Хорошо известный повышающий трансформатор…

Помощь 07.08.2019
Помощь

Вам понадобится

  • - отвертка;
  • - молоток;
  • - мультиметр;
  • - намоточный станок со счетчиком;
  • - обмоточный провод;
  • - паяльник, припой и нейтральный флюс;
  • - мегомметр

Инструкция

Убедитесь, что трансформатор является разборным. Если его сердечник собран склейкой лаком, или, тем более, сваркой, а также если прибор герметизирован любым способом, то для перемотки он непригоден.

У некоторых трансформаторов имеется несколько вторичных обмоток. Соединяя их последовательно, можно получать различные напряжения. Если некоторые из таких обмоток не задействованы, включив их последовательно с уже использующимися, можно повысить выходное напряжение , не прибегая к разборке трансформатора.Все перепайки выполняйте при отключенном питании. Если снимаемое напряжение после переделки не увеличилось, а уменьшилось, значит, дополнительная обмотка подключена в неправильной фазировке. Поменяйте местами ее выводы.

Убедившись в том, что трансформатор имеет разборную конструкцию, можно приступить к его разборке. Сняв крепление сердечника, разберите его легкими ударами молотка, запоминая расположение пластин.Освободив катушку от сердечника, намотайте на нее измерительную обмотку, имеющую несколько десятков витков. Изолируйте ее, выводы вытащите наружу, после чего соберите трансформатор.

Подключите к измерительной обмотке мультиметр, работающий в режиме измерения переменного напряжения, подайте на первичную обмотку трансформатора номинальное напряжение питания. Разделив число витков измерительной обмотки на измеренное напряжение, вы получите число витков на вольт.

Рассчитайте число витков новой вторичной обмотки, которую необходимо включить последовательно с имеющейся, по следующей формуле:Nдоп=(U2-U1)*(Nизм/Uизм), где:
Nдоп - искомое число витков дополнительной обмотки;
U2 - напряжение, которое необходимо получить;
U1 - напряжение имеющейся вторичной обмотки;
Nизм - число витков измерительной обмотки;
Uизм - напряжение, снятое с измерительной обмотки.Снова разберите трансформатор, смотайте измерительную обмотку и вместо нее намотайте дополнительную. Используйте провод того же сечения, что и у имеющейся вторичной обмотки, при этом, следите, чтобы диаметр катушки не увеличился слишком сильно, иначе сердечник будет невозможно надеть. Если соблюсти это требование не получается, от переделки трансформатора придется отказаться.

Изолируйте дополнительную обмотку, соберите трансформатор, после чего включите новую обмотку последовательно с вторичной. Обеспечьте ее правильную фазировку способом, описанным выше.

После переделки трансформатора ни в коем случае не снимайте с него мощность, превышающую ту, на которую он был рассчитан изначально. Рассчитать эту мощность можно, умножив снимаемое напряжение на потребляемый ток.

С помощью мегомметра убедитесь, что утечка между первичной и вторичной обмотками, а также между каждой из них и сердечником отсутствует даже после длительного прогрева при номинальной снимаемой мощности. Удостоверьтесь, что в ходе испытания не появляются запах гари, дым.

Иногда случается так, что напряжение в сети несколько ниже того, которое необходимо для нормального функционирования приборов. Из этого положения есть выход. Повысить напряжение можно очень просто. Для этого достаточно элементарных знаний по электротехнике.

Вам понадобится

  • Трансформатор

Инструкция

Для того чтобы повысить напряжение , понадобятся простой по и трансформатор ( именно – станет ясно после некоторых нехитрых расчетов, указанных ниже). Итак, первичная обмотка трансформатора должна быть на , а вторичная его обмотка должна быть рассчитана на то напряжение , на которое как раз и нужно повысить напряжение в сети.

Теперь возьмите и проанализируйте следующие :Iн = Рн? Uн и P = U2 ? I2. При помощи первой формулы вычислите ток вторичной обмотки трансформатора. После того как в результате расчетов станет известна P, то по полученным результатам подберите трансформатор, наиболее подходящий по параметрам (мощность и выходное напряжение ).

Далее поработайте с этими формулами:Uвых = Uвх ± (Uвх? Ктр) и Ктр = U1 ? U2. Благодаря этим формулам становится понятным, что для правильного результата достаточно просто фазировать (первичной или вторичной).

