Генераторы и приемники радиоволн. Радиоволны и их распространение

Для Symbian 12.07.2019
Для Symbian

Передача информации в пространстве с помощью радиоволн осуществлялась со времени изобретения радио в конце девятнадцатого века. В настоящее время интерес к радиосвязи возрос в связи с тенденцией отказа от проводов. Появился модный термин «беспроводная связь» (wireless), что является синонимом «радиосвязи».

Передают обычно речь, музыку, тексты, изображения и др. Эту информацию преобразуют в видеосигнал, т.е. зависимость тока или напряжения от времени. Видеосигнал может быть аналоговым, как в имеющихся и отживающих системах, либо цифровым – в новейших системах. В последнем случае аналоговый сигнал преобразуется в поток цифр, как правило, записанных в двоичном виде.

С этой целью осуществляется квантование аналогового видеосигнала по времени и уровню. В результате каждому дискретному моменту времени ставится в соответствие ближайший цифровой уровень. Поток цифр посредством импульсно – кодовой модуляции преобразуется в двоичный вид. В конечном итоге передаче подлежит поток единиц и нулей, представляющих собой начальную информацию.

Спектр видеосигнала, в какой бы форме он ни был представлен – аналоговой или цифровой – содержит весьма низкие частоты – порядка герц и килогерц. Такие частоты бесполезно излучать в пространство, поскольку, как это будет видно в дальнейшем, антенна излучает только в том случае, когда ее размеры соизмеримы с длиной излучаемой волны или больше ее.

Необходимо переместить спектр видеосигнала по оси частот вверх в тот диапазон, частоты которого эффективно излучаются. С этой целью необходимо осуществить две операции:

создать высокочастотное электромагнитное поле;

преобразовать видеосигнал в радиосигнал путем модуляции видеосигналом высокочастотных колебаний.

Эти операции выполняются в передатчике радиосистемы. Высокочастотные электромагнитные колебания называют несущими, поскольку они переносят информацию.

Ширину излучаемого спектра стремятся ограничить с тем, чтобы не создавать помехи другим станциям. С целью ограничения спектра видеосигнал подвергают специальной обработке – фильтрованию и кодированию.



В соответствии с основными функциями, выполняемыми передатчиком, его обобщенная схема приведена на рис.В.1.


В приемную антенну радиосигнал поступает весьма ослабленным. Кроме него, в антенне имеются помехи, обусловленные внешними наводками, либо собственными шумами приемника, а так же сигналы других радиостанций. Задача приемника состоит в том, чтобы, во-первых, выделить полезный радиосигнал из помех, и во-вторых, извлечь из принятого сигнала переданную информацию. Выделение радиосигнала осуществляется фильтрованием, извлечение информации – демодуляцией.

Успешно отфильтровать помехи и мешающие сигналы можно в том случае, когда частота полезного сигнала невелика. С этой целью в приемниках предусмотрено понижение принятой несущей частоты до некоторой промежуточной, на которой и осуществляется основная фильтрация. Типичная блок – схема радиоприемника приведена на рис.В.2.


Преселектором является предварительный фильтр, настроенный на частоту полезного сигнала и устраняющий перегрузку усилителя высокой частоты (УВЧ). В схеме имеется преобразователь частоты, состоящий из смесителя и высокочастотного генератора, называемого гетеродином. На выходе преобразователя стоит фильтр, выделяющий промежуточную частоту и отфильтровывающий все мешающие сигналы.

Усиление слабых сигналов осуществляется на трех частотах: высокой – усилитель высокой частоты, промежуточной – усилитель промежуточной частоты (УПЧ) и низкой – усилитель низкой частоты (УНЧ), где усиливается выделенный видеосигнал. В результате, удается достигнуть весьма высокого усиления – от микровольт на входе до единиц вольт на выходе.

Оконечным устройством в приемнике может быть динамический громкоговоритель, наушники, цифровое устройство, экран и др.

Как можно заметить, в радиосистемах связи осуществляются следующие основные операции:

Генерирование электромагнитных колебаний несущей частоты;

Обработка видеосигнала;

Модуляция колебаний несущей частоты видеосигналом, т.е. образование радиосигнала;

Усиление мощности радиосигнала;

Преобразование частоты;

Демодуляция.

В настоящем пособии рассмотрены эти процессы. Существенное внимание уделено радиоволнам, их формированию, распространению и излучению.


Радиоволны

Электромагнитное поле

Радиоволны – это распространяющиеся в среде электромагнитные колебания, частоты которых лежат в диапазоне 3 кГц – 3 ТГц, что соответствует длинам волн в вакууме от 100 км до 0,1 мм. Электромагнитные волны есть форма существования электромагнитного поля, которое определяется следующими основными физическими величинами:

вектором напряженности электрического поля , В/м или Н/Кл;

вектором магнитной индукции ,[Тесла].

Напряженность Е – это сила F, действующая со стороны электрического поля на тело, имеющее электрический заряд q = 1 Кл:

Магнитная индукция В – это сила Ампера , с которой магнитное поле действует на проводник длиной l = 1 м с током I = 1 А, при условии, что вектор перпендикулярен проводнику:

Параметры среды

Условия распространения радиоволн в различных средах имеют особенности в зависимости от параметров среды. Для распространения радиоволн важны следующие параметры:

Абсолютная диэлектрическая проницаемость

где е’-относительная диэлектрическая проницаемость, , е0= Ф/м -диэлектрическая постоянная. Относительная диэлектрическая проницаемость е’ показывает, во сколько раз уменьшается напряженность электрического поля в среде по сравнению с вакуумом;

Абсолютная магнитная проницаемость

где м’-относительная магнитная проницаемость, Гн/м, для ферромагнитных сред >>1. Относительная магнитная проницаемость м’ показывает, во сколько раз увеличивается магнитная индукция B в магнитной среде, по сравнению с вакуумом;

Удельная электропроводность g - это коэффициент пропорциональности между плотностью тока проводника и напряженностью электрического поля :

Уравнение (1.1) - это закон Ома в дифференциальной форме.

