Функциональная зависимость и реляционные базы данных. Полная функциональная зависимость

Viber OUT 01.08.2019
Viber OUT

Зависимости между атрибутами

    Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует только одно значение В.

Обознач-ся:А В

2. Если существует функциональная зависимость вида А В и В А, то между А и В имеется взаимосвязанное соответствие или функциональная взаимозависимость

Обозн: А В

Частичная функциональная зависимость это зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость

Когда неключевой атрибут полностью зависит от составного ключа.

Пр: Кафедра(ФИО, должен, оклад, стаж, д_стаж, кафедра, предмет, группа, вид занятий)

ФИО кафедра

ФИО должность

Атрибут С зависит от А транзитивно если для атрибутов А,В,С выполняется условие А В и В С, но нет обратной зависимости А С

Пример. ФИО должность оклад

В отношении rатрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами изr.

Обозн. А В, А В, А В ФИО предмет

Замечание: В общем случае между двумя атрибутами одного отношения могут существовать функциональные и многозначные зависимости (1:1, 1:M,M:M) т.к. зависимость между атрибутами является причиной аномалий, то необходимо разбить отношение с зависимостями атрибутов на несколько отношений. В результате получается совокупность связанных отношений, связи между которыми отражают зависимости между атрибутами различных отношений.

Два или более атрибутов называются взаимонезависимыми, если не один из этих атрибутов не зависит функционально от других атрибутов (Обозн. А¬
В).

Выявление зависимостей между атрибутами

Выявление зависимостей между атрибутами необходимо для выполнения проектирования БД методом нормальных форм.

Основной способ определения функциональной зависимости- это внимательный анализ семантики атрибутов .

A1 A3

Кроме того, А2 ¬ А1, А3 ¬ А1

Перечисляя все существующие функциональные зависимости в отношении rполучим полное множество функциональных зависимостей, которые обозначаютсяF + .

Зная некоторые функциональные зависимости, с помощью аксиом вывода можно получить полное множество F + для какого-либо отношения.

Для отношения “кафедра”:

ФИО оклад

ФИО должность

ФИО стаж

ФИО кафедра

ФИО д_стаж

Стаж д_стаж

Должность оклад

Оклад должность

ФИО.Преподаватель.Группа Вид занятий

Нормализация отношений

В реляционной БД каждое отношение должно быть нормализовано. Нормальная форма – это ограничение на схему БД, которое позволяет избежать аномалий при добавлении, удалении и изменении данных.

Отношение считается нормализованным (1НФ), если каждое значение любого атрибута в каждом картеже является неделимым (атомарным) элементом. Такими атомарными значениями являются простые типы данных.

2НФ В основном используются три нормальных формы.

Для всех нормальных форм соблюдается правило вложенности

Преимущества нормализации :

    Лучшая организация БД, что облегчает работу пользователям и администраторам БД.

    Сокращается избыточность информации, что ведет за собой упрощение структуры и рациональное использование дискового пространства.

    Минимизируется дублируемая информация.

    Нормализация с разбиением БД на более мелкие таблицы дает большую гибкость при изменении структур данных.

    Большая безопасность БД.

После нормализации БД организация защиты информации, содержащейся в ней, значительно упрощается.

Недостатки :

Снижение производительности при выполнении запросов в БД.

Определения:

    Отношение находится в 1НФ, если все элементы соответствующих доменов являются атомарными для каждого атрибута в исходном отношении. Исходное отношение строится таким образом чтобы оно находилось в 1НФ.

    Значение является не атомарным, если оно используется приложением по частям.

Перевод отношения в следующую нормальную форму осуществляется методом декомпозиции без потерь.

Такая декомпозиция должна обеспечивать то что запросы к исходному отношению и к отношениям, получаемым в результате декомпозиции, дадут одинаковый результат.

Основной операцией в методе является операция проекции.

r (A,B,C,D,E) C D

r1(A,B,C,E) r2(C,D)π CD (r)

Частичная зависимость от ключа неключевых атрибутов приводит к следующему:

    1. В отношении имеется явное и не явное избыточное дублирование данных, например, повторение о стаже, должности и окладе преподавателя, проводящих занятия в нескольких группах и/или по разным предметам. Повторение данных об окладах для одной и той же должности или данные о надбавке за стаж.

    Следствием избыточного дублирования является проблема редактирования данных. Часть избыточности устраняется при переходе в 2НФ.

Отношение находится в 2НФ, если:

    Отношение находится в 1НФ.

    Каждый неключевой атрибут функционально полностью зависит от первичного ключа.

Для устранения частичной зависимости и перевода отношения в 2НФ необходимо:

    Построить проекцию без атрибутов, находящихся в частичной функциональной зависимости от первичного ключа.

    Построить проекцию на части составного первичного ключа и атрибута, зависящие от этих частей.

