Геоинформационные системы (ГИС) - это что такое? Как работает ГИС

Скачать на Телефон 13.09.2019
Скачать на Телефон

ГИС-технологии сегодня используются практически везде - в лесообработке, строительстве, картографии, экологии, сейсмологии и так далее. Их изучают в университетах и научных институтах. ГИС-технологии это целая индустрия, которая влияет на практически все аспекты человеческой жизни. Но при этом дать четкое определение этому виду технологий очень сложно. Ведь это не просто набор систематизированных знаний. Это особый взгляд на окружающий мир. О том, как работают ГИС-технологии и для чего они предназначены, расскажет вам наша статья.
Что такое ГИС?
ГИС – это географическая информационная система. Она позволяет картировать объекты окружающего мира, а затем анализировать их по огромному количеству параметров, визуализировать их и на основе этих данных прогнозировать самые различные события и явления. Столь мощная технология позволяет решать при помощи ГИС огромное количество задач, как глобальных, так и частных. ГИС-технологии могут стоять на службе у всего человечества, предотвращая экологически катастрофы или помогая решать проблемы перенаселения отдельных регионов.
ГИС можно использовать и для нужд отдельных компаний, налаживать с его помощью эффективно работающий бизнес. Например, перевозочная компания при помощи специальных баз данных может подбирать оптимальные маршруты для своих транспортных средств, коммунальные службы – прокладывать коммуникации к новым домам и так далее.
Как работает ГИС?
Информационная система – это огромная база цифровых данных, преобразованных в цифровой формат. Они представляют собой детализованные слои, объединенные по географическому признаку и привязанных к определенной системе координат. Любые происходящие события могут с успехом отслеживаться по такой базе данных. Кроме того, с ее помощью можно найти практически любую точку земного шара, отследить движение практически любого объекта.
Базы данных ГИС способны выполнять пять различных задач. Вы можете осуществлять ввод актуальных данных в базу, причем в большинстве случаев это происходит автоматически при помощи сканера. Вы можете манипулировать данными, масштабировать их по своему усмотрению, собирать необходимые для решения определенной задачи сведения. Как и обычными базами данных, системой ГИС можно управлять. Это делается по средствам целого набора интегрированных приложений.
Большое количество данных, содержащихся в базе, дает широкие возможности для анализа по самым различным параметрам. Вы можете найти свободные участки для строительства дома, оптимальным образом сформировать транспортные потоки, проанализировать близость различных объектов (например, определить количество человек, живущих в шаговой доступности от вашего магазина), наложить друг на друга различные показатели и проанализировать получившуюся картину.
Последняя задача, которую позволяет выполнять ГИС, это визуализация данных. Вы можете получить карты, графики, таблицы и даже фотографии интересующей вас местности. Эти данные имеют огромное значение как для научных исследований, так и для работы отдельных компаний и организаций.

Где применяются ГИС-технологии?
Из предложенных выше описаний становится понятно, что ГИС-технологии находят широкое применение в самых различных областях деятельности. Но что конкретно они могут делать? Приведем несколько примеров, которые показывают в чем реальная польза ГИС-технологий.
· Выявив взаимосвязь между различными показателями, вы можете разрабатывать более эффективные технологии работы, экономить достаточно большие средства. Проанализируйте, как соотносится между собой тип почвы, климат и урожайность определенных сельскохозяйственных культур, и вы поймете, где лучше всего заниматься их выращиванием.
· Задав определенные критерии поиска, вы легко можете найти необходимый вам объект, и, не тратя лишнего времени, заниматься его освоением. Найти квартиру, которая будет иметь определенное количество комнат, метраж кухни и при этом будет расположена недалеко от работы и школы ваших детей теперь очень просто.
· ГИС могут быть оказывать положительное влияние на бизнес-процессы, происходящие внутри организаций. Огромная база данных может быть полезна в любой сфере, ведь дает возможности для четкого планирования работы. Коммунальные службы могут не только оперативно отслеживать износ оборудования и планировать профилактические работы, но и оповещать об этом тех жителей, которых это коснется.
· Сегодня карты городов и местностей быстро устаревают – ведется новое строительство, проектируются дороги. ГИС позволяют отслеживать эти изменения и вносить их в базу данных практически молниеносно. Запущенная в виртуальную сеть, такая карта позволит всегда иметь под рукой актуальные данные.