Дополнительные векторы электромагнитного поля

Наряду с основными физическими величинами и , характеризующими поле, применяют дополнительные:

вектор электрической индукции :


вектор напряженности магнитного поля:

При изучении распространения радиоволн обычно применяется пара векторов и , поскольку уравнения поля получаются симметричными.

Скалярные величины, характеризующие электромагнитное поле

Наряду с векторами, для описания поля применяют скалярные величины:

1) потенциал электрического поля

где - потенциальная энергия заряда q в электрическом поле;

2) магнитный поток

где интеграл от скалярного произведения векторов и берётся по замкнутой поверхности S.

1.2 Уравнения Максвелла

Теория электромагнитного поля основана на уравнениях Максвелла, которые он сформулировал в «Трактате по электричеству и магнетизму», опубликованном в 1873 г.

При выводе уравнений электромагнитного поля Максвелл использовал результаты исследований статических (т.е. постоянных во времени) электрического и магнитного полей (см. Приложение 1). Известные уравнения статических полей Максвелл развил применительно к переменному электромагнитному полю, благодаря двум идеям (Приложение 2):

1) возникновение замкнутых силовых линий напряженности электрического поля вокруг линий магнитной индукции при условии, что величина B меняется со временем (это следует из закона электромагнитной индукции Фарадея);

2) введению понятия «плотность тока смещения»

Отсюда следует, что замкнутые линии вектора магнитной индукции возникают не только вокруг вектора плотности тока проводимости (т.е. вокруг траектории движущихся электрических зарядов), но и вокруг силовых линий , если E меняется во времени.

Число уравнений Максвелла было сокращено Г.Герцем и О.Хевисайдом, по сравнению с тем, что было написано в трактате, они привели их к современному компактному виду. В настоящее время принята следующая запись уравнений Максвелла..

Дифференциальная формаИнтегральная форма

; ;


Здесь Iпр - ток проводимости:

где в правой части – интеграл по замкнутой поверхности S от скалярного произведения векторов и ; с - плотность электрического заряда q: – проекции вектора на соответствующие оси.

Геометрический смысл уравнений Максвелла в дифференциальной форме следующий. Ротор вектора – это ось, вокруг которой закручиваются замкнутые линии соответствующего поля. Из первого уравнения Максвелла следует, что такой осью для магнитного поля являются линии плотности тока проводимости или линии напряженности электрического поля , если E меняется со временем.

Осью возникающих замкнутых линий электрического поля являются силовые линии магнитного поля , при условии, что H зависит от времени. Это следует из второго уравнения Максвелла.

Дивергенция вектора – это точка в пространстве, откуда начинаются незамкнутые силовые линии поля. Как видно из третьего уравнения Максвелла, незамкнутые силовые линии напряженности электрического поля начинаются в точках, где есть электрические заряды. Из четвертого уравнения Максвелла следует, что незамкнутых линий напряженности магнитного поля не существует.

Решая уравнения Максвелла в различных средах, можем найти 6 проекций векторов и : , , , , , .

x

x


Излучение радиоволн - процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн (См. ).

Излучение радиоволн . Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц ) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны λ, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1 ), существует другой участок В , удалённый от А на расстояние, меньшее, чем λ/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В , ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает , содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем λ/2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с λ/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. ) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с λ < 10 км.

Излучатели . Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO" двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2 ). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О" равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, - окружности (рис. 3 ). Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4 ).

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3 ) лежит в плоскости, проходящей через диполь и радиус-вектор r , проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5 ).

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны λ. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с λ/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения R и, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. ) возбуждались с помощью искрового разряда - единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6 ), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью μ, на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7 , а, б), что обусловлено принципом двойственности.

Если в стенках а или объёмного резонатора (См. ), где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7 , в, г; см. также ). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это - результат интерференции радиоволн (См. ), излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) π/2, где n - целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8 ), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка θ, наибольшим размером апертуры L и излучаемой длиной волны λ определяется формулами:

для синфазного возбуждения и

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9 ). С - постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10 ), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции (См. ) волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна (См. ) представляет собой металлическое зеркало 1 , чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11 ). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны - передающую А и приёмную В - в начале и в конце линии радиосвязи, то генератор, питающий антенну А , переключенный в приёмную антенну В , создаёт в приёмном устройстве, переключенном в антенну А , такой же ток, какой, будучи включенным в антенну А , он создаёт в приёмнике, включенном в антенну В . Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l , длиной волны λ и углом ψ между направлением v прихода волны и диполем. Существен также угол φ между направлением вектора электрической волны и диполем (рис. 12 ). Наилучшие условия приёма, при φ = 0. При φ = π/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 < φ < π/2, то очевидно, что энергия, извлекаемая приёмной антенной из поля Излуче ние и приём радиово лн (Ecos φ) 2 . Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Радиоволны, и их распространение, являются неоспоримой загадкой для начинающих любителей эфира. Здесь можно познакомиться с азами теории распространения радиоволн. Данная статья предназначена для ознакомления начинающих любителей эфира, а также и для тех, кто имеет некоторое представление о нём.

