Функции работы со строками си. Операции со строками. Методы класса String

Для Андроид 18.03.2019
Для Андроид

В больших круговоротах - малые,

Рождающие скорость,

А в малых - меньшие и меньшие,

Рождающие вязкость.

(Льюис Ф. Ричардсон)

Проблема турбулентности имеет богатую историю. Все великие физики ломали над ней голову. Плавный поток разбивается на завитки и вихревые токи; беспорядочные изгибы разрушают границы между жидкостью и твердой поверхностью; энергия из крупномасштабного движения быстро перетекает в мелкие завихрения. Почему? Пожалуй, самые разумные идеи предлагали математики, большинство же физиков попросту опасались изучать турбулентность, которая казалась почти непостижимой. Доказательством тому может служить история о Вернере Гейзенберге, известном ученом, занимавшемся квантовой физикой. Последний признался на смертном одре, что хотел бы задать Господу Богу два вопроса - об основах относительности и о причине турбулентности. «Думаю, что Господь ответит мне на первый из них», - заметил Гейзенберг.

Теоретическая физика и явление турбулентности закончили игру вничью, - наука словно бы наткнулась на заколдованную черту и замерла возле нее. Вблизи магической границы, где вещество еще устойчиво, есть над чем поработать. К счастью, плавно текущая жидкость ведет себя совсем не так, как если бы каждая из бессчетного множества молекул двигалась самостоятельно: капельки жидкого вещества, находившиеся рядом в начальной точке, обычно остаются поблизости друг от друга, словно лошади в упряжке. Инженеры-гидротехники располагают вполне надежными уравнениями, описывающими поведение такого ламинарного потока: они используют знания, накопленные еще в XIX веке, когда движение жидкостей и газов являлось одной из первостепенных проблем физической науки.

К нашему времени проблема эта уже ушла в тень, и даже самые глубокие умы верили, что в динамике жидкостей не осталось тайн, кроме одной, неведомой и небесам. С практической стороны все выглядело таким понятным, что с легким сердцем могло быть отдано на откуп специалистам-техникам. По мнению физиков, динамика жидкости из научной проблемы превратилась в инженерную. Молодые светила физики и так находили себе занятие, и исследователи жидкостной динамики попадались уже только на технических факультетах университетов. Впрочем, у практиков интерес к турбулентности был несколько односторонним и сводился к тому, как устранить это явление. Иногда турбулентность даже желательна (как, например, в реактивном двигателе, где эффективное возгорание зависит от быстрого образования смеси), но в большинстве случаев она равносильна бедствию. Турбулентный воздушный поток, воздействуя на крыло самолета, затрудняет взлет. Турбулентный поток внутри нефтепровода задерживает движение жидкости. Правительства и корпорации вкладывают огромные средства в конструирование самолетов, турбинных двигателей, гребных винтов, подводных лодок и других подобных устройств, которые двигаются в жидкой или газообразной среде. Исследователей интересует кровоток в сосудах и сердечных клапанах, их заботят вихревые токи и водовороты, пламя и ударные волны при взрывах различного типа. Считается, что проектом атомной бомбы во время Второй мировой войны занимались физики-ядерщики, но в действительности же все относящиеся к ядерной физике вопросы были решены еще до начала работ, а в Лос-Аламосе занимались газо- и гидродинамическими аспектами.

Что же представляет собой турбулентность? Полную неупорядоченность при всех масштабах, крошечные вихри внутри огромных водоворотов. Турбулентность неустойчива и в высшей степени диссипативна, т. е. обладает способностью замедлять движение, истощая энергию. Она суть беспорядочное движение. Но все же каким образом течение жидкости превращается из плавного в турбулентное? Представьте себе безупречно гладкую полую трубку, в высшей степени стабильный источник водоснабжения, причем вся конструкция надежно защищена от вибрации. А теперь задайте себе вопрос: как же в потоке, текущем внутри трубы, может появиться что-то беспорядочное?

Кажется, все правила здесь терпят фиаско. Когда поток плавный, или ламинарный, небольшие помехи исчезают, однако сразу же вслед за появлением турбулентности их количество резко возрастает, загадывая науке новую загадку. Русло ручья у подножия скалы превращается в водоворот, который все увеличивается, расщепляется и кружится по мере движения воды вниз по течению, а струйка сигаретного дыма, что тихо вьется в воздухе, поднимаясь вверх над пепельницей, вдруг ускоряется и, достигнув критической скорости, распадается на бурные вихри. Порог турбулентности можно наблюдать и измерить в ходе лабораторных экспериментов; его тестируют для каждого крыла самолета или гребного винта при испытании в аэродинамической трубе. Тем не менее уловить его природу сложно. Как правило, полученным данным не хватает универсальности, - изучение методом проб и ошибок крыла «Боинга-707» ничего не дает для проектирования крыла истребителя «F-16». Даже суперкомпьютеры оказываются почти беспомощными перед лицом хаотичного движения вещества.

Представим, что нечто сотрясает жидкость, вызывая внутри нее волны. Жидкость обладает вязкостью, и по этой причине сообщенная ей при встряхивании энергия из нее уходит. Если перестать встряхивать жидкость, она придет в состояние покоя. Что же происходит, когда вы встряхиваете жидкость? В результате этой процедуры жидкости сообщается низкочастотная энергия, низкие частоты преобразуются в более высокие, порождая все более и более стремительные вихревые токи. Этот процесс, приводящий к рассеиванию энергии жидкости, был еще в 30-х годах рассмотрен А. Н. Колмогоровым. Он разработал математическое описание динамики вихрей, рассматривая их во все меньшем и меньшем масштабе - до тех пор пока не достиг предела, при котором вихри становились столь крошечными, что вязкость вещества на них уже не влияла.

Для большей наглядности Колмогоров представил, что вся жидкость состоит из небольших вихревых потоков и, таким образом, она везде одинакова. Подобное предположение об однородности неверно, о чем догадался еще Пуанкаре сорок лет назад, понаблюдав в бурной реке водяные завихрения, перемежавшиеся с участками спокойного течения. Таким образом, нестабильность течения локальна, и энергия фактически рассеивается лишь в части пространства. Если внимательно разглядывать турбулентный поток в любом масштабе, можно заметить, что обнаруживаются все новые и новые области спокойного течения. Таким образом, гипотеза об однородности уступает место предположению о прерывистости. Такое, отчасти идеализированное описание выглядит в высшей степени фрактальным, с чередующимися бурными и плавными зонами, которые заметны при любых масштабах, начиная от крупных и заканчивая мелкими. Но и эта картина в определенной мере представляет собой не полное отражение действительности.

Весьма близким к сформулированному выше, но в то же время самостоятельным является вопрос о том, что происходит с началом турбулентности. Каким образом поток жидкости пересекает границу между плавным и бурным? Какие промежуточные стадии пройдет турбулентность, прежде чем даст о себе знать в полной мере? На эти вопросы отвечала теория, звучавшая вполне резонно. Эта общепринятая парадигма своим появлением обязана Льву Давыдовичу Ландау, великому русскому ученому, чьи разработки в области гидродинамики до сих пор считаются одной из вершин физической науки. Модель Ландау являет собой нагромождение соревнующихся вихрей. Он предположил, что, когда в систему поступает больше энергии, в каждый момент времени возникает новая частота, не совместимая с предыдущей, словно скрипичная струна отзывается на усиление движения смычка звучанием второго диссонирующего тона, а затем - третьего, четвертого и т. д., до тех пор пока звуки не сольются в непостижимую какофонию.

Любое жидкое или газообразное вещество представляет собой совокупность единичных частиц-молекул, число которых столь велико, что может показаться бесконечным. Если бы каждая частица двигалась сама по себе, появилось бы бесконечно много вариантов движения жидкости (говоря научным языком, бесконечно много «степеней свободы»), и уравнения, описывающие движение, включали бы бесконечное количество переменных. Однако ничего подобного не происходит: движение каждой молекулы в значительной степени зависит от движения ее соседок, и степеней свободы (по крайней мере, при спокойном течении) может быть лишь несколько. Потенциально сложные движения остаются связанными, расположенные рядом частицы не расходятся вовсе или расходятся плавно и линейно, образуя аккуратные линии на фотографиях, сделанных в аэродинамической трубе. Частицы в струйке сигаретного дыма также некоторое время поднимаются вверх как единое целое.