ГИС-технологии – это не просто компьютерная база данных. Это огромные возможности для анализа, планирования и регулярного обновления информации. ГИС-технологии сегодня находят применение практически во всех сферах жизни, и это помогает действительно эффективно решать многие задачи.

Применение ГИС в управлении территорией и хозяйством

“Область применения ГИС ограничена только вашей фантазией”

1. Введение

В настоящее время трудно представить область деятельности человека, в которой не использовался бы компьютер. Компьютеры используются практически повсеместно: в искусстве, науке, образовании, медицине, промышленности, торговле и во многих других областях. Отдельные сферы затронула практически тотальная автоматизация, в других этот процесс только начинается.
Одной из сфер деятельности, где процесс автоматизации только начинает набирать обороты – это управление территориями и хозяйством. Для управления территорией, как правило, находят применение ГИС - географические информационные системы или геоинформационные системы.
В промышленно развитых странах, где вопросам автоматизации внимание уделяется уже давно, автоматизация территориального управления более или менее налажена. Что касается России, то тут этот процесс тронулся с места только в отдельных регионах страны. И то все возможности ГИС, как правило, сводятся к показу карты или плана определенной территории.

2. Географическая информационная система, понятие и программное обеспечение

2.1 Понятие о ГИС

Географическая информационная система (ГИС) – это программно-аппаратный комплекс, решающий задачи по хранению, отображению, обновлению и анализу пространственной и атрибутивной информации по объектам территории. Одна из основных функций ГИС – создание и использование цифровых (электронных) карт, атласов и других картографических произведений. Основой любой информационной системы служат данные. Данные в ГИС подразделяются на пространственные, семантические и метаданные.
Пространственные данные – данные, описывающие местоположение объекта в пространстве. Например, координаты угловых точек здания, представленные в местной или любой другой системе координат. Семантические (атрибутивные) данные – данные о свойствах объекта. Например, адрес, кадастровый номер, этажность и прочие характеристики здания.
Метаданные – данные о данных. Например, информация о том, кем, когда и с использованием какого исходного материала, в систему было внесена информация об объекте.

Первоначально ГИС были созданы для изучения природных ресурсов в середине 1960-х годов, а сейчас в промышленно развитых странах существует тысячи ГИС, используемых в экономике, политике, экологии, управлении и охране природных ресурсов, кадастре, науке, образовании и т.д. Они интегрируют картографическую информацию, данные дистанционного зондирования и экологического мониторинга, статистику и переписи, гидрометеорологические наблюдения, экспедиционные материалы, результаты бурения и т.п.
Структурно, ГИС для управления территорией представляет собой централизованную базу данных пространственных объектов и инструмент, который предоставляет возможности хранения, анализа и обработки любой информации, связанной с тем или иным объектом ГИС, что сильно упрощает процесс использования информации об объектах территории заинтересованными службами и лицами.
Также стоит отметить, что ГИС может быть (и должна) интегрирована с любой другой информационной системой, использующей данные об объектах территории. Например, система автоматизации деятельности комитета по управлению имуществом должна использовать в своей работе адресный план и карту земельных участков ГИС. Также в ГИС могут храниться зоны, содержащие коэффициенты арендных ставок, которые могут использоваться при расчете арендной платы.
В том случае, когда используется централизованная ГИС, все сотрудники органа местного самоуправления имеют возможность получать регламентированный доступ к актуальным данным ГИС, при этом затрачивая гораздо меньшее время на их поиск, анализ и обобщение.
ГИС предназначены для решения научных и прикладных задач инвентаризации, анализа, оценки, прогноза и управления окружающей средой и территориальной организацией общества.
Основу ГИС составляют автоматизированные картографические системы, а главными источниками информации служат различные геоизображения.