Самая главная вводная, про которую часто забывают сказать, прежде чем познакомить с теорией распространения радиоволн, так это то, что радиоволны распространяются вокруг нашей планеты за счет отражения от ионосферы и от земли как от полупрозрачных зеркал отражается луч света.

Особенности распространения средних волн и перекрёстная модуляция

К средним волнам относятся радиоволны длиной от 1000 до 100 м (частоты 0,3 — 3,0МГц). Средние волны используются главным образом для вещания. А так же они являются колыбелью отечественного радиопиратства. Они могут распространяться земным и ионосферным путём. Средние волны испытывают значительное поглощение в полупроводящей поверхности Земли, дальность распространения земной волны 1, (см. рис. 1), ограничена расстоянием 500-700 км. На большие расстояния радиоволны 2 и 3 распространяются ионосферной (пространственной) волной.

В ночное время средние волны распространяются путем отражения от слоя Е ионосферы (см. рис. 2), электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения волны расположен слой D, чрезвычайно сильно поглощающий средние волны. Поэтому при обычных мощностях передатчиков, напряженность электрического поля недостаточна для приема, и в дневные часы распространение средних волн происходит практически только земной волной на сравнительно небольшие расстояния, порядка 1000 км. В диапазоне средних волн, более длинные волны испытывают меньшее поглощение, и напряженность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние. Ионосферные возмущения не влияют на распространение средних волн, так как слой Е мало нарушается во время ионосферно-магнитных бурь.

В ночные часы см. рис. 1, на некотором расстоянии от передатчика (точка В), возможен приход одновременно пространственной 3 и поверхностной волн 1, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля, называемому ближним замиранием поля.

На значительное расстояние от передатчика (точка С) могут прийти волны 2 и 3 путем одного и двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности электрического поля, называемому дальним замиранием поля.

Для борьбы с замираниями на передающем конце линии связи применяются антенны, у которых максимум диаграммы направленности «прижат» к земной поверхности, к ним можно отнести простейшую антенну «Inverted-V», достаточно часто применяемую радиолюбителями. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.

К сожалению не все начинающие радиовещатели, работающие в диапазоне частот 1600-3000кГц знают, что слабый сигнал от маломощного передатчика подвержен ионосферным искажениям. Сигнал от более мощных радиопередатчиков ионосферным искажениям подвержен меньше. Ввиду нелинейной ионизации ионосферы, происходит модуляция слабого сигнала модулирующим напряжением сигналов мощных станций. Это явление называется перекрестной модуляцией. Глубина коэффициента модуляции достигает 5-8%. Со стороны приема создаётся впечатление не качественно выполненного передатчика, со всевозможными гулами и хрипами, особенно это заметно в режиме АМ модуляции.

За счет перекрестной модуляции в приемник часто проникают интенсивные грозовые помехи, которые невозможно отфильтровать — грозовой разряд модулирует принимаемый сигнал. Именно по этой причине радиовещатели для проведения двусторонней радиосвязи стали применять однополосные передатчики и стали чаще работать на более высоких частотах. Зарубежные радиовешатели СВ станций, умощняют их, и подвергают компрессии модулирующие сигналы, а для неискаженной работы в эфире, применяют инверсные частоты.

Явления демодуляции и перекрестной модуляции в ионосфере наблюдаются только в диапазоне средних волн (СВ). В диапазоне коротких волн (КВ) скорость электрона под действием электрического поля ничтожно мала по сравнению с его тепловой скоростью и присутствие поля не меняет числа столкновений электрона с тяжелыми частицами.

Наиболее благоприятны, в диапазоне частот от 1500 до 3000кГц для дальних связей, являются зимние ночи и периоды минимума солнечной активности. Особо дальние связи, более 10000 км, обычно возможны в часы захода и восхода солнца. В дневные часы связь возможна на расстояние до 300 км. Свободные радиовещатели FM диапазона могут только позавидовать таким большим радиотрассам.

В летнее время на этом диапазоне часто мешают помехи от статических разрядов в атмосфере.

Особенности распространения коротких волн и их характеристики

К коротким волнам относятся радиоволны длиной от 100 до 10 м (частоты 3-30 МГц). Преимуществом работы на коротких волнах по сравнению с работой на более длинных волнах является то, что в этом диапазоне можно легко создать направленные антенны. Короткие волны могут распространяться как земные, в низкочастотной части диапазона, и как ионосферные.

С повышением частоты сильно возрастает поглощение волн в полупроводящей поверхности Земли. Поэтому при обычных мощностях передатчика земные волны коротковолнового диапазона распространяются на расстояния, не превышающие нескольких десятков километров. На морской глади, это расстояние значительно увеличивается.

Ионосферной волной короткие волны могут распространяться на многие тысячи километров, причем для этого не требуется передатчиков большой мощности. Поэтому в настоящее время короткие волны используются главным образом для связи и вещания на большие расстояния.

Короткие волны распространяются на дальние расстояния путем отражения от ионосферы и поверхности Земли. Такой способ распространения называют скачковым см. рис. 2 и характеризуется расстоянием скачка, числом скачков, углами выхода и прихода, максимальной применимой частотой (МПЧ) и наименьшей применимой частотой (НПЧ).