Полученное устройство установите в таком месте, из которого оно не будет мешать, так как в процессе работы от трансформатора исходит довольно гул. Поэтому целесообразно устанавливать трансформатор где- в подвале или в подсобном помещении.

Видео по теме

Обратите внимание

Следует также учесть тот факт, что в случае стабилизации напряжения в сети и достижения его нормального значения (220 вольт), на выходе этого трансформатора все равно будет напряжение повышенное, что может привести к выходу из строя бытовых приборов. Поэтому для того, чтобы перестраховаться, используйте в процессе эксплуатации получившегося прибора специальные розетки, реагирующие на изменения напряжения в сети и способные в нужный момент отключить трансформатор от сети.

Источники:

  • как поднять напряжение в 2019

Очень сложно придумать что-либо более интригующее, нежели трансформатор Теслы . В свое время, когда автор данного изобретения – сербский ученый Никола Тесла – продемонстрировал его широкой публике, он получил репутацию колдуна и мага. Самое удивительное, что собрать трансформатор Теслы без особого труда можно у себя дома, а затем, при демонстрации этого агрегата, вызывать шоковое состояние у всех своих знакомых.

Инструкция

Для начала нам будет любой источник тока напряжения. Нужно найти генератор или трансформатор с напряжением не менее 5 кВ. Иначе эксперимент не получится. Затем данный источник тока необходимо подключить к конденсатору. Если емкость выбранного будет большой, то тогда также будет необходим мост. Затем нужно создать так называемый «искровой промежуток». Для этого нужно взять два медных провода, концы которых согнуть в стороны, а основание крепко обмотать изолентой.

Далее необходимо изготовить Теслы . Для этого нужно обмотать проводом любую круглую деталь без сердечника (так, чтобы посередине была пустота). Первичная обмотка должна состоять из трех-пяти толстого медного провода. Вторичная обмотка должна содержать не менее 1000 витков. В итоге, должны получиться катушки в форме чечевицы.

Затем необходимо подключить провода к первичной обмотке катушки, а также источнику . Самый простой трансформатор Теслы готов. Он сможет давать разряды не менее 5 сантиметров, а также создать «корону» вокруг катушек. Стоит только отметить, что явления, создаваемые трансформатор ом Теслы , пока не изучены. Если же вы изготовили трансформатор Теслы , который дает разряды до одного , то ни в коем случае не становитесь под этот разряд, хоть это и безболезненно. Токи высоких энергий не вызывают сенсорной реакции , но могут сильно разогревать ткани. Последствия от подобных экспериментов скажутся с годами.

Видео по теме

Источники:

  • как собрать катушку тесла в 2019

В радиолюбительской практике нередко возникает необходимость изготовить трансформатор с нестандартными значениями тока и напряжения. Хорошо, когда удается найти готовое устройство с требуемыми обмотками, в другом случае изготовить его придется самостоятельно.

Падение напряжения в первичной сети 220 вольт является иногда очень серьезной проблемой в сельской местности, да и не только. Холодильник не запускается, плитка не греет, утюгом не погладишь, паяльником не припаяешь, да мало ли… . Если падение напряжения для нагревательных приборов, имеющих для сети активное сопротивление, явление не летальное, то для аппаратуры, в которой установлены двигатели, в частности – холодильники, оно может стать последним в их жизни.

Начнем с простого, с нагревательной аппаратуры. Так как форма напряжения для нагревателей, не имеет ни какого значения, то поднять действующее (среднеквадратичное или эффективное) значение напряжения питания для них нет ни какой проблемы. Смотрим схемку.

Эта приставка напряжение сети (фиг.1) сперва выпрямляет (фиг.2), а потом за счет энергии, запасенной в конденсаторах, увеличивает эффективное напряжение, см. фигуру 3.

Выпрямительный мост можно использовать, как готовый, так и спаять из отдельных диодов. В сельской местности линии электропередачи воздушные и высоковольтные импульсные всплески напряжения не редкость, так что, выбирая элементы выпрямителя, обратите внимание на максимальное рабочее напряжение диодов. Чем выше, тем лучше, в разумных пределах конечно. Рабочий ток диодов должен превышать ток нагрузки раза в 2 в 3. Емкость конденсаторов вам придется подобрать самим. Она зависит и от величины провала напряжения сети и от мощности вашего нагревателя. С этой приставкой будьте осторожны, если напряжение сети восстановится до нормы, то на ее выходе напряжение будет выше рабочего напряжения нагрузки. Величина превышающего напряжения зависит от величины емкости подключенных в данный момент конденсаторов. Отсюда и необходимый запас по току диодов. У меня такая приставка имеется для большого паяльника 100Вт в виде топора, для его быстрого разогрева.