2.2 Программное обеспечение ГИС

Программное обеспечение может быть базовым и прикладным. Базовое программное обеспечение является основой для любой проблемно-ориентированной ГИС. Базовое программное обеспечение обеспечивает все основные функции, необходимые разработчику проблемно-ориентированной ГИС. Это программное обеспечение разрабатывается довольно большим количеством коммерческих и некоммерческих организаций. Прикладное программное обеспечение разрабатывается для конкретной области применения и обеспечивает решения определенных узких задач.
Базовое программное обеспечения ГИС на данный момент представлено на рынке достаточно широко. Есть зарубежные и отечественные разработки. Все представленное на рынке программное обеспечение различается функциональностью и ценой. Причем функциональность и цена находятся в прямо пропорциональной зависимости. Хотя сравнительно простые задачи могут быть решены с применением технологий бесплатных Open Source ГИС.
Наиболее функциональными и соответственно нашедшими самое широкое применение продуктами являются продукты фирмы ESRI. Фирма ESRI разработала программное обеспечение ГИС для решения самого широкого круга задач. Линейку продуктов представляют серверные и настольные приложения с функциональностью разного уровня. Широко известны также MapInfo и Itergraph.

3. Использование ГИС в управлении территорией и хозяйством

Интерес к внедрению ГИС в практику государственного и муниципального управления во всем мире остается высоким многие годы. В России и странах СНГ проектам с применением ГИС также уделяется довольно большое внимание. И если раньше в реализации таких проектов большую активность демонстрировали органы государственного управления (министерства, агентства и т.п.), то в последнее время серьезную заинтересованность проявляют и органы местной власти: областные и муниципальные органы управления. Это связано со значительными изменениями в законодательстве, существенно изменяющими экономическую основу регионального управления. Муниципалитетам предоставляются большие возможности и, одновременно, на них возлагается ответственность за управление землей и недвижимостью, обслуживание инфраструктуры, сохранение экологической среды и обеспечение безопасности населения.
Геоинформационные системы давно и широко используются для решения задач государственного и муниципального управления. Имеется масса примеров успешного и не очень успешного внедрения ГИС в практику работы соответствующих органов. Конечно, эффективность использования ГИС определяется множеством факторов, и, наверное, не только выбором программного обеспечения от того или иного поставщика. Однако сама возможность реализовать требуемые функции, построить полноценную информационную систему, интегрировать ее в существующую информационную инфраструктуру, внедрить и обеспечить техническую поддержку решений, существенным образом зависит от свойств и качества программного обеспечения ГИС.
ГИС-технология обеспечивает средства для отображения и понимания того, что находится в одном конкретном или многих местоположениях, предоставляет инструменты моделирования ресурсов, выявления взаимосвязей, процессов, зависимостей, примеров, угроз и рисков. Эти возможности позволяют увидеть, что и где реально происходит, измерить размер и масштабы события или воздействия, совместно проанализировать разнообразные данные, разработать планы и, в конечном итоге, помогает решить, какие шаги и действия следует предпринять. Способность ГИС интегрировать пространственные и непространственные данные, вместе с функциями анализа и моделирования процессов, позволяет использовать эту технологию в качестве общей платформы для интеграции бизнес процессов разных департаментов, видов деятельности и дисциплин в масштабах всего городского или регионального правительства.
Для эффективного управления муниципальными образованиями и динамично развивающимися регионами необходимы достоверные и актуальные данные об объектах и процессах на их территории, а также передовые технологии накопления, обработки и представления информации. Современные географические информационные системы с их развитыми аналитическими возможностями позволяют наглядно отобразить и осмыслить информацию о конкретных объектах, процессах и явлениях в их совокупности. ГИС позволяют выявить взаимосвязи и пространственные отношения, поддерживают коллективное использование данных и их интеграцию в единый информационный массив.
К цифровым картам, или цифровой картографической основе с тематическими слоями, являющимися геопространственным базисом ГИС, могут подключаться базы данных недвижимости, земельных участков организаций, денежной оценки земель, инженерных сооружений, памятников градостроения и архитектуры, сведений по геологии, истории развития и т.д. В базе данных также можно организовать хранение как графической, так и всей технической, справочной и иной документации.
В современных ГИС появилась возможность трехмерного представления территории. Трехмерные модели объектов, внедряемые в 3-мерный ландшафт, спроектированный на основе цифровых картографических данных и материалов дистанционного зондирования, позволяют повысить качество визуального анализа территории и обеспечивают принятие взвешенных решений с большей эффективностью.

4 Примеры использования ГИС

Ниже приведены примеры возможного применения ГИС. Описана лишь небольшая часть возможных решений.