В результате получим два отношения r1,r2, находящихся во 2НФ:

Вид занятий

Иванов И.М

Практика

Иванов И.М

Практика

Петров М.И

Петров М.И

Практика

Сидоров Н.Г

Сидоров Н.Г

Егоров В.В

Переход ко 2НФ позволяет исключить явную избыточность данных в отношении r2, тем не менее, дублирование данных сохраняется и поэтому необходимо преобразоватьr2 в 3НФ.

Опр.1: Отношение находится в 3НФ, если:

    Удовлетворяются все требования 2НФ.

    Если каждый неключевой атрибут не транзитивно зависит от первичного ключа.

Опр.2: Отношение находится в 3НФ в том случае, если все неключевые атрибуты взаимно независимы и полностью зависят от первичного ключа.

ФИО оклад должность

ФИО стаж Д_стаж

ФИО должность оклад

Транзитивные зависимости также порождают избыточное порождение данных.

Чтобы устранить транзитивные зависимости, необходимо использовать проекцию на атрибуты, являющиеся причиной данных транзитивных зависимостей.

В результате получим:

Д_стаж

На практике, в большинстве случаев приведение к 3НФ является достаточным, и дальнейшую нормализацию не проводят.

Если в отношении имеется зависимость атрибутов составного ключа от неключевых атрибутов, то необходимо перейти к усиленной 3НФ, она называется НФБК.

Опр. Отношение находится в НФБК, если оно находится в 3НФ, и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной. Независимую переменную иначе называют аргументом, а о зависимой говорят, что она является функцией от этого аргумента. Все значения, которые принимает независимая переменная, образуют область определения функции.


Существует несколько способов задания функции: 1.С помощью таблицы. 2.Графический. 3.С помощью формулы. Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.



Линейной функцией называется функция, которую можно задать формулой вида y=kx+b, где x – независимая переменная, k и b – заданные числа. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки в координатной плоскости и провести через них прямую. Прямая пропорциональность – функция вида у=кх, где х – независимая переменная, к – не равное нулю число. Графиком прямой пропорциональности является прямая, проходящая через начало координат.


Построение графика линейной функции Для построения графика линейной функции необходимо: - выбрать любые два значения переменной х (аргумента), например 0 и 1; - вычислить соответствующие значения переменной y (функции). Полученные результаты удобно записывать в таблицу x01 y - полученные точки А и В изображаем в системе координат; - соединяем по линейке точки А и В. Пример. Построим график линейной функции y = -3·x+6. x01 y63


Обратной пропорциональностью называется функция, которую можно задать формулой вида у=k/х, где х - независимая переменная и k - не равное нулю число. Областью определения такой функции является множество всех чисел, отличных от нуля. Если величины x и y обратно пропорциональны, то функциональная зависимость между ними выражается уравнением y = k / x, где k есть некоторая постоянная величина. График обратной пропорциональности есть кривая линия, состоящая из двух ветвей. Этот график называют гиперболой. В зависимости от знака k ветви гиперболы расположены либо в 1 и 3 координатных четвертях (k положительно), либо во 2 и 4 координатных четвертях (k отрицательно). На рисунке изображен график функции y = k/х, где k – отрицательное число.



ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b 0, выше оси OX; b"> 0, выше оси OX; b"> 0, выше оси OX; b" title="ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b"> title="ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b">

Функциональная зависимость.

Атрибут В функционально зависит от атрибута А, если одно значение А определяет точно одно значение В.

В том случае, если для данного отношения все его атрибуты функционально зависят от одного атрибута, то этот атрибут – потенциальный простой ключ, если его значения в пределах отношения уникальны. Какой-то из потенциальных ключей назначается ключом отношения.

В отношении иногда можно выделить совокупность нескольких атрибутов, от которой функционально зависят все остальные атрибуты. Если ее значения уникальны в совокупности в пределах отношения, то эта совокупность – сверхключ отношения ,

Если атрибут В функционально зависит от сверхключа, но нет функциональной зависимости от любого подмножества сверхключа, то имеет место полная функциональная зависимость В от сверхключа.

Если все атрибуты одного отношения функционально зависят от данного сверхключа, но нет функциональной зависимости от любого подмножества этого сверхключа, то сверхключ является потенциальным ключом .

Составной ключ отношения выбирается из потенциальных ключей.

Обратите внимание, что термин функциональная зависимость соответствует понятию функции в математике. Если неключевой атрибут зависит от всего составного ключа и не зависит от его частей, то говорят о полной функциональной зависимости атрибута от составного ключа.

Если атрибут А зависит от атрибута В, а В зависит от атрибута С, но обратная зависимость отсутствует, то говорят, что атрибут С зависит от А транзитивно.

Типы связей в реляционных базах

Связываются на самом деле записи разных отношений БД, однако принято говорить о связывании этих отношений. При связывании устанавливаются ссылки кортежей одного отношения на кортежи другого отношения, принадлежащих одной БД.