Теперь про, например холодильник. Этому товарищу необходим переменный синус. Конечно, можно купить и автотрансформатор и стабилизатор. Но можно обойтись и простым трансформатором, так называемым трансформатором вольтдобавки . Смотрим схемку.

Из схемы видно, что последовательно с верхним проводом сети 220 вольт включена дополнительная обмотка трансформатора. Если ее включить синфазно с сетью, то напряжения будут складываться (когда надо поднять напряжение), Если ее включить противофазно, то напряжение сети и напряжение на вторичной обмотке трансформатора будут вычитаться, это тот случай, когда напряжение надо уменьшить.

Как повысить напряжение сети, расчеты.

Теперь давайте немного посчитаем, хотя бы примерно. Допустим провал напряжения у вас тридцать вольт. Необходимый ток нагрузки равен пяти амперам. Отсюда следует, что нам необходима мощность 150Вт. С такое мощностью гарантированно справится трансформатор от старого лампового телевизора. Например, ТС-180 .
Трансформатор ТС-180, ТС-180-2, ТС180-2В параметры скачать

Так, скачали данные, нашли ТС-180, Складываем все витки первичных обмоток, 375+58+375+58=866 витков. Находим число витков на один вольт 866/220 = примерно, 4 витка на вольт. Для получения необходимых нам 30В умножаем 30 на 4 = 120витков. По 60 витков на катушку (у ТС-180 их две). Диаметр провода для пяти ампер равен 0,7 √I = 0,7√5 = 0,7∙2,236 ≈ 1,56 мм. Небольшие пояснения. Я всегда после разборки заводских трансформаторов увеличиваю число витков первичной обмотки, в первую очередь это связано с тем, что обратно собрать сердечник, как это делают в условиях производства, не удастся. Поэтому увеличение тока холостого хода (возможно в несколько раз из-за отсутствия ферронаполнителя в зазоре, т.к. сердечник разрезной) гарантировано. Да и броневой сердечник полностью не собрать, пластина 1,2,3, все равно останутся.

Вы, наверное, уже заметили, что через такой трансформатор можно питать двигатель мощностью один киловатт. В схеме нет тумблера для подключения нашего трансформатора. Он может коммутировать, как первичную обмотку трансформатора, но здесь будут потери из-за постоянно включенной в сеть вторичной обмотки, так переключать саму вторичную обмотку, но здесь будут потери из-за постоянно включенной первичной обмотки. Пока пишу этот текст, пришла в голову идея. Сейчас допишу и нарисую схему. Так вот, для коммутации трансформатора потребуется два переключателя или один с несколькими направлениями. Все теперь об идее, схему нарисовал. Смотрим схему.

И так, переключатель в нижнем положении, трансформатор добавляет напряжение. Переключатель в верхнем положении, первичная обмотка замкнута накоротко, значит и во вторичной обмотке короткое замыкание, а это ничто иное, что трансформатор исчез, осталось только активное сопротивление вторичной обмотки.

Тааа…к, родилась еще одна схема. Сейчас нарисую. Что же я раньше до этого не додумался, хотя в Сети, может быть, уже давно кто-то это нарисовал. Смотрим.

Если переключатели оба внизу или оба вверху, то трансформатора в цепи нет, в первичной обмотке режим КЗ, оставшееся активное сопротивление менее Ома. Теперь левый вверх, правый вниз – трансформатор, например, добавляет напряжение, а правый вверх левый вниз – убавляет. Ну, вот и все, может, кому это и пригодится. Успехов. К.В.Ю. Да, еще чуть, чуть. А если вместо переключателей применить Н-мост из полевых транзисторов , да еще микроконтроллер, следящий за уровнем сетевого напряжения, то можно, наверное, сделать стабилизатор переменного напряжения релейного типа с маленьким (относительно) трансформатором на большую (относительно) мощность. Кто бы только все это сделал. По крайней мере есть над чем подумать.
Скачать статью


Большинство электрических бытовых устройств работает от сети питания 220 В. Иногда необходимо понизить это напряжение до определенного значения, чтобы подключить низковольтные потребители нагрузки. Такими потребителями могут быть галогенные светильники, низковольтные нагреватели, светодиодные ленты и множество других.