4.1 Использование ГИС при управлении коммуникациями

При использовании различных коммуникационных сетей неизбежно возникает проблема, связанная с идентификацией аварийных ситуаций и прогнозом ее развития.

В настоящее время с помощью ГИС-технологий успешно решаются следующие задачи:
- определения места повреждения магистрального кабеля или трубы по жалобам потребителей;
- прогноз дальнейшего развития аварийной ситуации;
- решение вопроса по скорейшему устранению аварийных ситуаций;
- решение вопросы по организации резервного электро-, водо- или теплоснабжения важных объектов инфраструктуры;
- отслеживание состояния объектов коммуникационной сети и организация своевременного ремонта или реконструкции

4.2 Использование ГИС при управлении дорожным движением

На данный момент широко известны картографические сервисы по отслеживанию заторов на дорогах. Например, Яндекс-Пробки.
Однако с помощью ГИС-Технологий возможно и непосредственное управление организацией дорожного движения. Система в состоянии в автоматическом режиме на основании данных о заторах изменить условия движения с помощью технических средств на определенном участке. Например, изменить фазы переключения светофора, изменить количество полос для движения или организовать объезд.


4.3 Использование ГИС в вопросах управления лесным хозяйством

ГИС нашли широкое применение в управлении лесным хозяйством.

Успешно решаются следующие задачи:
- учет породного состава лесных насаждений;
- распределение участков для различного рода законной вырубки;
- организация восстановления лесов;
- отслеживание здоровья лесного массива;
- оценка ущерба от лесных пожаров.

4.4 Общественные ГИС

В настоящее время различные органы власти стремятся к обеспечению прозрачности своей деятельности для населения. Для этого широко используется глобальная сеть Интернет. В настоящее время стали появляться ресурсы, которые позволяют ознакомиться с разнообразной информацией о территории всем желающим.

Разумеется, в подобной ГИС не публикуются данные, распространение которых ограничено текущим законодательством.

4.5 Экологический мониторинг окружающей среды

Для принятия решений об организации мер по охране окружающей среды, а также для оценки эффективности этих мер широко применяются ГИС-технологиии.

ГИС позволяет одновременно работать с большими объемами данных, что дает возможность оценить степень воздействия существующего или проектируемого опасного объекта на окружающую среду.

4.6 Градостроительная ГИС

Сам процесс создания и само структурное построение градостроительной проектной документации, очевидно, свидетельствует об эффективности использования ГИС-технологий.
Во-первых, поскольку исходные данные множества организаций, в том числе графические документы, обычно представляются на разных картографических основах и часто в виде схем, то именно ГИС-технологии позволяют приводить их к “единому знаменателю”, т.е. к единой картографической основе.
Во-вторых, создаются в цифровом виде разделы и картографические материалы по отдельным направлениям, представляющим, по существу, тематические картографические и семантические базы геоинформационной системы.
В-третьих, проводится сопряженный анализ указанной выше информации и создается синтетическая схема "Комплексный градостроительный анализ территории", где весь мощный арсенал ГИС-технологий может быть успешно применен.
В-четвертых, базируясь на проведенном анализе, разрабатываются проектные предложения по градостроительному развитию территории (Проектный план) и отраслевые инженерные проектные схемы, детализирующие и подкрепляющие проектные предложения Генерального плана, где также использование ГИС-технологий представляется весьма эффективным.

4.7 Использование ГИС при чрезвычайных ситуациях

ГИС позволяет решать задачи по оценке причин возникновения и прогнозах развития различных чрезвычайных ситуаций:
- прогноз последствий утечки отравляющих веществ на опасном объекте для принятия решения об эвакуации населения и оценки ущерба окружающей среде;
- прогноз развития лесного пожара исходя из метеоусловий;
- прогноз затопляемых зон при прорыве дамб и наводнениях;
- оценка экономического ущерба.


4.8 ГИС и демография

ГИС-технологии находят широкое применение для оценки состава населения и для принятия решения об обустройстве различных объектов социальной инфраструктуры. Например, планирование нагрузки на средние школы, детские сады и медицинские учреждения.

Информатизация коснулась сегодня всех сторон жизни общества, и трудно, пожалуй, назвать какую-либо сферу человеческой деятельности - от обучения в школе до высокой государственной политики, где бы не ощущалось ее мощное воздействие.