Затем появляется возмущение, многообразие таинственных бурных порывов. Иногда такие движения даже получали имена: «осциллятор», «перекрестные ролики», «узел», «зигзаг», «вздутые вены» (какие бывают при варикозе). По мнению Ландау, возникающие нестабильные движения попросту скапливались, накладываясь одно на другое и создавая таким образом витки с частично совпадающими скоростями и размерами. Умозрительно такая общепринятая модель турбулентности, казалось, подходила под реальные факты, а на ее бесполезность с точки зрения математики посмотрели сквозь пальцы. Итак, Ландау, построив неразрешимую с математической точки зрения модель, сохранил свое достоинство ученого, но на взгляд практика это было полным банкротством.

Представим, что вода со слабым свистом медленно струится по трубке или течет внутри цилиндра. Мысленно увеличим давление, вызывая тем самым появление ритмичных колебаний вперед и назад. Жидкость медленно бьет в стенки трубки. Вновь нажмем на кнопку воображаемого прибора, увеличив давление. Неизвестно откуда появится вторая частота, не согласующаяся с первой. Дисгармонирующие ритмы, будто соревнуясь, накладываются друг на друга, и вот уже появилось довольно запутанное движение: волны ударяют о стенки трубки, перемешиваясь одна с другой так, что уловить их ритм невозможно. С ростом давления возникает третья, затем четвертая, пятая, шестая частоты, и все они не соответствуют друг другу, так что поток становится необычайно сложным. Возможно, это и есть турбулентность. Физики приняли такое объяснение, но ни один из них не мог предсказать, когда именно увеличение энергии повлечет возникновение новой частоты или какой она будет. Никто не разглядел этих таинственно появляющихся частот при проведении опыта, потому что теория Ландау о пороге турбулентности фактически не была еще испытана.


Теоретик проделывает эксперименты мысленно, а экспериментатору приходится еще и действовать руками. Теоретик - мыслитель, экспериментатор - ремесленник; первому не нужен помощник, второй вынужден «вербовать» студентов-выпускников, уговаривать механиков, обхаживать ассистентов лаборатории. Теоретик-чистюля работает там, где нет шума и грязи; экспериментатор же связан с объектом опыта так же тесно, как скульптор в мастерской, который часами прикован к бесформенной глине и старается то ласковым, то резким движением придать ей нужную форму. Теоретик может мысленно представлять своих коллег подобно наивному Ромео, грезящему о прекрасной Джульетте, а соратники экспериментатора, часами просиживающие в лаборатории, жалуются, курят, пьют кофе, потеют.

Эти двое нужны друг другу, однако в их отношения вкрадывается доля неравенства еще с тех древних времен, когда всякий ученый и размышлял, и ставил опыты одновременно. Хотя в некоторых, самых лучших экспериментаторах осталось что-то от теоретика, беседа ученых мужей явно не клеится. В конечном счете престиж теоретиков оказывается выше. Особенно ярко это проявляется в физике высоких энергий: теоретики буквально купаются в лучах славы, в то время как экспериментаторы становятся техниками высокой квалификации, имеющими дело с дорогостоящим и сложным оборудованием. В послевоенные десятилетия, когда блеск физики определяло исследование элементарных частиц, лучшими экспериментами стали те, что проводились на ускорителях частиц. Масса, заряд, спин, симметрия - эти абстракции зачаровывали тех, кто не принадлежал к академической среде, но пытался идти в ногу со временем, однако лишь для некоторых ученых изучение атомных частиц действительно являлось физикой. Переход к изучению все более и более мелких частиц в кратчайших временных промежутках требовал все более высокой энергии, а значит - модернизации оборудования. Экспериментальная ветвь физики элементарных частиц с годами прогрессировала, в ней трудилось множество ученых, над постановкой крупных опытов работали целые команды. Статьи по физике частиц в журнале «Физическое обозрение» всегда выделялись тем, что перечень авторов занимал едва ли не четверть публикации.

Некоторые экспериментаторы, впрочем, предпочитали работать в одиночестве, на худой конец вдвоем. В своих опытах они задействовали те вещества, которые были доступны. В то время как определенные разделы физической науки, вроде гидродинамики, утрачивали актуальность, физика твердого тела, наоборот, выходила на первый план. Подведомственная ей сфера исследований настолько расширилась, что название дисциплины следовало бы поменять на более точное - «физика конденсированного вещества», т. е. физика материалов. В этой области, надо сказать, оборудование было куда проще, а связь между теоретиками и экспериментаторами - намного прочнее. Первые не проявляли чрезмерного снобизма, а вторые не пытались от них обороняться.

При всем том они на многое смотрели по-разному. В частности, теоретик запросто мог, прервав доклад экспериментатора, осведомиться: «Нельзя ли сделать ваши данные более убедительными? Не кажется ли вам, что данный график несколько неясен? Не стоит ли измерить данную величину в более широких пределах, чтобы получить больший объем информации?»

В ответ Гарри Суинни, выпрямившись во весь рост (около пяти с половиной футов), мог произнести с природным очарованием уроженца Луизианы, в котором чувствовалась, однако, нью-йоркская вспыльчивость: «Факты соответствуют истине. Да, это правда, при условии, что мы имеем бесконечно много „чистых“ экспериментальных данных. - И, резко повернувшись к доске, добавить: - В действительности в нашем распоряжении лишь ограниченное количество информации, да и то с погрешностями».

Суинни ставил опыты с веществами. Еще будучи студентом Университета Джона Хопкинса он почувствовал пьянящее очарование физики частиц, и это стало для него поворотным пунктом в судьбе. Поговорив как-то с Марри Гелл-Маном, от которого буквально веяло энтузиазмом, Суинни не устоял, однако, наблюдая за работой старшекурсников, он обнаружил, что все они писали компьютерные программы или паяли искровые камеры. Именно тогда Суинни завязал знакомство с опытным физиком, который приступил к исследованию фазовых переходов от твердого тела к жидкости, от немагнитного вещества к магниту, от проводника к сверхпроводнику. Довольно долгое время Суинни ютился в небольшой комнатке; размером она была с чулан, зато начинающий ученый обитал там один. Он стал заказывать приборы по каталогу, и вскоре в его скромном жилище появился лабораторный стол, лазер, зонды и кое-какое холодильное оборудование. Суинни сконструировал прибор для измерения теплопроводности углекислого газа вблизи критической точки конденсации. Многие физики полагали, что изменения теплопроводности незначительны, однако, как обнаружил Суинни, то было заблуждение: теплопроводность менялась весьма в значительных пределах. Все это будоражило. Один, в крошечной комнатке, он сделал открытие, увидев потустороннее свечение паров вещества, любой субстанции, вблизи критической точки, - свечение, названное «опаловым» из-за беловатой опаловой окраски рассеивавшихся лучей.

Как и многие хаотичные по своей природе явления, фазовые переходы характеризуются особым типом макроскопичного поведения, предугадать которое, глядя на мельчайшие фрагменты, весьма сложно. При нагревании твердого тела его молекулы начинают вибрировать под действием поступающей энергии, они устремляются к поверхности, противодействуя связывающим их силам, и тем самым вызывают расширение объема вещества. Чем сильнее нагрев, тем больше расширяется вещество, и как лопается веревка после долгого растягивания, так и изменения становятся непредсказуемыми и прерывистыми при определенных давлении и температуре. Кристаллическая структура постепенно исчезает, и молекулы удаляются друг от друга, повинуясь законам, установленным для жидкости, которые нельзя вывести из закономерностей, определенных для твердого тела. Средняя энергия атома лишь слегка поменялась, однако вещество сейчас уже жидкость, магнит или сверхпроводник, т. е. приобрело новое качество.