Если ионосфера однородна в горизонтальном направлении, то и траектория волны симметрична. Обычно излучение происходит в некотором спектре углов, так как ширина диаграммы направленности коротковолновых антенн в вертикальной плоскости составляет 10-15°. Минимальное расстояние скачка, для которого выполняется условие отражения, называют расстоянием зоны молчания (ЗМ). Для отражения волны необходимо, чтобы рабочая частота была не выше значения, максимально применимой частоты (МПЧ), являющаяся верхней границей рабочего диапазона для данного расстояния. Волна 4.

Применение антенн зенитного излучения, как один из приёмов уменьшения зоны молчания, ограничивается понятием максимально применимой частоты (МПЧ) с учётом снижения её на 15-20% от МПЧ. Антенны зенитного излучения применяют для вещания в ближней зоне методом односкачкового отражения от ионосферы.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере. Наименьшую — применимую частоту (НПЧ) определяют из условия, что при мощности передатчика в 1кВт, напряженность электрического поля сигнала должна превышать уровень шумов, а следовательно, поглощение сигнала в слоях ионосферы должно быть не больше допустимого. Электронная плотность ионосферы меняется в течение суток, в течение года, и периода солнечной активности. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток.

Диапазон частот 1,5–3 МГц, является ночным. Понятно, что для успешного проведения сеанса радиосвязи нужно каждый раз правильно выбирать частоту (длину волны), к тому же это усложняет конструкцию станции, но для настоящего ценителя дальних связей это не является трудностью, это часть хобби. Проведём оценку КВ диапазона по участкам.

Диапазон частот 5-8 мГц, во многом схож с диапазоном 3 мГц, и в отличае от него, здесь в дневное время можно связаться до 2000 км, зона молчания (ЗМ) отсутствует и составляет несколько десятков километров. В ночные часы возможна связь на любое расстояние за исключением ЗМ, которая увеличивается до нескольких сот километров. В часы смены времени суток (заход/восход), наиболее удобны для дальних связей. Атмосферные помехи менее выражены, чем в диапазоне 1,5-3 мГц.

В диапазоне частот 10-15 мГц в периоды солнечной активности возможны связи в дневное время суток практически с любой точкой земного шара. Летом продолжительность радиосвязи в этом диапазоне частот бывает круглосуточной, за исключением отдельных дней. Зона молчания ночью имеет расстояния в 1500-2000 км и по этому возможны только дальние связи. В дневное время они уменьшаются до 400-1000 км.

Диапазон частот 27-30 мГц пригоден для связи только в светлое время суток. Это самый капризный диапазон. Он обычно открывается на несколько часов, дней или недель особенно при смене сезонов, т.е. осенью и весной. Зона молчания (ЗМ) достигает 2000-2500 км. Это явление относится к теме МПЧ, здесь угол отраженной волны должен быть малым по отношению к ионосфере, иначе он имеет большое затухание в ионосфере, или простой уход в космические просторы. Малые углы излучения соответствуют большим скачкам и соответственно большим зонам молчания. В периоды максимума солнечной активности возможна связь и ночью.

Помимо перечисленных моделей, возможны случаи аномального распространения радиоволн. Аномальное распространение может возникнуть при появлении на пути волны спорадического слоя, от которого могут отражаться более короткие волны, вплоть до метровых. Это явление можно наблюдать на практике прохождением дальних телестанций и FM радиостанций. МПЧ радиосигнала в эти часы доходит до 60-100 мГц в годы солнечной активности.

В диапазоне УКВ FM, за исключением редких случаев аномального распространения радиоволн, распространение обусловлено строго так называемой «прямой видимостью». Распространение радиоволн в пределах прямой видимости говорит само за себя, и обусловлено высотой расположения передающей и приёмной антенн. Понятно, что в условиях городской застройки ни о какой визуальной и прямой видимости говорить нельзя, но радиоволны проходят сквозь городские застройки с некоторым ослаблением. Чем выше частота, тем выше затухание в городских застройках. Диапазон частот 88-108 МГц так же подвержен некоторым затуханиям в условиях города.

Замирание радиосигналов диапазона КВ

Приём коротких радиоволн всегда сопровождается измерением уровня принимаемого сигнала, причем это изменение носит случайный и временной характер. Такое явление называют замираниями (федингом) радиосигнала. В эфире наблюдаются быстрые и медленные фединги сигнала. Глубина фединга может достигать до нескольких десятков децибел.

Основной причиной быстрых замираний сигнала является многолучевое распространение радиоволн. В этом случае причиной федингов служит приход в точку приема двух лучей, распространяющихся путем одного и двух отражений от ионосферы, волна 1 и волна 3, см. рис 2.

Поскольку лучи проходят различные пути по расстоянию, фазы прихода их неодинаковы. Изменения электронной плотности, непрерывно происходящие в ионосфере, приводят к изменению длины пути каждого из лучей, а следовательно, и к изменению разности фаз между лучами. Для изменения фазы волны на 180° достаточно, чтобы длина пути изменилась всего на ½. Следует напомнить, что при приходе лучей одного сигнала в точку приёма с одинаковой силой и с разностью фаз на 180°, они полностью вычитаются по закону векторов, а сила приходящего сигнала в этом случае может быть равна нулю. Такие незначительные изменения длины пути могут происходить непрерывно, поэтому, колебания напряженности электрического поля в диапазоне коротких волн являются частыми и глубокими. Интервал их наблюдения в 3-7 минут может составлять на низких частотах КВ диапазона, и до 0,5 секунд на частотах ближе к 30 МГц.