Информатика «дышит в затылок» всем наукам о Земле, догоняя и увлекая их за собой, преобразуя, а порой полностью порабощая в стремлении к бесконечному компьютерному совершенству. Ученые уже не мыслят сегодня своей работы без компьютеров и баз цифровой информации. В науках о Земле информационные технологии породили геоинформатику и географические информационные системы (ГИС) , причем слово «географические» в данном случае означает «пространственность» и «территориальность», а еще и комплексность географического подходам.

ГИС - это аппаратно-программный и одновременно человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение данных. Географические информационные системы отличаются от других информационных систем тем, что все их данные обязательно пространственно координированы, т. е. привязаны к территории, к географическому пространству. ГИС используют при решении всевозможных научных и практических задач. ГИС помогают анализировать и моделировать любые географические ситуации, составлять прогнозы и управлять процессами, происходящими в окружающей среде. ГИС применяются для исследования всех тех природных, общественных и природно-общественных объектов и явлений, которые изучают науки о Земле и смежные с ними социально-экономические науки, а также картография, дистанционное зондирование. В то же время ГИС - это комплекс аппаратных устройств и программных продуктов (ГИС-оболочек), причем важнейший элемент этого комплекса - автоматические картографические системы.

Структуру ГИС обычно представляют как систему информационных слоев. Условно можно рассматривать эти слои в виде «слоеного пирога» или этажерки, на каждой полочке которой хранится карта или цифровая информация по определенной теме.

В процессе анализа эти слои «снимают с полочек», рассматривают по отдельности или совмещают в разных комбинациях, анализируют и сопоставляют между собой. Для какого-то одного заданного пункта или ареала можно получить данные по всем слоям сразу, но главное - появляется возможность получать производные слои. Одно из важнейших свойств ГИС как раз в том и состоит, что на основе имеющейся информации они способны порождать новую производную информацию.

Ресурсные ГИС - один из наиболее распространенных видов ГИС в науках о Земле. Они предназначены для инвентаризации, оценки, охраны и рационального использования ресурсов, для прогноза результатов их эксплуатации. Чаще всего для их формирования используют уже имеющиеся тематические карты, которые цифруют и вводят в базы данных в виде отдельных информационных слоев. Кроме картографических материалов в ГИС включают данные многолетних наблюдений, статистические сведения, и др. Примером может служить «ГИС — », созданная странами черноморского бассейна. Этот бассейн с разнообразной морской жизнью, обильными рыбными ресурсами, теплыми песчаными пляжами и неповторимыми по красоте прибрежными ландшафтами, привлекающими туристов, в последние десятилетия испытывает катастрофическое ухудшение экологической обстановки. Это резко сокращает рыбные ресурсы, снижает рекреационный потенциал, ведет к деградации ценнейших прибрежных водно-болотных угодий. Для централизованного принятия срочных мер по спасению Черного моря страны региона разработали «Программу по спасению Черного моря». Важной частью этой программы стало создание ресурсно-экологической «ГИС — Черное море». Эта ГИС выполняет две функции - моделирование и информирование о в целом и отдельных компонентах его среды. Информация необходима для проведения научных исследований в акватории и прилегающей части черноморского бассейна и для принятия решений по охране и защите этой уникальной акватории. «ГИС — Черное море» содержит около 2000 карт. Они заключены в семь тематических блоков: география, биология, метеорология, физическая океанография, химическая океанография, биология, рыбные ресурсы.

Геоинформационное картографирование

Взаимодействие геоинформатики и картографии стало основой для формирования нового направления - геоинформационного , т. е. автоматизированного моделирования и картографирования объектов и явлений на основе ГИС.

С внедрением ГИС традиционная картография испытала кардинальную перестройку. Ее можно сравнить разве что с теми изменениями, которые сопровождали переход от рукописных карт к печатным полиграфическим оттискам. Картографы прошлых эпох в самых смелых фантазиях не могли предвидеть, что вместо гравирования на литографском камне можно будет вычерчивать карту, водя курсором по экрану компьютера. А в наши дни геоинформационное картографирование почти полностью заменило традиционные методы составления и издания карт.