Гюнтер Алерс в лабораториях корпорации «AT & Т Bell» в Нью-Джерси исследовал так называемый сверхжидкостный переход в жидком гелии, при котором по мере падения температуры твердое вещество превращается в жидкость с волшебными свойствами, не обнаруживающую явно выраженной вязкости или трения. Другие же занимались сверхпроводимостью. Суинни исследовал точку фазового перехода между жидкостью и паром. И он, и Алерс, Пьер Берг, Джерри Голлаб, Марцио Джиглио и другие экспериментаторы в США, Франции и Италии - новое поколение физиков, занимавшихся фазовыми переходами, - в середине 70-х годов искали новые объекты для исследований. Подобно тому как почтальон знает во всех подробностях все аллеи и дома своего участка, так и они знали назубок все особые признаки вещества, меняющего свое состояние. Они изучали предел равновесного состояния вещества.

Все исследователи фазовых переходов, почувствовав под собой коварную трясину сомнений, ступали на спасительные камни аналогии. Фазовый переход от немагнитного состояния к магнитному оказался подобен переходу «жидкость - пар». Переход от жидкости к сверхжидкости демонстрировал подобие переходу от проводника к сверхпроводнику. Математические вычисления, описывающие один опыт, применялись к множеству других, и в течение 70-х годов проблема была почти решена. Вопрос заключался лишь в том, сколь далеко можно распространить вновь созданную теорию. Какие иные изменения в окружающем нас мире при их ближайшем рассмотрении окажутся фазовыми переходами?

Использование технических приемов, практикуемых при изучении фазовых переходов, для исследования потоков жидкости нельзя назвать ни сверхоригинальной идеей, ни самоочевидным подходом.

На особую оригинальность он не мог претендовать, потому что еще в начале XX века величайшие ученые - пионеры гидродинамики Рейнольдс, Рэлей и их последователи - заметили, что в ходе тщательно контролируемого эксперимента с жидкостью движение ее качественно меняется, происходит разветвление, или бифуркация. Например, при нагревании снизу сосуда с жидкостью она из состояния покоя приходит в движение. Слишком велик был соблазн, и, поддавшись ему, специалисты предположили, что физическая природа бифуркации как раз и напоминает происходящее в веществе при фазовых переходах.

Очевидным подходом применение подобных методов не назовешь, в силу того что описанные выше бифуркации в жидкости не вызывали, как фазовые переходы, изменения в самой субстанции, но добавляли вместо этого новый элемент - движение. Жидкость из состояния покоя переходит к движению. И по какой причине математическое описание подобных перемен должно соответствовать уравнениям для конденсирующегося пара?


В 1973 г. Суинни преподавал в городском колледже Нью-Йорка, а Джерри Голлаб - серьезный, но временами впадавший в ребячество выпускник Гарварда - работал в Хаверфорде, что на юго-востоке Пенсильвании. Тамошнее учебное заведение, буколический сельский колледж гуманитарных наук близ Филадельфии, был наиболее подходящим местом, чтобы угробить карьеру физика. Некому было поручить работу в лаборатории или иные функции, доверяемые ментором своим протеже, - выпускников попросту не хватало. Все же Голлабу нравилось преподавать физику студентам последнего курса, и он начал преобразование физического факультета в центр, широко известный высоким качеством своих экспериментов. Тогда же, взяв оплачиваемый семестровый отпуск, он уехал в Нью-Йорк для совместной работы с Гарри Суинни.

Помня об аналогии фазовых переходов и неустойчивости, наблюдающейся в жидкости, коллеги решили заняться классической системой - жидкостью, ограниченной пространством между двумя вертикальными цилиндрами. Один из них вращался внутри другого, заставляя жидкость двигаться между двумя поверхностями. Таким образом ограничивалось возможное движение вещества в пространстве, в отличие от струй, которые остаются после движения судна в море. Вращающиеся цилиндры воспроизводили так называемый поток Куэте - Тэйлора. Как правило, для удобства внутренний цилиндр вертится внутри закрепленного остова. Когда вращение начинается, набирая скорость, появляются первые признаки неустойчивости: жидкость образует изящный рисунок, напоминающий пучки трубок, и затем вокруг цилиндра появляются, одна над другой, размытые, похожие на ленты, зоны. Частицы жидкости движутся не только в направлении вращения цилиндра, но также совершают движение вверх и вниз, вращаясь вокруг указанных выше зон. Подобное их поведение уже было рассмотрено Дж. И. Тэйлором, который увидел и измерил количественные характеристики этого явления в 1923 г.

Для изучения потока Куэте ученые сконструировали аппарат, помещавшийся на письменном столе и представлявший собой два цилиндра. Внешний стеклянный цилиндр походил на узкую банку для теннисных шариков высотой в фут и диаметром в два дюйма. Внутрь него аккуратно помещался второй стальной цилиндр, оставлявший для воды пространство примерно в одну восьмую дюйма. «Это была весьма волнующая история, - вспоминал Фримен Дайсон, один из невольных очевидцев событий следующих месяцев. - Два этих джентльмена в тесной комнатке, оборудованной под лабораторию, почти без денег, ставят прекрасный опыт, который ознаменовал начало полноценных исследований феномена турбулентности».

Оба исследователя помнили о своей научной задаче, решение которой вскоре будет вознаграждено традиционными аплодисментами и быстро предано забвению. Суинни и Голлаб намеревались подтвердить идею Ландау о пороге турбулентности, и эксперименты не давали ни малейшего повода в ней сомневаться. К тому же было известно, что физики, занимавшиеся гидродинамикой, с доверием относятся к соображениям Ландау. Сами физики, Суинни и Голлаб тоже симпатизировали этой теории, потому что она соответствовала общей картине фазовых переходов. Ландау выработал достаточно эффективную схему для их изучения, основываясь на убеждении, что подобные явления должны подчиняться универсальным законам и что они не связаны со спецификой конкретных веществ. Когда Гарри Суинни изучал критическую точку конденсации углекислого газа, он, как и Ландау, был убежден, что его открытия можно будет применить к критической точке конденсации ксенона, и оказался прав. Действительно, почему бы турбулентности не быть устойчивым ансамблем сталкивающихся волн в движущейся жидкости?

Для того чтобы справиться с бурным движением жидкости, Суинни и Голлаб заготовили целый арсенал искусных методов, отточенных за годы изучения фазовых переходов при весьма непростых обстоятельствах. У них имелись такая методика исследований и такие измерительные приборы, о которых рядовой физик не мог даже и мечтать. Для изучения кружащихся потоков они применяли лазер. Луч, светящий сквозь воду, преломлялся или рассеивался, что поддавалось измерению методом лазерной допплеровской интерферометрии. Полученную информацию хранили и обрабатывали с помощью компьютера, который тогда, в 1975 г., был большой редкостью на столах экспериментаторов.

Ландау отмечал, что по мере возрастания потока возникают новые частоты, каждая в отдельный промежуток времени. «Мы знали об этом, - вспоминал позже Суинни, - и решили, что будем наблюдать за переходами, чтобы заметить, где именно появятся такие частоты. И мы наблюдали - в полной уверенности, что переход определен вполне ясно. Мы инициировали фазовый переход в обе стороны, то увеличивая, то уменьшая скорость вращения цилиндров, и все так и вышло».

Отчитываясь о результатах проделанной работы, Суинни и Голлаб столкнулись с тем, что между сферой чистой физики и областью гидродинамики существовала некая, весьма живая и подвижная, граница. Она, в частности, определяла, какой из многочисленных отделов Национального научного фонда должен финансировать исследования. К началу 80-х годов эксперимент Куэте - Тэйлора вновь вошел в область физики, однако в 1973 г. его считали чистой воды гидродинамикой, а специалистам этой сферы первые результаты, полученные двумя физиками в небольшой лаборатории, показались подозрительно ясными. Им просто не поверили. Ведь те, кто всю жизнь посвятил гидродинамике, совсем не привыкли к опытам, повторявшим исследования в физике фазовых переходов. Более того, с позиций гидродинамики уяснить теоретическую подоплеку опытов представлялось весьма сложным. Обратившись в очередной раз в Национальный научный фонд с просьбой о финансировании, Суинни и Голлаб получили отказ. Некоторые из экспертов просто не зачли их результаты, а другие посчитали, что в результатах отсутствует какая-либо новизна.