Помимо этого, фединг сигнала вызываются рассеянием радиоволн на не однородностях ионосферы и интерференцией рассеянных волн.

Кроме интерференционных федингов, на коротких волнах, имеют место поляризационные фединги. Причиной поляризационных федингов является поворот плоскости поляризации волны относительно принимаемой антенны. Это происходит при распространении волны в направлении силовых линий магнитного поля Земли, и с изменением электронной плотности ионосферы. Если передающая и приемная антенны представляют собой горизонтальные вибраторы, то излученная горизонтально — поляризованная волна, после прохождения в ионосфере претерпит поворот плоскости поляризации. Это приводит к колебаниям э. д. с., наводимой в антенне, которое имеет дополнительное затухание до 10 дБ.

На практике все указанные причины замираний сигнала действуют, как правило, комплексно и подчиняются описанным законом распределения Релея.

Помимо быстрых замираний, наблюдаются медленные замирания, которые наблюдаются с периодом в 40-60 мин в низкочастотной части КВ диапазона. Причиной этих федингов является изменение поглощения радиоволн в ионосфере. Распределение огибающей амплитуды сигнала при медленных замираниях подчиняется нормально логарифмическому закону с уменьшением сигнала до 8-12 дБ.

Для борьбы с замираниями, на коротких волнах применяют метод приема на разнесенные антенны. Дело в том, что увеличение и уменьшение напряженности электрического поля происходят не одновременно даже на сравнительно небольшой площади земной поверхности. В практике коротковолновой связи используют обычно две антенны, разнесенные на расстояние нескольких длин волн, а сигналы складывают после детектирования. Эффективным является разнесение антенн по поляризации, т. е. одновременный прием на вертикальную и горизонтальную антенны с последующим сложением сигналов после детектирования.

Хочется отметить, что указанные меры борьбы действенны только для устранения быстрых замираний, медленные изменения сигнала не устраняются, так как это связано с изменением поглощения радиоволн в ионосфере.

В радиолюбительской практике метод разнесённых антенн используется довольно редко, ввиду конструктивной дороговизны и отсутствием необходимости приёма достаточно достоверной информации. Это связано с тем, что любители часто используют резонансные и диапазонные антенны, количество которых в его хозяйстве составляет около 2-3 штук. Использование разнесённого приёма требует увеличение парка антенн минимум вдвое.

Другое дело, когда любитель живёт в сельской местности, имея при этом достаточную площадь для размещения антифединговой конструкции, он может применить для этого просто два широкополосных вибратора, перекрывающие все, или почти все необходимые диапазоны. Один вибратор должен быть вертикальным, другой горизонтальным. Для этого совсем не обязательно иметь несколько мачт. Достаточно разместить их так, на одной мачте, чтобы они были сориентированы относительно друг друга под углом в 90°. Две антенны, в этом случае будут напоминать широко известную антенну «Inverted-V».

Расчет радиуса покрытия радиосигналом в УКВ/FM диапазонах

Частоты метрового диапазона распространяются в пределах прямой видимости. Радиус действия распространения радиоволны в пределах прямой видимости без учета мощности излучения передатчика и прочих природных явлений, уменьшающих эффективность связи, выглядит так:

r = 3,57 (√h1 + √h2), км,

Рассчитаем радиусы прямой видимости при установке приемной антенны на разных высотах, где h1 — параметр, h2 = 1,5 м. Сведем их в таблицу 1.

Таблица 1

h1 (м) 10 20 25 30 35 40 50 60
r (км) 15,6 20,3 22.2 24 25.5 27,0 29,6 32

Данная формула не учитывает затухание сигнала и мощности передатчика, она говорит лишь о возможности прямой видимости с учетом идеально круглой земли.

Произведем расчет необходимого уровня радиосигнала вместе приема для длины волны 3 м.

Поскольку на трассах между передающей станцией и подвижным объектом всегда присутствуют такие явления как, отражения, рассеяния, поглощения радиосигналов различными объектами и пр, следует вводить поправки в уровень затухания сигнала, что предложил японский ученый Okumura. Среднеквадратическое отклонение для этого диапазона с городскими застройками составит 3 дБ, а при вероятности связи в 99% введем множитель 2, что составит общую поправку П в уровне радиосигнала в
П = 3 × 2 = 6 дБ.

Чувствительность приемников определяется соотношением полезного сигнала над шумами в 12 дБ, т.е. в 4 раза. Такое соотношение при качественном радиовещании не приемлемо, поэтому введем дополнительную поправку еще в 12–20 дБ, примем 14 дБ.

Итого общая поправка в уровне принимаемого сигнала с учетом затухания его по трассе и специфике приемного устройства, составит: 6+16 20дБ (в 10 раз). Тогда при чувствительности приемника в 1,5 мкВ. в месте приема должно создаваться поле с напряженностью в 15 мкВ/м.

Рассчитаем по формуле Введенского радиус действия при заданной напряженности поля в 15 мкВ/м с учетом мощности передатчика, чувствительности приемника и городских застроек:

где r — км; Р — кВт; G — дБ (=1); h — м; λ — м; Е — мВ.

В данном расчете не учитывается коэффициент усиления приемной антенны, а также затухание в фидере и полосовом фильтре.

Ответ: При мощности в 10 Вт, высоте излучения h1=27 метров и h2=1,5м, реально качественный радиоприем с радиусом в городских застройках составит 2,5-2,6 км. Если учитывать, что прием радиосигналов вашего радиопередатчика будет осуществляться на средних и высоких этажах жилых зданий, то этот радиус действия увеличится примерно в 2-3 раза. Если принимать радиосигналы на вынесенную антенну, то радиус действия будет исчисляться десятками километров.