Всего поддерживается четыре типа связей (ссылок): «один к одному», «много к одному», «один ко многим», «много ко многим».

Связь «один ко многим»

ОтношениеХ связано с отношением У «один ко многим», если каждому кортежу из Х соответствует несколько кортежей из У . При этом указывается, на какое поле х из Х ссылается поле у из У .

Чтобы ссылки установить, в СУБД существует режим проектирования связей. Чтобы со связанной БД корректно работала СУБД, связи должны удовлетворять условиям, которые защищают целостность БД. Ограничения устанавливаются на свойства связываемых полей. В данном случае, в отношении Х (со стороны «один») связующее поле х должно обладать уникальностью значений, а поле у из У не должно содержать значений, отсутствующих в х . Поле х называется первичным ключом , а поле у внешним ключом . В этой связи отношение Х , в котором размещен первичный ключ, называется главным отношением , а отношениеУ , в котором находится внешний ключ, называется подчиненным отношением .



Пример связей «один ко многим»:

отношение «Заказы» (подчиненная) и отношение «Товары» (главная);

отношение «Заказы» (подчиненная) и отношение «Клиенты» (главная).

В отношении ЗАКАЗЫ внешние ключи для связи с отношениями ТОВАРЫ и КЛИЕНТЫ:Товар_зак и Клиент_зак. В отношенияхТОВАРЫ и КЛИЕНТЫ первичные ключи Товар_код и Клиент_код, на которые внешние ключи ссылаются.

Связь «один к одному»

Если в связи «один ко многим»внешний ключ у содержит только уникальные значения, то это тип связи «один к одному» - каждой записи в У соответствует одна запись в Х и каждой записи в Х соответствует не более одной записи в У . При этом внешний ключ у не является, как х , первичным ключом связи, так как в поле х могут быть значения, которых нет в у . А в поле у таких значений, которых нет в поле х , быть не может. В отношениях Х и У может быть разное число кортежей.

Связь «много к одному»

Определяется как связь «один ко многим», но отношения Х и У в определении меняются местами.

Связь «много ко многим»

Устанавливается между двумя отношениями Х и У, еслив каждом из них расположен первичный ключ связи с третьим отношением С, в котором размещены два внешних ключа связей «один ко многим» между Х иС и«один ко многим» между С иУ. ОтношениеС называют связующим. В отношении С нужно назначать составной ключ (а не простой). В этот составной ключ должны входить внешние ключи двух связей (или большего числа, если таких пар, как Х и У, связываемых черезС, имеется несколько).

Фиксируются два базовых требования (ограничения) для сохранения целостности. Ограничения целостности по сущностям и по ссылкам должны поддерживаться реляционной СУБД.

Первое целостности сущностей . Объекту предметной области (или сущности в модели предметной области) в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого же отношения. Другими словами: любое отношение должно обладать ключом. Это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.

Для соблюдения целостности по сущностям достаточно гарантировать отсутствие в любом отношении кортежей с одним и тем же значением ключа .

Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что сложные сущности модели предметной области представляются в реляционной БД в виде нескольких кортежей нескольких связанных отношений.

Требование целостности по ссылкам, или требование внешнего ключа, состоит в том, что для каждого значения внешнего ключа подчиненного отношения, в главном отношении должен найтись кортеж с этим значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (ни на что не указывать). Для примера связей записей отношений сотрудники и отделы это означает, что если для сотрудника в отношении сотрудник в поле отдел указан номер отдела, то этот отдел должен существовать в отношении отделы.

При обновлении подчиненного отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) СУБД достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа (те значения, которых нет в поле первичного ключа главного отношения). При удалении кортежа из главного отношения, если на него ссылается подчиненное отношение, в СУБД есть несколько следующих приемов, каждый из которых поддерживает целостность по ссылкам.

1) Запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа).

2) При удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным.

3) Создается каскадное удаление, состоящее в том, что при удалении кортежа из главного отношения, из подчиненного отношения автоматически удаляются все ссылающиеся кортежи.

В развитых реляционных СУБД можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации. Для принятия решения необходимо анализировать требования конкретной предметной области.

Проектирование реляционных баз данных. Нормализация.

Понятие нормализации

Будет рассмотрен классический подход, при котором весь процесс проектирования производится в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений.

Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится преобразование исходной схемы отношений в некоторый набор, обладающий лучшими свойствами.

Процесс проектирования представляет собой процесс нормализации схем отношений , приведение отношений к «нормальным формам», причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая. Реально процесс нормализации осуществляется через декомпозицию отношений, следуя определенным правилам, которые будут рассмотрены ниже. Именно декомпозиция приводит отношение к очередной нормальной форме.

Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений.