Но работа ни на минуту не прекращалась. «Налицо был качественно определенный переход, - говорил Суинни, - и мы сочли это необыкновенной удачей. А затем вновь двинулись вперед, искать следующий».

И вдруг последовательность, о которой писал Ландау, разрушилась. Эксперимент не подтвердил теорию. При следующем переходе поток «перепрыгнул» к состоянию беспорядочности, не обнаружив сколько-нибудь заметных циклов: ни новых частот, ни постепенного увеличения беспорядочных фрагментов. Ничего. «Все, что мы обнаружили, так это то, что он внезапно стал хаотичным». Несколько месяцев спустя на пороге лаборатории появился худощавый, обаятельный европеец.


Давид Руэлль любил повторять, что существуют два типа физиков: ученые первого типа выросли, разбирая радиоприемники (до появления физики твердого тела можно было, уставившись на провода и светящиеся теплым светом вакуумные лампы, представлять себе потоки электронов), а те, кто принадлежал ко второму разряду, любили возиться с химическими реактивами. Сам Руэлль, родившийся и выросший на севере Бельгии, принадлежал как раз ко второму типу и всем игрушкам предпочитал наборы химика - даже не наборы в нынешнем смысле этого слова, а просто химикаты, неважно, взрывчатые или ядовитые, которыми его щедро снабжал местный аптекарь. Юный Давид смешивал, взбалтывал, нагревал, кристаллизировал и иногда даже взрывал все это богатство. Он родился в Генте в 1935 г. Его мать работала тренером по гимнастике, отец занимал должность профессора лингвистики в университете. И хотя юноша сделал карьеру весьма в далеком от обыденности мире науки, его всегда привлекала мистическая сторона природы, спрятавшей свои загадки в спорах губчатых грибов, селитре, зеленовато-желтой сере и древесном угле.

Математическая физика стала той областью, где Руэлль внес значительный вклад в открытие хаоса. К началу 70-х годов он работал в Институте высших научных исследований - учебном заведении в пригороде Парижа, основанном по образцу Института перспективных исследований в Принстоне. У него уже появилась привычка, сохранившаяся на всю жизнь: время от времени он оставлял семью и работу, чтобы с рюкзаком за спиной побродить в безлюдье Исландии или сельских районах Мексики. Порой он встречал людей, даривших ему свое радушие и гостеприимство. Разделяя с ними скромную трапезу из маисовых лепешек, мяса и овощей, ученый думал, что видит мир таким, каким тот был два тысячелетия назад. Вернувшись в институт, он снова с головой погружался в исследования. Коллеги замечали, как исхудало его лицо, как резко выступает линия бровей, как заострился подбородок. Руэлль слушал лекции Стива Смэйла о «подкове» и хаотическом потенциале динамических систем. Он размышлял о турбулентности в жидкостях и классической схеме Ландау, подозревая, что все это каким-то образом соотносится, но в то же время и противоречит друг другу.

Ученый раньше никогда не работал с потоками жидкости, но это совсем не отбило охоту к исследованиям, так же как и не обескураживало его менее удачливых предшественников. «Новое открывают, как правило, непрофессионалы, - говорил он. - На самом деле не существует сложной и глубокой теории турбулентности. Все, что мы можем выяснить о ней, имеет более общую природу, а посему доступно и людям, ранее этим не занимавшимся». Не составляло труда понять, почему турбулентность не поддавалась анализу, - поведение потоков жидкости описывали нелинейные дифференциальные уравнения, в большинстве своем нерешаемые. И все же Руэлль разработал весьма абстрактную альтернативу схеме Ландау, изложенную на языке Смэйла, где пространство использовалось как податливый материал, который можно сжать, вытянуть и согнуть, образовав формы типа «подковы». Работа была написана в Институте высших научных исследований, с перерывом на визиты к голландскому математику Флорису Такенсу, и опубликована совместно в 1971 г. В стиле статьи нельзя было ошибиться. Она являла собой чистую математику (заметьте, вышедшую из-под пера физика!) и содержала определения, теоремы и доказательства , за которыми с неизбежностью следовало: Допустим… Вот один из примеров: «Доказательство (5.2.). Допустим, что Х ? есть однопараметрическое семейство C k векторных полей в Гильбертовом пространстве H , таком, что…»


И все же в заголовке публикации, которая называлась «О природе турбулентности», прослеживалась связь с реальным миром и чувствовалось нарочитое созвучие с названием знаменитой работы Ландау «К вопросу о турбулентности». Руэлль и Такенс явно желали уйти гораздо дальше математики, пытаясь предложить альтернативу традиционным взглядам на порог турбулентности. Они предположили, что источником всего сложного в турбулентности является не наложение частот, ведущих к появлению бесконечного множества независимых и перекрывающих друг друга движений жидкости, а всего лишь три отдельных движения. Кое-что в их логике казалось весьма смутным, заимствованным, да и попросту неверным, или тем, другим и третьим сразу - пятнадцать лет спустя мнения на сей счет еще расходились.

Тем не менее глубокая проницательность, комментарии, заметки на полях и вкрапления из физики сделали работу объектом внимания на долгие годы. Наиболее соблазнительным казался образ, окрещенный авторами странным аттрактором . Это название было суггестивным, как говорят психоаналитики, т. е. самим своим звучанием рождало подсознательные ассоциации, что Руэлль ощутил позднее. Термин «странный аттрактор» приобрел такую популярность у исследователей хаоса, что Такенс и Руэлль потом оспаривали друг у друга авторство. Ни тот ни другой не могли отчетливо припомнить, кто первый использовал термин. Такенс - высокий, румяный и неистовый норманн - временами ронял: «Вам когда-нибудь доводилось спрашивать у Господа, как он создал эту чертову Вселенную?.. Я ничего не помню… Творю, не запоминая подробностей этого процесса». На что Руэлль, главный из соавторов, мягко замечал: «Разные люди и работают по-разному. Некоторым людям следовало бы писать статьи в одиночку, чтобы затем единолично пожинать лавры».

Странный аттрактор обитает в фазовом пространстве - одном из удивительнейших изобретений современной науки. Фазовое пространство делает возможным превращение чисел в изображения, извлекая даже малую толику существенной информации из движущихся систем, механических или жидкостных, и наглядно демонстрируя все их возможности. Физики уже имели дело с двумя более или менее простыми типами аттракторов - фиксированными точками и замкнутыми кривыми, описывающими поведение таких систем, которые достигли устойчивого состояния или непрерывно себя повторяют.

В фазовом пространстве все известные данные о динамической системе в каждый момент времени концентрируются в одной точке, которая и представляет собой данную систему в кратчайшем временном отрезке. В следующее мгновение система уже претерпит изменения, пусть даже совсем незначительные, и точка изменит свое местонахождение. Всю длительность существования системы можно изобразить на графике, следя за перемещениями точки с течением времени и наблюдая за ее орбитой в фазовом пространстве.

Но как же все данные о сложнейшей системе могут быть представлены лишь в одной точке? Если система характеризуется двумя переменными, найти ответ не составляет труда, он напрямую вытекает из Евклидовой геометрии, преподаваемой в средней школе: одна из переменных располагается на горизонтальной оси x , а другая - на вертикальной оси y . Если же система представляет собой качающийся маятник, свободный от действия силы трения, то одна из переменных является его положением в пространстве, а другая - скоростью. Они непрерывно меняются, образуя линию из точек, которая изгибается петлей, вновь и вновь повторяющей саму себя. Та же система, но обладающая более высокой энергией, раскачивающаяся быстрее и дальше, образует в фазовом пространстве петлю, схожую с первой, но большую по размерам.

Впрочем, столкнувшись с одним из проявлений реальности - трением, система начинает претерпевать изменения. Чтобы описать поведение маятника, подверженного трению, не нужны уравнения движения: каждое его колебание фактически заканчивается на одном и том же месте, в центре, откуда начиналось движение, и скорость его в эти моменты равна нулю. Данная центральная фиксированная зона как бы «притягивает» колебания. Вместо того чтобы вечно чертить на графике петли, орбита маятника спиралью закручивается внутрь. Трение рассеивает энергию системы, что в фазовом пространстве выглядит как толчок к центру. Наблюдается движение из внешних зон с высокой энергией к внутренним зонам с низкой энергией. Аттрактор - простейший из возможных - подобен магниту величиной с булавочную головку, встроенному в лист резины.

Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, словно муха, летающая по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто предположить, что пределы комнаты ограничены и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мушки образует петлю, и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. Ученый, взглянув на фазовую картину, мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.

Даже при наличии двух переменных изображения в фазовом пространстве могли еще многим удивить. Даже на мониторах настольных компьютеров можно было построить кое-какие из них, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать видеопленки, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, - «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную «степень свободы», и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, являлись однопространственными. Они позволяли обойтись одним числом - значением температуры или численности популяции, которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Развернутая система Лоренца, описывавшая конвекцию в жидкостях, имела три измерения, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.

Даже топологу с самой развитой фантазией нелегко представить пространства, обладающее четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений. Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с буйным, необоримым чудищем турбулентности, которому присущи многообразие форм, неопределенное число «степеней свободы», бесконечное количество измерений?

Физики имели вполне вескую причину, чтобы с неприязнью относиться к модели, поведение которой столь неясно. Используя нелинейные уравнения, описывающие движения жидкости, мощнейшие суперкомпьютеры мира не могли точно проследить турбулентный поток даже одного кубического сантиметра жидкости в течение нескольких секунд. Конечно, виновата в этом больше природа, нежели Ландау, тем не менее предложенная советским ученым схема производила эффект «поглаживания против шерсти». Даже не имея сколько-нибудь солидных знаний, физик вполне мог заподозрить, что феномен не поддается интерпретации. Подобное ощущение выразил словами великий теоретик квантовой физики Ричард Филлипс Фейнман: «Меня всегда беспокоило, что согласно законам в их современном понимании вычислительной машине нужно выполнить бесчисленное количество логических операций, чтобы выяснилось, что же происходит в пространстве и времени, независимо от того, насколько малым является это пространство и сколь коротким - время. Как подобное может случаться в таком маленьком пространстве? Почему требуется столько усилий, чтобы выяснить наконец, какова дальнейшая судьба отрезка времени или капельки пространства?»


Рис. 5.1. Новый способ изучения маятника.

Одна лишь точка в фазовом пространстве (справа) передает всю информацию о состоянии динамической системы в конкретный момент времени (слева) . Для простого маятника достаточно двух чисел, представляющих его скорость и местоположение.


Точки образуют траекторию, которая позволяет наглядно представить непрерывное поведение динамической системы в течение длительного периода времени. Повторяющаяся «петля» отображает систему, которая всегда воспроизводит одно и то же свое состояние. Если повторяющееся поведение устойчиво, как у часов с маятником, система при незначительных помехах возвращается к прежней орбите движения. В фазовом пространстве траектории вблизи орбиты как бы вовлечены в нее, а сама орбита является аттрактором.


Рис. 5.2. Аттрактор может являть собой одну-единственную точку. В случае с маятником, непрерывно теряющим энергию на трение, все траектории имеют форму спирали, закручивающейся внутрь, по направлению к точке, в которой система устойчива, - в таком случае движения не наблюдается вообще.


Как и многие из тех, кто занимался хаосом, Давид Руэлль подозревал, что видимые в турбулентном потоке объекты: перепутанные струи, спиральные водовороты, волшебные завитки, появляющиеся и вновь исчезающие, - должны отражать то, что объяснялось законами физики, но еще принадлежало к сфере таинственного и неоткрытого. В его понимании рассеивание энергии в турбулентном потоке должно было вести к своеобразному сокращению фазового пространства, притягиванию к аттрактору. Бесспорно, последний не оставался неподвижной точкой, поскольку поток никогда не приходил в состояние покоя, - энергия поступала в систему и уходила из нее. Каким еще мог быть аттрактор? Помимо описанного, согласно догмату, существовал лишь один возможный тип - периодический аттрактор, или замкнутая кривая, орбита, притягивающая все близлежащие орбиты. Если маятник получает энергию от подвеса и теряет ее из-за трения, то устойчивая орбита может представлять собой замкнутую петлю в фазовом пространстве, отражающую, например, регулярные колебательные движения маятника дедушкиных часов. Неважно, где именно начнет двигаться маятник, в конечном счете он придет именно к данной орбите. Но придет ли? В силу неких начальных условий (а они характеризуются минимумом энергии) маятник остановится. Таким образом, получается, что система в действительности имеет два аттрактора, один из которых является замкнутой петлей, а другой - фиксированной точкой. Каждый из аттракторов имеет собственную «нишу» в фазовом пространстве. В целом это напоминает две речные долины, разграниченные водоразделом.

В короткий период времени каждая точка фазового пространства может означать возможное поведение динамической системы. При изучении долгосрочной перспективы единственными моделями поведения становятся сами аттракторы. Все иные типы движения преходящи. По определению, аттракторам присуще важнейшее качество - устойчивость. В реальной системе, где движущиеся элементы сталкиваются и раскачиваются из-за помех окружающей среды, движение обычно возвращается к аттрактору. Толчок способен ненадолго исказить траекторию, однако возникающие случайные движения быстро исчезают, - даже если вдруг кошка заденет часы с маятником, минута не увеличится до шестидесяти двух секунд. Однако турбулентность в жидкостях - явление иного порядка, никогда не порождающее единичный ритм. Известное свойство такого явления заключается в том, что в данный момент времени наблюдается весь спектр возможных колебаний. Турбулентность можно сравнить с «белым шумом» или статикой. Могла ли простая детерминистская система уравнений описывать подобный феномен?

Руэлль и Такенс задались вопросом, обладает ли какой-либо иной тип аттрактора подходящим набором характеристик: устойчивостью, малым числом измерений, непериодичностью. Устойчивость означала достижение конечного состояния системы вопреки всем помехам в полном шумов мире. Малое число измерений предполагало, что орбита в фазовом пространстве должна представлять собой прямоугольник или форму типа коробки, обладающие лишь несколькими степенями свободы. Непериодичность подразумевала отсутствие повторений - ничего общего с монотонным тиканьем старых часов. С геометрической точки зрения вопрос казался чистой воды головоломкой. Какой вид должна иметь орбита, изображаемая в ограниченном пространстве, чтобы она никогда не повторяла и не пересекала саму себя? Ведь система, вернувшаяся в свое прежнее состояние, согласно принятой модели, должна следовать по своему обычному пути. Чтобы воспроизвести каждый ритм, орбита должна являть собой бесконечно длинную линию на ограниченной площади. Другими словами, она должна стать фрактальной.

Исходя из математических резонов, Руэлль и Такенс провозгласили, что описанный феномен должен существовать. Хотя они никогда не видели и не изображали его, одного заявления оказалось довольно. Впоследствии, выступая с речью на пленарном заседании Международного конгресса математиков в Варшаве, Руэлль заявил: «Научное сообщество весьма прохладно отнеслось к нашему предположению. Упоминание о том, что непрерывный спектр будет ассоциироваться с незначительным числом „степеней свободы“, многие физики посчитали просто ересью». Но были и другие - горсточка, не больше. Почувствовав всю значимость вышедшей в 1971 г. работы, они стали описывать то, что в ней подразумевалось.


На самом же деле к 1971 г. в научной литературе уже имелся один небольшой набросок того невообразимого чудовища, которое пытались оживить Руэлль и Такенс.


Рис. 5.3. Первый странный аттрактор. В 1963 г. Эдвард Лоренц смог вычислить только первые несколько элементов аттрактора для своей простой системы уравнений. Однако он понял, что «прослойка» двух спиральных крылообразных форм должна иметь необычную структуру, неразличимую в малых масштабах.