Такое снижение напряжение могут выполнить понижающие трансформаторы, которые приобретают в магазине, или изготавливают самостоятельно. Такие трансформаторы популярны в электротехнике и радиоэлектронике, а также в бытовых условиях.

Особенности конструкции

Основной частью трансформатора выступает ферромагнитный сердечник, на котором расположены две обмотки, намотанные медным проводником. Эти обмотки разделяют на первичную и вторичную, в зависимости от принципа действия. На первичную обмотку подается сетевое напряжение, а с вторичной – снимается пониженное напряжение для потребителей нагрузки.

Обмотки связаны между собой переменным магнитным потоком, который наводится в ферромагнитном сердечнике. Между обмотками нет электрического контакта. Первичная обмотка имеет большее количество витков, чем вторичная. Поэтому напряжение на выходе понижено.

Обычно понижающие трансформаторы со всеми элементами находятся в корпусе. Однако не все модели его имеют. Это зависит от фирмы изготовителя, а также назначения понижающего трансформатора.

Обозначение на схеме

Принцип действия

Работу понижающего трансформатора можно описать следующим образом. Действие трансформатора основывается на принципе электромагнитной индукции. Напряжение, подключенное на первичную обмотку, образует в ней магнитное поле, которое пересекает витки вторичной обмотки. В ней образуется электродвижущая сила, под действием которой возникает напряжение, отличное от входного напряжения.

Разница в количестве витков первичной и вторичной обмоток определяет разницу между входным и выходным напряжением понижающего трансформатора. В процессе функционирования трансформатора возникают некоторые потери электроэнергии, которые неизбежны, и составляют около 3% мощности.

Чтобы вычислить точные величины параметров трансформатора, нужно сделать определенные расчеты его конструкции. Электродвижущая сила может возникать при подключении трансформатора только к переменному току. Поэтому большинство бытовых электрических устройств работает от сети переменного тока.

Понижающие трансформаторы входят в состав многих блоков питания, стабилизаторов и других подобных устройств. Некоторые модели трансформаторов могут содержать несколько выводов на вторичной обмотке для разных групп соединений. Такие виды приборов стали популярными, так как являются универсальными, и обладают многофункциональностью.

Разновидности

Понижающие трансформаторы имеют различные исполнения, в зависимости от конструкции и принципа действия.

  • Тороидальные . Такой вариант модели трансформатора (рисунок «а») также применяется для незначительных мощностей, имеет сердечник формы в виде тора. Он отличается от других моделей малым весом и габаритами. Применяется в радиоэлектронных устройствах. Его конструкция позволяет достичь более высокой плотности тока, так как обмотка хорошо охлаждается на всем сердечнике, показатели тока намагничивания самые низкие.
  • Стержневые . На рисунке «б» изображен стержневой вид трансформатора, в конструкции которого обмотки охватывают сердечники магнитопровода. Такие модели чаще всего выполняют для средней и большой мощности приборов. Их устройство довольно простое и дает возможность легче изолировать и ремонтировать обмотки. Их преимуществом является хорошее охлаждение, вследствие чего требуется меньше проводников для обмоток.
  • Броневые . В этом виде трансформатора (рисунок «в») магнитопровод охватывает обмотки в виде брони. Остальные параметры идентичны стержневому виду, за исключением того, что броневые трансформаторы в основном выполняют маломощными, так как они имеют меньший вес и цену в сравнении с предыдущим вариантом, из-за простой сборки и меньшего количества катушек.
  • Многообмоточные . Наиболее популярными являются двухобмоточные 1-фазные понижающие трансформаторы.

Для получения нескольких различных величин напряжений от одного трансформатора применяют несколько вторичных обмоток на сердечнике. Эти обмотки разные по числу витков и выдаваемому напряжению.

  • Трехфазные . Такая модель применяется для понижения напряжения трехфазной сети. Такие понижающие трансформаторы применяются не только в промышленности, но и для бытовых нужд.

