробиваются (закорачиваются) при подаче импульса обратного напряжения от источника с небольшим внутренним сопротивлением, дающим достаточный ток (200…300 мА). Это вызывает лавинный и термический пробой pn переходов (барьера Шотки) и миграцию частиц металла внутрь полупроводника с образованием надежного низкоомного контакта (штриховые линии на рис.4). Время образования цепи 0,02…0,05 мс.Для электрического программирования и контроля ПЛМ используются специальные установки, управляемые ЭВМ. Исходной информацией для программирования и контроля являются:таблица истинности;признак пережигания (пробоя) лог. единиц или нулей (в зависимости от начальной информации незапрограммированной ПЛМ);параметры программирующих импульсов.Управляющая программа делает перебор адресов на входах от 00…0 до 11…1. На ПЛМ подаются питающие напряжения, а при наличии в исходной информации признаков программирования –импульс пережигания (пробоя). После программирования выполняется контроль и результат проверки с указанием совпадения (несовпадения) с таблицей истинности выводится на печать.ПЛМ применяются в современных периферийных и основных компьютерных устройствах платы расширения в системе Plug and Play, которые и имеют специальную микросхему -ПЛИС. Она позволяет плате сообщать свой идентификатор и список требуемых и поддерживаемых ресурсов.Для создания СБИС(сверх больших интегральных схем)и субсистем на пластинах применяют регулярные структуры (рис.5) с матрицей ячеек достаточно большой степени интеграции. Программирование элементов соединений выполняется их созданием или нарушением.

Рисунок 5 –Фрагмент БИС с реконструируемымисоединениями

Матричные БИС с реконструируемыми соединениями обычно создают на основе КМОПтранзисторов, характеризующихся минимальной потребляемой мощностью. Для таких транзисторов применимы все типы перемычек.Перспективным является использование матричных БИС с реконструируемыми соединениями для построения многопроцессорных субсистем. Контакты между соединительными проводниками различных уровней программируются лучом лазера (расплавляется диэлектрик), некоторые связи разрезаются.Лазерное реконструирование при управлении от ЭВМ длится около 1 ч. Такие микросистемы могут содержать до 100 миллионов транзисторов.Плотность компоновки для СБИС при минимальном размере элементов 0,5…2 мкм достигает 20 тысяч транзисторов на квадратный миллиметр.Внастоящее время существуютэлементыпамяти, сохраняющие информацию при отключении напряжения питания, что позволяет создавать ПЛМ со стиранием и перезаписью реализуемых функций –репрограммируемые логические матрицы (РПЛМ).Значительное распространение в РПЛМ получили МОПтранзисторы с плавающим затвором и лавинной инжекцией (рис.6). Структура такого транзистора аналогична обычному МОПтранзистору с поликремниевым затвором, который гальванически не связан с остальной схемой. В исходном состоянии транзистор не проводит ток (см. рис.6,а). Для перехода в проводящее состояние (запись) между истоком и стоком транзистора прикладывается достаточно большое напряжение (около 50 В) в течение примерно 5 мс. Это вызывает лавинный пробой истокового (стокового) pn перехода и инжекцию электронов в поликремниевый затвор. Заряд, примерно равный 107 Кл/см2,захваченный затвором (см. рис.6,б), индуцирует канал, соединяющий исток и сток, и может сохраняться длительное время (10…100 лет) после снятия напряжения, так как затвор окружен оксидным слоем, имеющим очень малую проводимость.Стирание информации осуществляется при облучении ультрафиолетовыми лучами сэнергией, достаточной для выбивания электронов из затвораи переноса их в подложку (рис.6). Стирание можно также осуществить, используя ионизирующее, например рентгеновское излучение.Считывание информации из матрицы выполняется при подаче напряжения питания 5…15 В и контроле тока, протекающего через транзистор.Для организации выборки определенных ячеек вматрицу (см. рис.6,в) последовательно с транзисторами с плавающими затворами включают обычные МОПтранзисторы.

Рис.6. ПЛМ на МОПтранзисторах с плавающим затвором:а) выключенный (стертый) запоминающий транзистор;б)включенный запоминающий транзистор;в) фрагмент матрицы (транзистор выборки Тв, запоминающий транзистор Тз);1 –исток; 2 –плавающий затвор из поликристаллического кремния; 3 –сток; 4 –инжектированный заряд; 5 –область обеднения

Наряду с БИСс реконструируемыми соединениями развивается направление, связанное с созданием БИС и СБИС с программируемой архитектурой и выполняемых в виде субсистем на пластинах. Перестройка архитектуры субсистемы осуществляется с помощью встроенных элементов коммутации с памятью. Причем элементы памяти могут выполняться как на типовых МОПили КМОПтранзисторах, так и на транзисторах с лавинной инжекцией.На рис.7представлена структурная схема матричной БИС с программируемой архитектурой. Шина управления (ШУ) служит для записи в блоки распределенной памяти (П) кодов настройки (программирования) архитектуры субсистемы на определенную задачу. Решающие блоки матрицы (М) соединяются между собой распределенными коммутаторами (К) через коммутационную шину (ШК).

Рисунок 7 –Структурная схема матричной БИС с программируемой архитектурой

Применение СБИС с программируемой архитектурой позволяет получить очень высокую плотность компоновки, автоматизировать процесс сборки.

Ссылки на источники1.Образовательный сайт www.studfiles.ruURL: http://www.studfiles.ru/dir/cat39/subj1381/file15398/view155035/page2.html2.Свободная энциклопедия Википедия URL: http://ru.wikipedia.org/wiki/%D0%91%D0%9C%D0%9A3.Свободная энциклопедия ВикипедияURL: http://ru.wikipedia.org/wiki/%D0%9F%D0%9B%D0%98%D0%A1

Konyaev Ivan Sergeyevich,3rd year student of Armavir Institute of Mechanics and Technology (branch) Kuban State University of Technology, ArmavirMonogarov Sergey Ivanovich,Candidate of Technical Sciences, Associate Professor of inplant electrical equipment and automation, Armavir Institute of Mechanics and Technology (branch) Kuban State University of Technology, ArmavirPrinciples of building largescale integrated schemesAbstract:This article focuses on research of the principles of construction of largescale integrated circuits (LSIs).Keywords:BIS, a large integrated circuit, the base matrix crystals, programmable logic devices.

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992



Рекомендуем почитать

Наверх