Эдвард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 г. Этот образ представлял собой сложную конструкцию из двух кривых, одна внутри другой, справа и пяти кривых слева. Лишь для схематичного изображения этих семи «петель» потребовалось пятьсот математических операций, с успехом выполненных компьютером. Точка, двигаясь вдоль указанной траектории в фазовом пространстве, демонстрировала медленное хаотичное вращение потоков жидкости, что описывалось тремя уравнениями Лоренца для явления конвекции. Поскольку система характеризовалась тремя независимыми переменными, данный аттрактор лежал в трехмерном фазовом пространстве. И хотя изображен был лишь его фрагмент, Лоренц смог увидеть гораздо больше: нечто вроде двойной спирали, крыльев бабочки, сотканных с удивительным мастерством. Когда увеличение количества теплоты в системе Лоренца вызывало движение жидкости в одном направлении, точка находилась в правом «крыле», при остановке течения и его повороте точка перемещалась на другую сторону.

Аттрактор был устойчивым, непериодическим, имел малое число измерений и никогда не пересекал сам себя. Если бы подобное случилось и он возвратился бы в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя периодичную петлю, но такого не происходило. В этом-то и заключалась странная прелесть аттрактора: являвшиеся взору петли и спирали казались бесконечно глубокими, никогда до конца не соединявшимися и не пересекавшимися. Тем не менее они оставались внутри пространства, имевшего свой предел и ограниченного рамками коробки. Почему такое стало возможным? Как может бесконечное множество траекторий лежать в ограниченном пространстве?

До того как изображения фракталов Мандельбро буквально наводнили научный мир, представить себе особенности построений подобных форм казалось весьма трудным. Сам Лоренц признавал, что в его собственном экспериментальном описании присутствовало «явное противоречие». «Очень непросто слить две поверхности, если каждая содержит спираль и траектории не стыкуются», - сетовал ученый. Однако в массе компьютерных вычислений он все же разглядел слабо просматривавшееся решение. Лоренц понял, что, когда спирали явно начинали соединяться, поверхности должны были делиться, образуя отдельные слои, словно в стопке писчей бумаги. «Мы видим, что каждая поверхность состоит на самом деле из двух поверхностей, так что, когда они сходятся, появляется уже четыре. Продолжая подобную процедуру, заметим, что возникает восемь поверхностей и т. д. В итоге мы можем заключить, что налицо бесконечное множество поверхностей, каждая из которых находится чрезвычайно близко к одной из двух соединяющихся поверхностей». Не удивительно, что в 1963 г. метеорологи оставили подобные рассуждения без внимания. Десятилетие спустя Руэлль, узнав о труде Лоренца, был буквально ошеломлен. Впоследствии он посетил Лоренца, однако вынес из этой встречи чувство легкого разочарования. Общие научные интересы исследователи обсуждали совсем недолго; с характерной для него робостью Лоренц избегал полемики и постарался придать визиту светский характер: ученые с женами посетили художественный музей.

Пытаясь отыскать ключи к решению загадки, Руэлль и Такенс пошли двумя путями. В частности, они попытались дать теоретическое обоснование странных аттракторов. Являлся ли аттрактор Лоренца типичным? Возможны ли какие-то иные формы? Второй тропинкой, по которой пошли ученые, стала экспериментальная деятельность. Она преследовала цель подтвердить или опровергнуть весьма далекое от математики убеждение, что странные аттракторы применимы к хаосу в природе.

В Японии исследование электронных схем, имитировавших колебание механических струн, но в ускоренном темпе, привело Иошисуке Уэда к обнаружению последовательности невероятно прекрасных странных аттракторов. В Германии Отто Рёсслер, непрактикующий доктор медицины, пришедший к исследованию хаоса через химию и теоретическую биологию, попробовал взглянуть на странные аттракторы сквозь призму философии, оставив математику на втором плане. Его имя стало ассоциироваться с одним из простейших аттракторов - узкой лентой со сгибом, которую изучали довольно широко в силу легкости ее построения. Однако ученый облек в зримую форму и аттракторы с большим числом измерений. «Представьте сосиску, внутри которой заключены, одна в другой, еще сосиски, - говорил он. - Выньте ее, сверните, сожмите и положите обратно». Действительно, сгибание и сжатие пространства оказались ключом к построению странных аттракторов и, возможно, даже к динамике порождавших их реальных систем. Рёсслер чувствовал, что эти формы олицетворяли принцип самоорганизации окружающего мира. Его воображению рисовалось нечто вроде ветроуказателя на аэродроме. «Замкнутый с одного конца рукав с отверстием на другом конце, куда рвется ветер, - разъяснял исследователь. - Вдруг ветер оказался в ловушке. Его энергия совершает нечто продуктивное, подобно дьяволу в средневековой истории. Принцип таков, что природа делает что-то против своей воли и, запутавшись сама в себе, рождает красоту».

Создание изображений странных аттракторов вряд ли можно назвать обычным делом. Запутанные пути орбит вьются сквозь три и более измерений, образуя в пространстве темный клубок, который похож на детские каракули и наделен внутренней структурой, невидимой извне. Чтобы представить подобную трехмерную «паутину» в виде плоских картин, ученые сначала применили технику проекции. Рисунок являл собой тень, отбрасываемую аттрактором на поверхность. Однако, если странные аттракторы довольно сложны, проекция смазывает все детали, и взору предстает путаница, которую почти невозможно расшифровать. Более эффективная техника заключается в построении так называемой обратной схемы, или схемы (сечения) Пуанкаре . Суть ее сводится к отделению «ломтика» запутанной сердцевины аттрактора и перенесению его в двухмерное пространство, подобно тому как патологоанатом помещает срез ткани на предметное стекло микроскопа.

Схема Пуанкаре лишает аттрактор одного измерения и превращает непрерывную линию в совокупность точек. Преобразуя аттрактор в схему Пуанкаре, ученый ни на минуту не сомневается, что сохранит самую суть движения. Он может вообразить, к примеру, что странный аттрактор вьется, словно пчела, у него перед глазами и орбиты аттрактора перемещаются вверх и вниз, влево и вправо, взад и вперед по дисплею компьютера, и каждый раз, когда орбита аттрактора пересекает плоскость экрана, она оставляет светящуюся точку в месте пересечения. Такие точки либо образуют похожее на кляксу пятно произвольной формы, либо начинают вычерчивать некий контур на экране.

Описанный выше процесс соответствует отбору образцов состояния системы, который ведется не постоянно, а лишь время от времени. Когда брать пробу, т. е. из какой области странного аттрактора вырезать ломтик, - дело исследователя. Временной интервал, в котором содержится наибольшее количество информации, должен соответствовать некоему физическому свойству динамической системы. Например, на схеме Пуанкаре можно отражать скорость отвеса маятника каждый раз, когда он проходит через самую низкую точку. Или экспериментатор волен выбрать определенный регулярный промежуток времени, «замораживая» последовательные состояния во вспышках воображаемого света, исходящего из стробоскопического источника. В любом случае в получаемых изображениях проявится в конце концов изящная фрактальная структура, о которой догадывался Эдвард Лоренц.


Рис. 5.4. Структура аттрактора. Странный аттрактор, как показано на верхних рисунках, сначала имеет одну орбиту, затем десять, затем сто. Он описывает хаотичное поведение ротора-маятника, колеблющегося по всему кругу и регулярно приводимого в движение притоком энергии. Через некоторое время, когда на рисунке появится тысяча орбит (ниже) , аттрактор превратится в запутанный клубок. Чтобы можно было исследовать его внутреннее строение, компьютер делает поперечный срез аттрактора - так называемое сечение Пуанкаре (рисунок в рамке) . Этот прием уменьшает число измерений с трех до двух. Каждый раз, когда траектория пересекает плоскость, она оставляет на ней точку. Постепенно возникает весьма детализированный образ. Показанный здесь образец состоит более чем из восьми тысяч точек, каждая из которых находится на орбите, окружающей аттрактор. Фактически система замеряется в регулярные промежутки. Одни данные утрачиваются, зато другие выявляются во всем их разнообразии.