73! UA9LBG & Радио-Вектор-Тюмень

Электромагнитные волны излучаются проводником, по которому проходит ток высокой частоты. В проводнике, изогнутом в виде петли (рис. 3.4, а ), токи I в двух его половинах направлены в противоположные стороны. Электромагнитные волны, создаваемые этими токами, противоположны по фазе, и если расстояние между проводами мало по сравнению с длиной волны, то эти волны будут в пространстве взаимно уничтожаться. Следовательно, провод в виде петли не излучает электромагнитные волны. То же можно сказать о колебательном контуре (рис. 3.4, 6).

Закрытый колебательный контур не излучает электромагнитных колебаний, так как электрическое поле сосредоточено в основном в конденсаторе и токи смещения в диэлектрике замыкаются наиболее коротким путем - между его обкладками. Магнитное поле сосредоточено в основном в катушке.

Если раздвинуть обкладки конденсатора и развернуть соединительные провода в прямую линию (рис. 3.4, в ), то токи в этих проводах будут иметь одинаковое направление. Такой контур называется открытым, он может излучать электромагнитные волны.

а - петлевой элемент провода, не излучающий электромагнитные волны; б - замкнутый колебательный контур; в - разомкнутый колебательный контур; г - прямолинейный элемент провода, излучающий электромагнитные волны; д - элемент индуктивной связи

с антенной

Увеличение излучения электромагнитных волн можно получить, если вытянуть провод катушки в прямую линию и вместо обкладок конденсатора для создания необходимой емкости применить провода достаточной длины (рис. 3.4, г ). Тогда направление токов во всех элементах провода будет одно и то же, т. е. электромагнитные колебания во всех частях провода будут совершаться в одинаковых фазах и излучение станет наибольшим. Таким образом, открытый контур в простейшем случае представляет собой прямолинейный провод. Практически же в нем оставляют небольшую катушку для индуктивной связи с генератором высокой частоты передатчика и с избирательным усилием радиоприемника, на входе которого, как правило, включается колебательный контур (рис. 3.4, д ).

Всякий провод обладает собственными индуктивностью и емкостью, распределенными по его длине, а поэтому является своеобразным колебательным контуром. На схеме рис. 3.5, а в положении 1 переключателя П обе половины провода заряжаются от батареи Б. После перевода переключателя в положение 2 электроны будут двигаться вдоль провода в направлении от нижней его половины к верхней, а затем в обратном направлении, т.е. в проводе возникнут свободные затухающие колебания. Отдельные фазы колебательного процесса в проводе изображены на рис. 3.5, 6 . В верхней части рисунка показано распределение электрического и магнитного полей, а в нижней - график изменения тока и напряжения в антенне.

Рис. 3.5. Схема для возбуждения свободных колебаний в открытом

контуре и колебательный процесс в нем:

а - эквивалентная схема колебательного контура; б - схемы, поясняющие колебатель-

ный процесс в контуре; в - силовые линии магнитного и электрического полей

Напряжением в какой-либо точке антенны принято называть разность потенциалов между данной точкой и точкой, расположенной симметрично на другой половине провода. График тока показывает также изменение напряженности магнитного поля, а график напряжения - изменение напряженности электрического поля.

В начальный момент (точка 0 на рис. 3.5. 6) провод обладает потенциальной энергией электрического поля зарядов, сосредоточенных в его верхней и нижней половинах. Разность потенциалов имеет максимальную величину, а тока пока нет. При движении зарядов вдоль провода ток возрастает, а напряжение уменьшается, и энергия электрического поля переходит в кинетическую энергию магнитного поля, создаваемого током. Через четверть периода электрическое поле заменяется магнитным. В момент (точка 1 на рис. 3.5, 6) ток достигает максимума, а напряжение равно нулю. Затем ток и магнитное поле уменьшается, в результате чего возникает ЭДС самоиндукции, которая поддерживает движение электронов, и провод перезаряжается. Энергия переходит из магнитного поля в электрическое и т.д. В промежуточные моменты одновременно существуют электрическое и магнитное поля. Электрическое и магнитное поля имеются вдоль провода, причем магнитное поле наиболее сильное в середине провода, где ток наибольшей величины, а на концах провода ток равен нулю и магнитное поле отсутствует.

Токи смещения в открытом колебательном контуре замыкаются через окружающее пространство, удаляясь на значительное расстояние от своих источников (заряд на проводе). Поэтому переменное электрическое поле, созданное токами смещения, достигшее некоторого удаления от провода, может потерять связь с ним (оторваться). При этом линии тока смещения будут замыкаться сами на себя, т.е. образуется синусоидальное переменное электрическое поле, создающее переменное магнитное поле, которое, в свою очередь, создает электрическое поле, и т. д. (рис. 3.5, а). Возникает волновой процесс. Электромагнитные волны, не связанные со своими источниками (свободные волны), распространяются в пространстве. Таким образом, излучение возможно благодаря конечной скорости распространения электромагнитных волн, вследствие чего фаза поля в точке, находящейся на некотором расстоянии от излучателя, отстает от фазы своего источника. Чем больше частота колебаний питающего напряжения, тем легче происходит процесс излучения.