Требование первой нормальной формы является общим базовым требованием классической реляционной модели данных. Существенное ограничение первой нормальной формы - атрибуты отношения атомарны, то есть атрибуты не являются сами отношениями, далее не делятся (как атомы).

В теории реляционных баз данных известно теоретически 7 нормальных форм, здесь выделяется следующая последовательность 6 нормальных форм:

· первая нормальная форма (1NF);

· вторая нормальная форма (2NF);

· третья нормальная форма (3NF);

· нормальная форма Бойса-Кодда (BCNF);

· четвертая нормальная форма (4NF);

· пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).

Практическое значение имеют первые три нормальные формы.

Основные свойства нормальных форм

В основе процесса проектирования лежит метод декомпозиции отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы.

Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Это понятие было рассмотрено в лекции №4. Уточним определения, распространяя их на наборы полей.

Ограничения уникальности, накладываемые объявлениями первичного и кандидатных ключей отношения, является частным случаем ограничений, связанных с понятием функциональных зависимостей .

Для объяснения понятия функциональной зависимости, рассмотрим следующий пример.

Пусть нам дано отношение, содержащее данные о результатах какой-то одной конкретной сессии. Схема этого отношения выглядит следующим образом:

Сессия (№ зачетной книжки , Фамилия, Имя, Отчество, Предмет , Оценка);

Атрибуты «№ зачетной книжки» и «Предмет» образуют составной (так как ключом объявлены два атрибута) первичный ключ этого отношения. Действительно, по двум этим атрибутам можно однозначно определить значения всех остальные атрибутов.

Однако, помимо ограничения уникальности, связанной с этим ключом, на отношение непременно должно быть наложено то условие, что одна зачетная книжка выдается обязательно одному конкретному человеку и, следовательно, в этом отношении кортежи с одинаковым номером зачетной книжки должны содержать одинаковые значения атрибутов «Фамилия», «Имя» и «Отчество».


Если у нас имеется следующий фрагмент какой-то определенной базы данных студентов учебного заведения после какой-то сессии, то в кортежах с номером зачетной книжки 100, атрибуты «Фамилия», «Имя» и «Отчество» совпадают, а атрибуты «Предмет» и «Оценка» – не совпадают (что и понятно, ведь в них речь идет о разных предметах и успеваемости по ним). Это значит, что атрибуты «Фамилия», «Имя» и «Отчество» функционально зависят от атрибута «№ зачетной книжки», а атрибуты «Предмет» и «Оценка» функционально не зависят.

Таким образом, функциональная зависимость – это однозначная зависимость, затабулированная в системах управления базами данных.

Теперь дадим строгое определение функциональной зависимости.

Определение : пусть X, Y – подсхемы схемы отношения S, определяющие над схемой S схему функциональной зависимости X > Y (читается «X стрелка Y»). Определим ограничения функциональной зависимости inv > Y> как утверждение о том, что в отношении со схемой S любые два кортежа, совпадающие в проекции на подсхему X, должны совпадать и в проекции на подсхему Y.

Запишем это же определение в формулярном виде:

Inv > Y> r (S ) = t 1 , t 2 ? r (t 1 [X ] = t 2 [X ] ? t 1 [Y ] = t 2 [Y ]), X , Y ? S;

Любопытно, что в этом определении использовано понятие унарной операции проекции, с которым мы сталкивались раньше. Действительно, как еще, если не использовать эту операцию, показать равенство друг другу двух столбцов таблицы-отношения, а не строк? Поэтому мы и записали в терминах этой операции, что совпадение кортежей в проекции на какой-то атрибут или несколько атрибутов (подсхему X) непременно влечет за собой совпадение этих же столбцов-кортежей и на подсхеме Y в том случае, если Y функционально зависит от X.

Интересно заметить, что в случае функциональной зависимости Y от X, говорят также, что X функционально определяет Y или что Y функционально зависит от X. В схеме функциональной зависимости X > Y подсхема X называется левой частью, а подсхема Y – правой частью.

На практике проектирования баз данных на схему функциональной зависимости для краткости обычно ссылаются как на функциональную зависимость.

Конец определения .


В частном случае, когда правая часть функциональной зависимости, т. е. подсхема Y, совпадает со всей схемой отношения, ограничение функциональной зависимости переходит в ограничение уникальности первичного или кандидатного ключа. Действительно:

Inv <K > S > r (S ) = ? t 1 , t 2 ? r (t 1 [K ] = t 2 [K ] > t 1 (S ) = t 2 (S )), K ? S ;

Просто в определении функциональной зависимости вместо подсхемы X нужно взять обозначение ключа K, а вместо правой части функциональной зависимости, подсхемы Y взять всю схему отношений S, т. е., действительно, ограничение уникальности ключей отношений является частным случаем ограничения функциональной зависимости при равенстве правой части схемы функциональной зависимости всей схеме отношения.