Они могут быть изготовлены из 3-х однофазных трансформаторов на общем сердечнике. Магнитные потоки всех фаз в сумме равны нулю. Промышленные образцы проходят испытания по определенным параметрам. Результаты испытаний сравнивают с документацией. Если нет соответствия, то трансформатор подлежит выбраковке. 3-фазный трансформатор имеет соединение обмоток по схеме треугольника или звезды. Схема звезды характерна общим узлом выводов всех фаз. Соединение треугольником выполняется последовательной схемой фаз в кольцо.

  • Однофазные . Такие трансформаторы имеют подключение питания от однофазной сети, поступают на одну первичную обмотку. Принцип их работы аналогичен всем остальным видам трансформаторов. Это наиболее популярный вид устройств.

Основные свойства

Маркировка трансформаторов зависит от его свойств. Основными свойствами понижающих трансформаторов являются:

  • Мощность.
  • Напряжение выхода.
  • Частота.
  • Габаритные размеры.
  • Масса.

Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.

Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.

Обмотки трансформатора

Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.

Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии. К одному трансформатору можно подключать сразу несколько бытовых устройств.

Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой. Проводники бывают различных форм сечения:

  • Круглая.
  • Прямоугольная (шина).

По способу намотки обмотки делят:

  • Концентрические, на стержне.
  • Дисковые, намотанные чередованием.
Достоинства и недостатки

Достоинства

  • Применение понижающих трансформаторов, как в промышленности, так и в домашних условиях можно объяснить необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
  • Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
  • Компактные размеры.
  • Малая масса.
  • Удобство транспортировки и монтажа.
  • Отсутствие помех.
  • Плавная регулировка напряжения.
  • Незначительный нагрев.

Недостатки

  • Недолгий срок службы.
  • Незначительная мощность.
  • Высокая цена.

Как выбрать понижающие трансформаторы

Торговая сеть электротехнических изделий предлагает модели бытовых понижающих трансформаторов на все случаи жизни. При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:

  • Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.
  • Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.
  • Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.

Эксплуатация и ремонт

Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.

Понижающие трансформаторы необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус. Заземление для понижающего трансформатора является обязательным условием.

Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.

Чаще всего обслуживание включает в себя следующие работы:

  • Наружный осмотр, очистка от пыли и грязи.
  • Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
  • Проверка изоляции на пробой.

В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань. При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.

Повышающие трансформаторы представляют собой силовые конструкции, предназначенные для монтажа в электрических бытовых и производственных цепях. Установка меняет напряжение в сторону повышения. Как работает повышающий тип трансформаторов, где используются такие установки, нужно рассмотреть подробнее.

Функционирование

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается. Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Принцип устройства

Рассматривая, как работает трансформатор повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции. Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.

Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.

При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.

Разновидности

  1. Автотрансформатор. Обладает одной совмещенной обмоткой.
  2. Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
  3. Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
  4. Заземляемый. Обмотки соединяются звездой или зигзагом.
  5. Пик-трансформаторы. Отделяют постоянный и переменный ток.
  6. Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.

Представленные конструкции отличаются мощностью и техническими характеристиками.

Другие виды

В соответствии с рабочими характеристиками представленное оборудование различается еще по нескольким признакам. По количеству контуров бывают однофазные (бытовые) и трехфазные (промышленные) конструкции.

В качестве охладительной системы применяются разные субстанции. Различают масляные и сухие разновидности. В первом случае оборудование стоит дешевле. Масло является пожароопасным веществом. При их использовании предусматривается качественная защита от аварии. Сухие агрегаты заполнены негорючим веществом. Они стоят дороже, но требования по их установке лояльные.

Циркуляция охладителя в системе может быть принудительным или естественным. Существуют конструкции, в которых эти методы комбинируются. Многообразие видов позволяет каждому подобрать оптимальный тип устройства.

Маркировка

Производителями разработана специальная маркировка представленного оборудования. Это позволяет потребителям и проверяющим легко определить разновидность оборудования.

В общем виде обозначение выглядит так - ТМ/Н – Х , где:

  • Т – обозначение типа прибора;
  • М – мощность агрегата, заданная производителем, кВА;
  • Н – класс напряжения со стороны обмотки высокого напряжения (ВН);
  • Х – климатическая характеристика, определяющая особенности размещения в соответствии с ГОСТ 15150.

Маркировка может включать в себя и другие характеристики. Табличка с указаниями параметров прибора устанавливается на его корпус. При установке оборудования информация с маркировкой должна находиться в доступном для визуального осмотра месте. Подробнее о маркировке трансформаторов читайте .