Наиболее доступный для понимания и самый простой странный аттрактор был построен человеком, весьма далеким от загадок турбулентности и гидродинамики, - астрономом Мишелем Эноном из обсерватории Ниццы на южном побережье Франции. Бесспорно, в каком-то отношении астрономия дала толчок изучению динамических систем. Планеты, двигающиеся с точностью часового механизма, обеспечили триумф Ньютона и вдохновили Лапласа. Однако небесная механика значительно отличалась от земной: земные системы, теряющие энергию на трение, являются диссипативными, чего нельзя сказать об астрономических, считающихся консервативными, или гамильтонианскими. На самом же деле в масштабе, близком к бесконечно малому, даже в астрономических системах наблюдается нечто вроде торможения. Оно происходит, когда звезды излучают энергию, а трение приливно-отливного характера истощает кинетическую энергию движущихся по орбитам небесных тел. Однако для практического удобства астрономы в своих вычислениях пренебрегают рассеиванием, а без него фазовое пространство не будет складываться и сжиматься так, чтобы образовалось бесконечное множество фрактальных слоев. Странный аттрактор не может возникнуть. А хаос?

Не один астроном сделал карьеру, обойдя стороной динамические системы, но не таков был Энон. Он родился в Париже в 1931 г., всего на несколько лет позже Лоренца. Энон тоже являл собой тип ученого, которого неумолимо влечет к математике. Ему нравилось решать небольшие конкретные вопросы, которые могли быть привязаны к определенным физическим проблемам, - по его собственному выражению, «не то, что делают современные математики». Когда компьютеры стали доступны даже любителям, машина появилась и у Энона. Собрав ее собственноручно, ученый наслаждался компьютерными забавами. Кстати, задолго до описываемых событий он исследовал особенно сложную проблему из области гидродинамики. Она касалась сферических кластеров - шаровидных скоплений звезд, в которых число светил доходило до миллиона. Это древнейшие и наиболее интересные объекты ночного неба. Плотность их внушает изумление. Как такое огромное количество звезд сосуществует в ограниченном объеме пространства и эволюционирует во времени, астрономы пытались выяснить в течение всего XX века.

С точки зрения динамики, сферический кластер, включающий в себя множество тел, представляет собой довольно важный предмет исследования. Когда речь идет о паре объектов, особых сложностей не возникает - Ньютон полностью разрешил эту проблему: каждое из пары тел, например Земля и Луна, описывает идеальный эллипс вокруг общего центра тяжести системы. Но добавьте хотя бы еще один обладающий тяготением объект, и все изменится. Задача, в которой фигурируют три тела, уже более чем трудна. Как показал Пуанкаре, в большинстве случаев она неразрешима. Можно просчитать орбиты для некоторого временного интервала, а с помощью мощных вычислительных машин удается проследить их в течение более длительного периода, пока не возникнут помехи, однако уравнения аналитически не решаются, т. е. долгосрочный прогноз поведения системы из трех тел выполнить невозможно. Устойчива ли Солнечная система? Конечно, ей присуще подобное свойство, но даже сегодня никто не уверен в том, что орбиты некоторых планет не изменятся до неузнаваемости, заставив небесные тела навсегда покинуть Солнце.

Система вроде сферического кластера слишком запутанна, чтобы подходить к ней столь прямолинейно, как к вопросу о трех телах. Однако динамику кластера можно изучить, прибегнув к некоторым хитростям. Вполне допустимо, в частности, рассматривать единичные звезды, путешествующие в пространстве, в некотором усредненном гравитационном поле с определенным центром тяготения. Время от времени две звезды подойдут друг к другу достаточно близко, и в таком случае каждое из взаимодействующих тел следует рассматривать уже по отдельности. Астрономы поняли, что сферические кластеры вообще не должны являться устойчивыми: внутри них обычно образуются так называемые бинарные звездные системы, в которых звезды парами перемещаются по небольшим компактным орбитам. Когда с подобной системой сталкивается третья звезда, одна из трех, как правило, получает резкий толчок. Со временем энергия, полученная ею благодаря такому взаимодействию, достигнет уровня, достаточного для того, чтобы звезда набрала скорость, позволяющую вырваться из кластера. Таким образом одно из тел покидает систему, а пространство кластера после этого слегка сжимается. Когда Энон выбрал кластер темой своей докторской диссертации, он произвольно предположил, что сферическое звездное скопление, изменив свой масштаб, останется внутренне подобным. Произведя расчеты, ученый получил потрясающий результат: ядро кластера «сплющится», приобретая кинетическую энергию и стремясь к бесконечно плотному состоянию. Подобное трудно было вообразить. Да и данные исследования кластеров, полученные к тому времени, не подтверждали этот вывод. Однако теория Энона, впоследствии названная гравитационно-термальным коллапсом, постепенно овладевала умами ученых.

Ободренный результатом и готовый к неожиданностям, весьма вероятным в научной работе, астроном занялся более легкими вопросами динамики звезд. Он попытался применить математический подход к давно известным задачам. Посетив в 1962 г. Принстонский университет, Энон впервые получил доступ к компьютеру и, подобно Лоренцу в Массачусетском технологическом институте, начал моделировать орбиты звезд вокруг их центров тяжести. В рамках разумного упрощения галактические орбиты можно рассматривать как орбиты планет, но с одним лишь исключением: центром гравитации здесь является не точка, а трехмерный диск.

Энон пошел на компромисс. «Для большей свободы исследований, - говорил он, - забудем на мгновение, что проблема взята из астрономии». Хотя ученый не упомянул об этом, «свобода исследования» частично означала возможность использования компьютера. Объем памяти его вычислительной машины, весьма тугодумной, был в тысячу раз меньше, чем у персональных компьютеров, появившихся двадцать пять лет спустя. Но, как и другие специалисты, позднее работавшие над проблемами хаоса, Энон полагал, что упрощенный подход себя полностью оправдает. Концентрируясь лишь на самой сути своей системы, он сделал открытия, которые можно было применить и к другим, более сложным системам. Спустя несколько лет расчет галактических орбит все еще считался «забавой теоретиков», тем не менее динамика звездных систем превратилась в объект скрупулезных и дорогостоящих исследований. К ней обратились в основном те, кого интересовали орбиты частиц в ускорителях и стабилизация плазмы в магнитном поле.

За период около 200 миллионов лет звездные орбиты в галактиках обретают три измерения, уже не образуя эллипсов совершенной формы. Реально существующие трехмерные орбиты наглядно представить так же непросто, как и воображаемые конструкции в фазовом пространстве. Это побудило Энона прибегнуть к приему, сравнимому с составлением схем Пуанкаре: ученый вообразил, что на одном конце галактики вертикально расположили плоский лист таким образом, чтобы каждая орбита, подобно лошади, минующей на скачках финишную черту, проходила сквозь него. Энон отмечал точку, в которой орбита пересекала плоскость, и прослеживал движение точки от одной орбиты к другой.

Энон отмечал точки вручную, но многие специалисты, применявшие подобную технику, уже работали с компьютером, наблюдая, как точки вспыхивают на экране, словно фонари, зажигающиеся один за другим с наступлением сумерек. Типичная орбита начиналась с точки в левом нижнем углу изображения, затем, при следующем обороте, точка на несколько дюймов смещалась вправо, новый оборот слегка отклонял ее вправо и вверх и т. д. Поначалу распознать какую-либо форму в этой россыпи было трудно, однако когда количество точек переваливало за 10–12, начинала вырисовываться кривая, напоминающая своими контурами очертания яйца. Последовательно появляющиеся точки фактически образовывали вокруг кривой окружность, но, поскольку они не появлялись на том же самом месте, со временем, когда количество их возрастало до сотни или тысячи, кривая очерчивалась четко.

Описанные орбиты нельзя назвать полностью регулярными, так как они никогда с точностью не повторяются. Однако не будет ошибкой считать их предсказуемыми и далекими от хаотичных, ибо точки никогда не возникают внутри кривой или вне ее. Вернувшись к развернутому трехмерному изображению, можно отметить, что кривые рисуют контур тороида, или бублика, а схема Энона - его поперечное сечение. До поры до времени ученый лишь наглядно изображал то, что его предшественники считали уже доказанным, - периодичность орбит. В обсерватории Копенгагена почти двадцать лет, с 1910 по 1930 г., астрономы тщательно наблюдали и просчитывали сотни орбит, однако их интересовали лишь периодичные. «Я, как и другие в то время, был убежден, что все орбиты должны характеризоваться регулярностью», - вспоминал Энон. Однако, вместе со своим студентом-дипломником Карлом Хейльсом, он продолжал рассчитывать многочисленные орбиты, неуклонно увеличивая энергетический уровень своей абстрактной системы. И вскоре ему открылось нечто совершенно новое.