Приведем примеры изображения функциональной зависимости:

{№ зачетной книжки} > {Фамилия, Имя, Отчество};

{№ зачетной книжки, Предмет} > {Оценка};

2. Правила вывода Армстронга

Если какое-либо базовое отношение удовлетворяет векторно определенным функциональным зависимостям, то с помощью различных специальных правил вывода можно получить другие функциональные зависимости, которым данное базовое отношение будет заведомо удовлетворять.

Хорошим примером таких специальных правил являются правила вывода Армстронга.

Но прежде чем приступать к анализу самих правил вывода Армстронга, введем в рассмотрение новый металингвистический символ «+», который называется символом метаутверждения о выводимости . Этот символ при формулировании правил записывается между двумя синтаксическими выражениями и свидетельствует о том, что из формулы, стоящей слева от него, выводится формула, стоящая справа от него.

Сформулируем теперь сами правила вывода Армстронга в виде следующей теоремы.

Теорема. Справедливы следующие правила, называемые правилами вывода Армстронга.

Правило вывода 1. + X > X;

Правило вывода 2. X > Y+ X ? Z > Y;

Правило вывода 3. X > Y, Y ? W > Z + X ? W > Z;

Здесь X, Y, Z, W – произвольные подсхемы схемы отношения S. Символ метаутверждения о выводимости разделяет списки посылок и списки утверждений (заключений).

1. Первое правило вывода называется «рефлексивность » и читается следующим образом: «выводится правило: “X функционально влечет за собой X”». Это самое простое из правил вывода Армстронга. Оно выводится буквально из воздуха.

Интересно заметить, что функциональная зависимость, обладающая и левой, и правой частями, называется рефлексивной . Согласно правилу рефлексивности ограничение рефлексивной зависимости выполняется автоматически.

2. Второе правило вывода называется «пополнение » и читается таким образом: «если X функционально определяет Y, то выводится правило: “объединение подсхем X и Z функционально влечет за собой Y”». Правило пополнения позволяет расширять левую часть ограничения функциональных зависимостей.

3. Третье правило вывода называется «псевдотранзитивность » и читается следующим образом: “если подсхема X функционально влечет за собой подсхему Y и объединение подсхем Y и W функционально влекут за собой Z, то выводится правило: «объединение подсхем X и W функционально определяют подсхему Z»”.

Правило псевдотранзитивности обобщает правило транзитивности, соответствующее частному случаю W: = 0. Приведем формулярную запись этого правила:

Необходимо отметить, что посылки и заключения, приведенные ранее, были представлены в сокращенной форме обозначениями схем функциональной зависимости. В расширенной форме им соответствуют следующие ограничения функциональных зависимостей.

Правило вывода 1. inv X> r(S);

Правило вывода 2. inv Y> r(S) ? inv Y> r(S);

Правило вывода 3. inv Y> r(S) & inv Z> r(S) ? inv Z> r(S);

Проведем доказательства этих правил вывода.

1. Доказательство правила рефлексивности следует непосредственно из определения ограничения функциональной зависимости при подстановке вместо подсхемы Y – подсхемы X.

Действительно, возьмем ограничение функциональной зависимости:

Inv Y> r(S) и подставим в него X вместо Y, получим:

Inv X> r(S), а это и есть правило рефлексивности.

Правило рефлексивности доказано.

2. Доказательство правила пополнения проиллюстрируем на диаграммах функциональной зависимости.

Первая диаграмма – это диаграмма посылки:

посылка: X > Y


Вторая диаграмма:

заключение: X ? Z > Y


Пусть кортежи равны на X ? Z. Тогда они равны на X. Согласно посылке они будут равны и на Y.

Правило пополнения доказано.

3. Доказательство правила псевдотранзитивности также проиллюстрируем на диаграммах, которых в этом конкретном случае будет три.

Первая диаграмма – первая посылка:

посылка 1: X > Y


посылка 2: Y ? W > Z


И, наконец, третья диаграмма – диаграмма заключения:

заключение: X ? W > Z


Пусть кортежи равны на X ? W. Тогда они равны и на X, и на W. Согласно Посылке 1, они будут равны и на Y. Отсюда, согласно Посылке 2, они будут равны и на Z.

Правило псевдотранзитивности доказано.

Все правила доказаны.

3. Производные правила вывода

Другим примером правил, с помощью которых можно, при необходимости вывести новые правила функциональной зависимости, являются так называемые производные правила вывода .

Что это за правила, как они получаются?

Известно, что если из одних правил, уже существующих, законными логическими методами вывести другие, то эти новые правила, называемые производными , можно использовать наряду с исходными правилами.

Необходимо специально отметить, что эти самые произвольные правила являются «производными» именно от пройденных нами ранее правил вывода Армстронга.

Сформулируем производные правила вывода функциональных зависимостей в виде следующей теоремы.

Теорема.

Следующие правила являются производными от правил вывода Армстронга.