Если в проводах открытого контура и в непосредственной близости (расстояние, меньше длины волны) магнитное поле сдвинуто на 90 о по отношению к электрическому полю, то за пределами этого расстояния свободные магнитное и электрическое поля находятся в фазе, так как образование одного невозможно без другого.

Открытый контур в виде прямолинейного провода, в котором могут происходить электрические колебания, называют симметричным вибратором или просто вибратором (диполем). Чтобы электрические колебания были незатухающими, его соединяют с генератором (Ген) индуктивной связью (см. рис. 3.4, д ).

В простейшем случае антенное устройство для длинных, средних, а иногда коротких волн может быть выполнено так, как показано на рис. 3.6. Над землей на некоторой высоте (чем выше, тем эффективнее излучение) подвешивается антенна - провод или система проводов, играющая роль одной обкладки конденсатора. Второй обкладкой является земля или второй провод - противовес, подвешенный невысоко над землей.

Вибратор является главной частью антенн, работающих на коротких и ультракоротких волнах.

Мощность излучаемых электромагнитных волн рассчитывается по формуле

(3.1)

где I a - ток в пучности вибратора; Р изл - сопротивление излучения вибратора, величина которого составляет 73-80 Ом.

Рис. 3.6. Антенное устройство с заземлением (а ) и противовесом (б )

Сопротивление излучения вибратора определяется как

(3.2)

где l - длина провода антенны; l - длина электромагнитной волны.

Распространяющиеся от вибратора электромагнитные волны всегда имеют определенную поляризацию, т.е. электрические и магнитные силовые линии у них располагаются в соответствующих плоскостях.

На рис. 3.7 приведено графическое изображение радиоволн в виде двух синусоид, расположенных во взаимно перпендикулярных плоскостях. Векторы электрического поля Е расположены в вертикальной плоскости, а векторы магнитного поля Н - в горизонтальной, причем эти векторы перпендикулярны вектору П , называемому вектором Умова -Пойнтинга. Направление вектора П совпадает с направлением распространения электромагнитных волн, а его длина в принятом масштабе соответствует количеству электромагнитной энергии, которую переносят радиоволны:

По мере удаления от излучающей антенны плотность потока энергии радиоволны уменьшается:

где r - расстояние от излучения.

Частота собственных колебаний открытого контура зависит от емкости и индуктивности провода. Можно считать, что каждый метр провода имеет емкость около 5 пФ и индуктивность около 2 мкГн. Более длинному проводу соответствуют большие емкость и индуктивность, а следовательно, и меньшая частота (и большая длина электромагнитной волны) собственных колебаний антенны.

Рис. 3.7. Графическое изображение электромагнитной волны

Так как электромагнитная волна проходит вдоль провода антенны за полупериод определенное расстояние, то длина провода открытого контура совпадает с этим расстоянием и рассчитывается как

где l - длина электромагнитной волны.

Это же вытекает из распределения тока и напряжения в антенне. Следовательно, длина радиоволны равна

Учитывая, что

получаем

Максимальная мощность, излучаемая антенной, может быть достигнута при условии равенства частоты генератора и частоты собственных колебаний открытого контура (антенны). Именно по этой причине радиостанции, работающие в диапазоне длинных волн, нуждаются в длинных антеннах.

На практике для удлинения электромагнитной волны собственных колебаний антенны в нее последовательно включают катушку, что равносильно увеличению длины провода (рис. 3.8, а). Последовательно включенный в антенну конденсатор вызовет укорочение собственной длины электромагнитной волны антенны, так как при последовательном включении емкостей общая емкость уменьшается (рис. 3.8, 6).

Для заземленной антенны длина радиоволны составит

С учетом влияния земли и окружающих предметов длина радиоволн составит

l=(5-6)l.

Рис. 3.8. Схемы удлинения (а) и укорочения (б) длин радиоволн собственных

колебаний антенн (L св - катушка связи)

На прохождение электромагнитных волн, используемых для связи на земной поверхности, оказывают влияние рельеф поверхности земли и электрические свойства грунта, а также свойства самых нижних слоев атмосферы (тропосферы) и верхних ионизированных слоев атмосферы (ионосферы). Тропосфера - это слой атмосферы высотой до 16 км, примыкающий к поверхности земли, и с некоторым допущением принимаемый за диэлектрик без потерь. Потери могут быть за счет перемещения молекул (ингредиентов), обладающих электрическими и магнитными моментами. Потери увеличиваются на сверхвысоких частотах при дожде и тумане.

Ионосфера располагается на высоте около 60 км от поверхности земли и простирается до высоты 600 км. Степень ионизации ионосферы сильно зависит от воздействия ультрафиолетовых лучей солнца. Между тропосферой и ионосферой находится стратосфера .

Радиоволны от передающей антенны достигают ионосферы и отражаются от нее. При встрече непрозрачных препятствий электромагнитные волны стремятся огибать их. Это явление называют дифракцией . Чем длиннее электромагнитная волна, тем сильнее сказывается дифракция. Радиоволны, распространяющиеся по поверхности земного шара, огибающие его вследствие дифракции, называют земными радиоволнами (поверхностными). Радиоволны, распространяющиеся вокруг земного шара благодаря однократному или многократному отражению от ионосферы, называют пространственными или ионосферными .

Если бы земля была идеально плоской и обладала высокой электропроводностью, а воздух был идеальным диэлектриком, радиоволны распространялись бы в этом воздушном диэлектрике, отражаясь от поверхности земли, как от экрана, не проникал в глубь ее. Но так как земля не является идеальным проводником, то силовые линии радиоволн частично проникают в нее и образуют там токи, в результате чего возникают потери энергии на нагревание почвы.