Программно-управляемое картографирование заставляет по-новому взглянуть на многие традиционные проблемы. Принципиально изменился выбор математической основы и компоновки карт, компьютерные карты можно достаточно быстро переводить из одной проекции в другую, свободно масштабировать, менять «нарезку» листов, вводить новые изобразительные средства (например, мигающие или перемещающиеся по карте знаки), использовать для генерализации математические фильтры и сглаживающие функции и т. п. Трудоемкие прежде операции подсчета длин и площадей, преобразование карт или их совмещение стали рутинными процедурами. Возникла электронная картометрия. Создание и использование карт стало единым процессом, в ходе компьютерной обработки изображения постоянно трансформируются, переходят из одной формы в другую.

ГИС-технологии породили еще одно новое направление - оперативное картографирование, т. е. создание и использование карт в реальном или близком к реальному масштабе времени. Появилась возможность быстро, а точнее сказать, своевременно информировать пользователей и воздействовать на ход процесса. Иначе говоря, при картографировании в реальном времени поступающая информация немедленно обрабатывается и составляются карты для оценки, мониторинга, управления, контроля за процессами и явлениями, изменяющимися в том же темпе.

Оперативные компьютерные карты предупреждают (сигнализируют) о неблагоприятных или опасных процессах, позволяют следить за их развитием, давать рекомендации и прогнозировать развитие ситуаций, выбирать варианты стабилизации или изменения хода процесса. Такие ситуации создаются, например, при возникновении в тайге , когда приходится оперативно следить за их распространением и быстро принимать меры по ликвидации пожара. В период таяния снегов и во время катастрофических ливней приходится отслеживать разливы рек и наводнения, а в чрезвычайных ситуациях - изменения экологического состояния территории. В период ликвидации Чернобыльской аварии картографы день и ночь не отходили от компьютеров, составляя оперативные карты перемещения облаков радиоактивного загрязнения над территориями, прилегающими к очагу катастрофы. Так же ведут слежение за развитием политических событий и военными действиями в горячих точках планеты. Исходные данные для оперативного картографирования - это аэро- и космические снимки, непосредственные наблюдения и замеры, статистические материалы, результаты опросов, переписей, референдумов и др. Огромные возможности и порой неожиданные эффекты дают картографические анимации. Модули анимационных программ способны перемещать карты или трехмерные диаграммы по экрану, менять скорость демонстрации, передвигать отдельные знаки, заставлять их мигать и вибрировать, менять окраску и освещенность карты, «подсвечивать» или «затенять» отдельные участки изображения и т. п. Например, на карте меняется цвет районов, подверженных опасности: «безопасная» голубоватая окраска ледников постепенно переходит в розоватую, а потом в ярко-красную, пунцовую, что означает: опасно, возможен сход лавин! Совершенно необычные для картографии эффекты создают панорамы, изменения перспективы, масштабов частей изображения (можно делить «наплывы» и удалять объекты), иллюзии движения над картой (выполнять «облет» территории), в том числе с разной скоростью. В обозримом будущем перспективы развития картографии в науках о Земле связываются, прежде всего, и почти целиком с геоинформационным картографированием, когда отпадает необходимость готовить печатные тиражи карт: по запросу можно будет всегда в режиме реального времени получить на экране компьютера изображение изучаемого объекта или явления. Некоторые картографы полагают, что внедрение электронных технологий «означает конец трехсотлетнего периода картографического черчения и издания печатной картографической продукции». Взамен карт и атласов пользователь сможет затребовать и сразу получить все необходимые данные в машиночитаемом или визуализированном виде. И даже само понятие «атлас» предлагается пересмотреть.

Как работает ГИС?

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели. ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Задачи, которые решает ГИС. ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование. Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ. При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

Связанные технологии. ГИС тесно связана рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя и не существует единой общепринятой классификации информационных систем, приведенное ниже описание должно помочь дистанциировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях UNIX рабочих станций.

Системы САПР способны чертежи проектов и планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять и анализировать большие базы пространственных данных.

Дистанционное зондирование и GPS. Методы дистанционного зондирования - это искусство и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования или других устройств. Эти датчики собирают данные в виде изображений и обеспечивают специализированные возможности обработки, анализа и визуализации полученных изображений. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы не имеют сходных с ГИС инструментов для анализа и визуализации.

географический информационный система картографирование



Рекомендуем почитать

Наверх