Правило вывода 1. + X ? Z > X;

Правило вывода 2. X > Y, X > Z + X ? Y > Z;

Правило вывода 3. X > Y ? Z + X > Y, X > Z;

Здесь X, Y, Z, W, так же как и в предыдущем случае, – произвольные подсхемы схемы отношения S.

1. Первое производное правило называется правилом тривиальности и читается следующим образом:

«Выводится правило: “объединение подсхем X и Z функционально влечет за собой X”».

Функциональная зависимость с левой частью, являющейся подмножеством правой части, называется тривиальной . Согласно правилу тривиальности ограничения тривиальной зависимости выполняются автоматически.

Интересно, что правило тривиальности является обобщением правила рефлексивности и, как и последнее, могло бы быть получено непосредственно из определения ограничения функциональной зависимости. Тот факт, что это правило является производным, не случаен и связан с полнотой системы правил Армстронга. Подробнее о полноте системы правил Армстронга мы поговорим чуть позднее.

2. Второе производное правило называется правилом аддитивности и читается следующим образом: «Если подсхема X функционально определяет подсхему Y, и X одновременно функционально определяет Z, то из этих правил выводится следующее правило: “X функционально определяет объединение подсхем Y и Z”».

3. Третье производное правило называется правилом проективности или правилом «обращение аддитивности ». Оно читается следующим образом: «Если подсхема X функционально определяет объединение подсхем Y и Z, то из этого правила выводится правило: “X функционально определяет подсхему Y и одновременно X функционально определяет подсхему Z”», т. е., действительно, это производное правило является обращенным правилом аддитивности.

Любопытно, что правила аддитивности и проективности применительно к функциональным зависимостям с одинаковыми левыми частями позволяют объединять или, наоборот, расщеплять правые части зависимости.

При построении цепочек вывода после формулировки всех посылок применяется правило транзитивности с той целью, чтобы включить функциональную зависимость с правой частью, находящейся в заключении.

Проведем доказательства перечисленных произвольных правил вывода.

1. Доказательство правила тривиальности .

Проведем его, как и все последующие доказательства, по шагам:

1) имеем: X > X (из правила рефлексивности вывода Армстронга);

Правило тривиальности доказано.

2. Проведем пошаговое доказательство правила аддитивности :

1) имеем: X > Y (это посылка 1);

2) имеем: X > Z (это посылка 2);

3) имеем: Y ? Z > Y ? Z (из правила рефлексивности вывода Армстронга);

4) имеем: X ? Z > Y ? Z (получаем при помощи применения правила псевдотранзитивности вывода Армстронга, а потом как следствие первого и третьего шагов доказательства);

5) имеем: X ? X > Y ? Z (получаем, применяя правило псевдотранзитивности вывода Армстронга, а после следует из второго и четвертого шагов);

6) имеем X > Y ? Z (следует из пятого шага).

Правило аддитивности доказано.

3. И, наконец, проведем построение доказательства правила проективности :

1) имеем: X > Y ? Z, X > Y ? Z (это посылка);

2) имеем: Y > Y, Z > Z (выводится при помощи правила рефлексивности вывода Армстронга);

3) имеем: Y ? z > y, Y ? z > Z (получается из правила пополнения вывода Армстронга и следствием из второго шага доказательства);

4) имеем: X > Y, X > Z (получается, применением правила псевдотранзитивности вывода Армстронга, а затем как следствие из первого и третьего шагов доказательства).

Правило проективности доказано.

Все производные правила вывода доказаны.

4. Полнота системы правил Армстронга

Пусть F (S ) - заданное множество функциональных зависимостей, заданных над схемой отношения S.

Обозначим через inv <F (S )> ограничение, накладываемое этим множеством функциональных зависимостей. Распишем его:

Inv <F (S )> r (S ) = ?X > Y ?F (S ) [inv Y> r (S )].

Итак, это множество ограничений, накладываемое функциональными зависимостями, расшифровывается следующим образом: для любого правила из системы функциональных зависимостей X > Y, принадлежащего множеству функциональных зависимостей F (S ), действует ограничение функциональных зависимостей inv Y> r (S ), определенных над множеством отношения r (S ).

Пусть какое-то отношение r (S ) удовлетворяет этому ограничению.

Применяя правила вывода Армстронга к функциональным зависимостям, определенным для множества F (S ), можно получить новые функциональные зависимости, как уже было сказано и доказано нами ранее. И, что показательно, ограничениям этих функциональных зависимостей отношение F (S ) будет автоматически удовлетворять, что видно из расширенной формы записи правил вывода Армстронга. Напомним общий вид этих расширенных правил вывода:

Правило вывода 1. inv < X > X > r (S );

Правило вывода 2. inv Y> r (S ) ? inv ? Z > Y> r (S );

Правило вывода 3. inv Y> r (S ) & inv ? W > Z> r (S ) ? inv ? W > Z>;

Возвращаясь к нашим рассуждениям, пополним множество F (S ) новыми, выведенными из него же с помощью правил Армстронга зависимостями. Будем применять эту процедуру пополнения до тех пор, пока у нас не перестанут получаться новые функциональные зависимости. В результате этого построения мы получим новое множество функциональных зависимостей, называемое замыканием множества F (S ) и обозначаемое F + (S) .