Кроме того, радиоволны поглощаются твердыми диэлектриками, полупроводниками и проводниками при встрече с ними. Поглощение радиоволн проводником объясняется тем, что электромагнитная волна приводит в движение электроны проводника и создает в нем ток высокой частоты. На образование этого тока и расходуется электромагнитная энергия радиоволны. Если электромагнитная волна движется вдоль проводника, то поглощение энергии гораздо меньше. Поэтому над проводящей поверхностью, например водой, железнодорожными рельсами, радиоволны распространяются дальше, чем над сухой землей.

При распространении радиоволны (особенно в городах) поглощаются не только землей, но и металлическими крышами, железобетонными сооружениями и другими электропроводящими сооружениями. Радиоволны при встрече с электропроводящими телами способны отражаться. Физический смысл отражения радиоволн заключается в том, что падающая радиоволна создает в поверхностном слое отражающего тела токи, которые дают излучение новых, т.е. отраженных радиоволн.

Таким образом, радиоволны, распространяющиеся от передающей антенны к приемной, ослабевают по мощности из-за поглощения землей, поглощения и отражения другими препятствиями.

Радиоволны различных радиопередатчиков могут накладываться (складываться) друг на друга в точке приема. Именно по этой причине в приемнике прослушиваются писки, свисты, гудение и т.д. Явление сложения двух или нескольких радиоволн называют интерференцией. Интерференция радиоволн от одного и того же передатчика ввиду разницы фаз приходящих радиоволн приводит к усилению или ослаблению результирующей радиоволны в точке приема, а следовательно, и к изменению выходного сигнала приемника (в частности, к изменению громкости звучания речи при телефонной радиосвязи).

Излучение и приём радиоволн

Излучение радиоволн - процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн (См. Антенна).

Излучение радиоволн . Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц ) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны λ, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1 ), существует другой участок В , удалённый от А на расстояние, меньшее, чем λ/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В , ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает Колебательный контур , содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем λ/2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с λ/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с λ км.

Излучатели . Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO" двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2 ). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О" равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, - окружности (рис. 3 ). Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4 ).

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3 ) лежит в плоскости, проходящей через диполь и радиус-вектор r , проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5 ).

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны λ. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с λ/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения R и, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда - единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6 ), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью μ, на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7 , а, б), что обусловлено принципом двойственности.

Если в стенках Радиоволновод а или объёмного резонатора (См. Объёмный резонатор), где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7 , в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это - результат интерференции радиоволн (См. Интерференция радиоволн), излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) π/2, где n - целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8 ), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка θ, наибольшим размером апертуры L и излучаемой длиной волны λ определяется формулами:

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9 ). С - постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10 ), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции (См. Дифракция) волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна (См. Зеркальные антенны) представляет собой металлическое зеркало 1 , чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11 ). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны - передающую А и приёмную В - в начале и в конце линии радиосвязи, то генератор, питающий антенну А , переключенный в приёмную антенну В , создаёт в приёмном устройстве, переключенном в антенну А , такой же ток, какой, будучи включенным в антенну А , он создаёт в приёмнике, включенном в антенну В . Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l , длиной волны λ и углом ψ между направлением v прихода волны и диполем. Существен также угол φ между направлением вектора электрической волны и диполем (рис. 12 ). Наилучшие условия приёма, при φ = 0. При φ = π/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 Ecos φ) 2 . Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея - Джинса законом излучения (См. Рэлея - Джинса закон излучения) создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.

Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой T A . Мощность Р ш внешних шумов на входе антенны в полосе частот Δν приёмника равна:

Р ш =k T A Δν

(k - Больцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140-250 К; у остронаправленных антенн она составляет обычно 50-80 К, а специальными мерами её можно снизить до 15-20 К.

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. - Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. - Л., 1950.

Под редакцией Л. Д. Бахража.

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1 / 8 периода Т колебаний тока.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Излучение и приём радиоволн" в других словарях:

    Электромагнитное, процесс образования свободного электромагнитного поля. (Термин «И.» применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля см. Максвелла уравнения, Электромагнитные волны.)… …

    Электромагнитное, в классич. электродинамике образование эл. магн. волн ускоренно движущимися заряж. ч цами (или перем. токами); в квант. теории рождение фотонов при изменении состояния квант. системы; термин «И.» употребляется также для… … Физическая энциклопедия

    ИЗЛУЧЕНИЕ - ИЗЛУЧЕНИЕ, или радиация, в общем смысле процесс переноса энергии от тела в окружающее пространство. Обыкновенно термин И. применяют к элементарным атомным или молекулярным процессам, различая при этом 2 вида И.: корпускулярное и световое. Перенос … Большая медицинская энциклопедия

    ИЗЛУЧЕНИЕ - распространяющиеся в пространстве (см.) какой либо природы или потоки каких либо частиц, а также процесс И. волн или потока частиц какой либо физ. системой; (1) И. электромагнитное: а) видимое оптическое И., непосредственно воспринимаемое глазом… … Большая политехническая энциклопедия

    Устройства для преобразования сигналов электромагнитного излучения (См. Излучение) (в диапазоне от рентгеновских лучей с длиной волны λ = 10 9 см до радиоволн с λ = 10 1 см, о приёмниках электромагнитного излучения с меньшей длиной волны… … Большая советская энциклопедия



Рекомендуем почитать

Наверх