Ремонт и обслуживание

Трансформатором называется сложное оборудование. Периодически потребуется проводить его обслуживание и . Доверить эту работу рекомендуется профессионалам. Только человек с соответствующей подготовкой имеет право проводить подобные работы.

При повышенной скорости нагрева, наличии шума, требуется произвести перемотку контуров трансформатора. Эту процедуру сможет выполнить неквалифицированный специалист, обладающий минимальным уровнем знаний в области работы электротехники.

Прибор имеет магнитопривод. Он является общим для катушек. Первый контур ответственен за понижение, а второй – за повышение электричества в сети. Осмотр трансформатора производится по определенной технологии.

Проверка

Сначала проводится визуальный осмотр блока. Если при работе наблюдается перегрев, на поверхности появляются деформации, неровности, вздутие изоляции. Если осмотр не выявил отклонений, нужно найти вход и выход прибора. Первый из них подведен к первой катушке. Здесь появляется магнитное поле в момент подачи электричества. Вывод подведен ко вторичной обмотке.

Выходной сигнал фильтруется. Этот показатель нужно замерять. Снимаются разборные части конструкции корпуса. Требуется получить доступ к микросхемам. Это позволит замерять напряжение мультиметром. При этом потребуется учесть номинальные показатели. Если результат замеров окажется меньше 80 % от заданного производителем значения, цепь первичной не функционирует правильно.

Первую катушку отсоединяют от прибора. На нее больше не поступает электричество. Затем проверяется вторичный контур. При отсутствии фильтрации используется питание от измерительного прибора. При отсутствии нормального напряжения в системе, аппаратура требует ремонта.

После проверки в случае исправности составляющих элементов, конструкция собирается обратном порядке. При необходимости проводится ремонт агрегата.

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях. Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Трансформатор, устройство, которое передает электрическую энергию от одной части схемы к другой за счет магнитной индукции и, как правило, с изменением величины напряжения. Трансформаторы работают только с переменным электрическим током (AC).

Трансформаторы имеют важное значение в распределении электроэнергии. Они повышают напряжение, вырабатываемое на электростанциях до высоких значений с целью эффективной передачи электроэнергии. Другие трансформаторы понижают это напряжение в местах потребления.

Многие бытовые приборы оборудованы трансформаторами, для того чтобы по мере необходимости повысить или понизить напряжение поступающее из домашней электросети. Например, для работы телевизора и аудиоусилителя необходимо повышение напряжения, а для работы дверного звонка или термостата низкое напряжение.

Как работает трансформатор

Как правило, простой трансформатора состоит из двух катушек намотанных изолированным проводом. В большинстве трансформаторов, провода намотаны на стержень из железа, называемый сердечником.

Одна из обмоток, ее еще называют первичной обмоткой, подключается к источнику переменного тока, что в свою очередь приводит к появлению постоянно переменного магнитного поля вокруг обмотки. Это переменное магнитное поле, в свою очередь, создает переменный ток в другой обмотке (вторичной обмотке).

Величина, определяемая как отношение числа витков в первичной обмотке к числу витков во вторичной обмотке, определяет масштаб понижения или повышения напряжения во вторичной обмотки. Данную величину еще называют коэффициентом трансформации.

Например, если у трансформатора имеется 3 витка первичной обмотке и 6 витков во вторичной обмотки, то напряжение во вторичной обмотке будет в 2 раз больше, чем в первичной. Такой трансформатор называется повышающий трансформатор.

И на оборот, если есть 6 витков в первичной обмотке и 3 виток во вторичной, то напряжение снимаемое с вторичной обмотки будет в 2 раз ниже чем в первичной обмотке. Этот вид трансформатора носит название понижающий трансформатор.

Так же следует иметь ввиду, что соотношение тока в обеих катушках находится в обратной зависимости к соотношению их напряжений. Таким образом, электрическая мощность (напряжение умноженное на силу тока) является одинаковой в обеих катушек.

Импеданс (сопротивление потоку переменного тока) первичной катушки зависит от импеданса вторичной цепи и коэффициента трансформации. При правильном соотношении витков трансформатора можно добиться практически одинакового сопротивления обоих контуров.

Согласованные сопротивления имеют важное значение в стерео системах и других электронных систем, потому это позволяет передавать максимальное значение энергии от одного блока схемы другому.



Рекомендуем почитать

Наверх