Действительно, такое название вполне логично, ведь мы собственноручно путем длительного построения «замкнули» множество имеющихся функциональных зависимостей само на себе, прибавив (отсюда «+») все новые функциональные зависимости, получившиеся из имеющихся.

Необходимо заметить, что этот процесс построения замыкания конечен, ведь конечна сама схема отношения, на которой и проводятся все эти построения.

Само собой разумеется, что замыкание является надмножеством замыкаемого множества (действительно, ведь оно больше!) и ни сколько не изменяется при своем повторном замыкании.

Если записать только что сказанное в формулярном виде, то получим:

F (S ) ? F + (S ), [F + (S )] + = F + (S );

Далее из доказанной истинности (т. е. законности, правомерности) правил вывода Армстронга и определения замыкания следует, что любое отношение, удовлетворяющее ограничениям заданного множества функциональных зависимостей, будет удовлетворять ограничению зависимости, принадлежащей замыканию.

X > Y ? F + (S ) ? ?r (S ) [inv <F (S )> r (S ) ? inv Y> r (S )];

Итак, теорема полноты системы правил вывода Армстронга утверждает, что внешняя импликация может совершенно законно и обоснованно быть заменена эквивалентностью.

(Доказательство этой теоремы мы рассматривать не будем, так как сам процесс доказательства не столь важен в нашем конкретном курсе лекций.)

Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует в точности одно значение В.

Обозначение : A → B. Это значит, что во всех кортежах с одинаковым значением атрибута А атрибут В будет иметь также одно и то же значение.

Если существует функциональная зависимость вида A→B и В→А, то между А и В имеется взаимно однозначное соответствие , или функциональная зависимость . О

Обозначение : A↔B или В↔А.

Если отношение находится в 1НФ, то все неключевые атрибуты функционально зависят от ключа с различной степенью зависимости.

Частичная зависимость (частичная функциональная зависимость) – зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость – зависимость неключевого атрибута от всего составного ключа.

Транзитивная зависимость

Атрибут С зависит от атрибута А транзитивно (существует транзитивная зависимость ), если для атрибута А, В, С выполняются условия A→B и В→С, по обратной зависимости отсутствуют.

Множественная зависимость

В отношении R атрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами R.

Обозначения : А=>B, A<=B, A<=>B.

Взаимно независимые атрибуты

Два и более атрибута называются взаимно независимыми , если ни один из этих атрибутов не является функционально зависимым от других атрибутов.

Обозначения : А →В, А=В.

Нормальные формы:

    Первая нормальная форма (1НФ). Отношение находится в 1НФ, если все его атрибуты являются простыми (имеют единственное значение).

    Вторая нормальная форма (2НФ). Отношение находится в 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально зависит от первичного ключа (составного).

    Третья нормальная форма (3НФ). Отношение находится в 3НФ в том и только в том случае, если все атрибуты отношения взаимно независимы и полностью зависят от первичного ключа.

    Нормальная форма Бойса-Кодда (НФБК). Отношения находится в НФБК, если оно находится в 3НФ и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

    Четвертая нормальная форма (4НФ). Отношения находится в 4НФ в том и только в том случае, когда существует многозначная зависимость А=>B, а все остальные атрибуты отношения функционально зависят от А.

    Пятая нормальная форма (5НФ). Отношения находится в 5НФ, если оно находится в 4НФ и удовлетворяет зависимости по соединению относительно своих проекций.

    Шестая нормальная форма (6НФ). Отношение находится в 6НФ тогда и только тогда, когда она не может быть подвергнута дальнейшей декомпозиции без потерь.

    Обеспечение непротиворечивости и целостности данных в базе данных

Ответ :

Целостность – это свойство БД, означающее, что она содержит полную, непротиворечивую и адекватно отражающую предметную область информацию.

Различают:

    Физическую целостность – наличие физического доступа к данным и то, что данные не утрачены.

    Логическую целостность – отсутствие логических ошибок в БД, к которым относятся нарушение структуры БД или ее объектов, удаление или изменение установленных связей между объектами и т.д.

Поддержание целостности БД включает:

    Проверку (контроль) целостности

    Восстановление в случае обнаружения противоречий в базе.

Целостное состояние задается с помощью ограничений целостности (условий, которыми должны удовлетворять данные). Два типа ограничений целостности :

    Ограничение значений атрибутов отношений . Например : требование недопустимости NULL-значений, недопустимости повторяющихся значений в атрибутах, контроль принадлежности значений атрибутов заданного диапазона.

    Структурные ограничения на кортежи отношений . Определяет требования целостности сущностей и целостности ссылок .

Требование целостности сущностей состоит в том, что любой кортеж отношения должен быть отличным от любого другого кортежа этого отношения , иными словами, любое отношение должно обладать первичным ключом .

Требование целостности ссылок состоит в том, что для каждого значения внешнего ключа родительской таблицы должна найтись строка в дочерней таблице с таким же значением первичного ключа.

    Метод «сущность - связь»

Ответ :

Метод «сущность-связь» (метод «ER-диаграмм») – это метод, основанный на использование диаграмм, называемых соответственно диаграммами ER-экземпляров и диаграммами ER-типа.

Основные понятия

Сущность – это объект, информация о котором хранится в БД.

Атрибут – это свойство сущности.

Ключ сущности – это атрибут (набор атрибутов), используемый для идентификации экземпляра сущности.

Связь между сущностями – это зависимость между атрибутами этих сущностей.

Графические средства , используемые для получения наглядности и удобства проектирования:

    Диаграмма ER- экземпляров ;

    Диаграмма ER -типа или ER -диаграмма .

На основе анализа ER-диаграмм формируется отношения проектируемой БД. При этом учитывается степень связи сущностей и класс их принадлежности.

Степень связи – это характеристика связи между сущностями (1:1, 1:М; М:1; М:М).

Класс принадлежности сущности может быть: обязательным и необязательным .

Обязательный – если все экземпляры сущности обязательно участвуют в рассматриваемой связи.

Необязательный – не все экземпляры участвуют в рассматриваемой связи.

    Этапы проектирования баз данных

Ответ :

I . Концептуальное проектирование – сбор, анализ и редактирование требований к данным.

Цель : создание концептуальной модели данных, исходя из представлений пользователя о предметной области.

Процедуры :

    Определение сущностей и их документирование;

    Определение связей между сущностями и их документирование;

    Создание модели предметной области;

    Определение значений атрибутов;

    Определение первичных ключей для сущностей.

II . Логическое проектирование – на основе концептуальной модели создается структура данных.

Цель : преобразование концептуальной модели на основе выбранной модели данных в логическую модель, независимую от особенностей используемой в дальнейшем СУБД для физической реализации БД.

Процедуры :

    Выбор модели данных;

    Определение набора таблиц и их документирование;

    Нормализация таблиц;

    Определение требований к поддержке целостности данных и их документирование.

III . Физическое проектирование – определение особенностей данных и методов доступа.

Цель: описание конкретной реализации БД, размещение во внешней памяти компьютера.

Процедуры:

    Проектирование таблиц БД;

    Проектирование физической организации БД;

    Разработка стратегии защиты БД.

    Жизненный цикл базы данных

Ответ :

Жизненный цикл БД – это процесс проектирования, реализации и поддержания систем БД.

Стадии жизненного цикла БД:

    Анализ – анализ предметной области и выявление требований к ней, оценка актуальности системы.

    Проектирование – создание логической структуры БД, функциональное описание программных моделей и информационных запросов.

    Реализация – разработка ПО для БД, проводится тестирование.

    Эксплуатация и сопровождение .

Этапы жизненного цикла БД:

    Предварительное планирование – планирование БД, выполнения стратегического плана разработки БД (какие приложения используются, какие функции они выполняют, какие файлы связаны с каждым из этих приложений и какие новые файлы и приложения находятся в процессе разработки).

    Проверка осуществимости – проверка технологической, операционной и экономической осуществимостей.

    Определение требований – выбор цели БД, выявление информационных требований к БД, требования к оборудованию и к ПО, определение пользовательских требований.

    Концептуальное проектирование – создание концептуальной схемы.

    Реализация – приведение концептуальной модели ф функциональную БД.

    Выбор и приобретение необходимой СУБД.

    Преобразование концептуальной модели в логическую и физическую модели.

    На основе инфологической модели строится схема данных для конкретной СУБД.

    Определяются какие прикладные процессы необходимо реализовать как хранимые процедуры.

    Реализовать ограничения, предназначенные для обеспечения целостности данных.

    Спроектировать триггеры.

    Разработать стратегию индексирования и кластеризации, выполнить оценку размеров таблицы, кластеров и индексов.

    Определить уровни доступа пользователей, разработать и внедрить правила безопасности.

    Разработать сетевую топология БД.

    Создание словаря данных.

    Заполнение БД.

    Создание прикладного ПО, контроль управления.

    Обучение пользователя.

    Оценка и усовершенствование схемы БД .

    Правила формирования отношений

Ответ :

Правила формирования отношений основываются на учете следующего:

    Степень связи между сущностями (1:1, 1:М, М:1, М:М);

    Класса принадлежности экземпляров сущностей (обязательный и необязательный).



Рекомендуем почитать

Наверх