Сначала яйцеобразная кривая стала изгибаться, принимая более сложные очертания и образуя восьмерку. Затем она разбилась на несколько отдельных форм, напоминавших петлю (каждая орбита изгибалась петлей). Далее, на более высоких уровнях энергии, произошла еще одна внезапная метаморфоза. «Настала пора удивляться», - писали исследователи. Некоторые из орбит обнаружили такую нестабильность, что точки беспорядочно «скакали» по всему листу бумаги. В отдельных местах еще просматривались кривые, а кое-где точки уже не складывались в линии. Изображение впечатляло: очевидный законченный беспорядок, в котором ясно проглядывали остатки стабильности. Все вместе рисовало контуры, наводившие астрономов на мысли о неких «островках» или «гряде островов». Они пытались работать на двух разных компьютерах, пробовали иные методы интегрирования, но результаты упрямо не изменялись, и ученым оставалось только изучать и размышлять.


Рис. 5.5. Орбиты вокруг центра галактики. Пытаясь осмыслить траектории, описываемые звездами в пространстве галактики, М. Энон рассматривал пересечения орбит с плоскостью. Получавшиеся в итоге образы зависели от общего количества энергии в системе. Точки стабильной орбиты постепенно формировали непрерывную кривую, а на других уровнях энергии обнаруживалась сложная структура - смесь хаоса и упорядоченности, представленная зонами разброса точек.


Основываясь на собственных числовых данных, Энон и Хейльс предположили наличие глубокой структуры в полученных изображениях. Они выдвинули гипотезу, что при сильном увеличении появится все больше и больше мелких островков и, возможно, так будет продолжаться до бесконечности. Ощущалась острая необходимость в математическом доказательстве. «Однако рассмотрение вопроса с точки зрения математики казалось не таким уж легким».

Энон обратился к другим вопросам, однако четырнадцать лет спустя, узнав о странных аттракторах Давида Руэлля и Эдварда Лоренца, астроном заинтересовался ими. В 1976 г. он уже работал в обсерватории Ниццы, расположенной высоко над уровнем Средиземного моря, на Большом Карнизе, и там услышал рассказ заезжего физика об аттракторе Лоренца. Гость, по его словам, пытался с помощью различных уловок прояснить изящную «микроструктуру» аттрактора, не добившись, впрочем, ощутимого успеха. Энон решил, что займется этим, хотя диссипативные системы и не входили в сферу его интересов («иногда астрономы относятся к ним с опаской - уж слишком они беспорядочны»).

Ему показалось разумным сконцентрироваться только на геометрической сущности объекта исследования, абстрагируясь от его физического происхождения. Там, где Лоренц и другие ученые применяли дифференциальные уравнения, описывающие непрерывные изменения в пространстве и времени, Энон использовал разностные, которые можно было рассматривать во времени раздельно. По его глубокому убеждению, ключом к разгадке являлись повторяющиеся операции растягивания и свертывания фазового пространства - те самые, что имитируют действия кондитера, который раскатывает тесто для пирожных, складывает его, затем, вновь раскатав, опять складывает, формируя таким образом хрупкую многослойную структуру. Энон, изобразив овал на листе бумаги и решив растянуть его, избрал для этой операции алгоритм, согласно которому каждая точка овала смещалась в новое положение на фигуре, которая аркой поднималась над центром. Выполняемая процедура была похожа на построение карты - точка за точкой овал превращался в «арку». Затем Энон начал вторую операцию - на сей раз сжатие, которое сдвигало внутрь бока арки, делая ее уже. А третье преобразование вернуло узкой фигуре ее прежние размеры, и она точно совпала с первоначальным овалом. Для целей вычисления все три построения могли быть объединены в одной-единственной функции.

По духу преобразования Энона повторяли идею «подковы» Смэйла. Вычисления, которых требовала вся процедура, отличались такой легкостью, что их можно было без труда выполнить на счетной машинке. Каждая точка имеет две координаты: x , обозначающую ее положение на горизонтальной оси, и y , задающую положение на оси вертикальной. Чтобы вычислить новое значение переменной x , необходимо взять предыдущее значение y , прибавить к нему 1 и вычесть предыдущее значение x в квадрате, умноженное на 1,4. Для расчета значения y нужно умножить предыдущее значение x на 0,3. Таким образом, получаем: x новое = y + 1–1,4x ?; y новое = 0,3x . Энон почти наугад выбрал начальное положение и, взяв калькулятор, начал откладывать точки, одну за другой, пока их число не достигло нескольких тысяч. Затем с помощью компьютера ІВМ-7040 он быстро просчитал координаты пяти миллионов точек. Подобная операция доступна любому, поскольку здесь требуется лишь персональный компьютер с графическим дисплеем.

Сначала казалось, что точки беспорядочно «прыгают» по экрану, производя такой же эффект, что и сечение Пуанкаре, которое изображает трехмерный аттрактор, «блуждающий» туда-сюда по поверхности дисплея, но достаточно быстро проглядывает отчетливый контур, искривленный, словно плод банана. Чем дольше выполняется программа, тем больше появляется деталей. Кажется, что части рисунка имеют даже толщину. Однако в дальнейшем последняя распадается на две отчетливые линии, которые, в свою очередь, расходятся на четыре: две идут рядом, а две другие удалены друг от друга. Увеличив изображение, заметим, что каждая из четырех упомянутых линий включает в себя две и так далее, до бесконечности. Как и аттрактор Лоренца, аттрактор Энона обнаруживает бесконечное движение в обратном направлении, словно нескончаемая вереница матрешек, вложенных одна в другую.


Рис. 5.6. Аттрактор Энона. Несложная комбинация складывания и растяжения породила аттрактор, легко просчитываемый, но тем не менее плохо понимаемый математиками. С появлением тысяч и миллионов точек возникает все больше и больше деталей. То, что кажется одной линией, при увеличении оказывается парой. Потом выясняется, что линий уже четыре. И все же невозможно предсказать, останутся ли две последовательно появившиеся точки рядом или расположатся далеко друг от друга.


Скрытая деталь - одни линии внутри других - в своей законченной форме может быть обнаружена в серии изображений, сделанных при все большем и большем увеличении. Однако сверхъестественное воздействие странного аттрактора можно ощутить и по-иному, наблюдая зарождение состоящей из точек формы, возникающей словно призрак из тумана. Появляющиеся точки столь беспорядочно «разбегаются» по поверхности экрана, что присутствие в их множестве какой-либо структуры, не говоря уже о столь запутанной и хрупкой, кажется невероятным. Любые последовательно обнаруживаемые точки находятся произвольно далеко друг от друга, так же как любые две точки в начале турбулентного потока располагаются рядом. Задав любое количество точек, невозможно предугадать, где появится следующая. Можно лишь предположить, что она будет находиться где-то в пределах аттрактора.

Точки с такой степенью случайности «разбредаются» перед глазами, а узор кажется столь эфемерным, что о принадлежности наблюдаемой формы к аттракторам поневоле забываешь. Эти очертания - отнюдь не любая траектория, описываемая динамической системой; по отношению к данной траектории все остальные сходятся в одну точку. Именно поэтому выбор начальных условий не имеет ровно никакого значения. Пока начальная точка лежит вблизи аттрактора, следующие несколько точек будут необычайно быстро сходиться к аттрактору.


Когда в 1974 г. Давид Руэлль приехал к Голлабу и Суинни в их скромную лабораторию, то обнаружилось, что теория и эксперимент у нее связаны весьма слабо. Актив был таков: немного математики, довольно смелой, но сомнительной в техническом отношении; один цилиндр с турбулентной жидкостью, поведение которой не особо примечательно, но явно противоречит общепринятой теории. Ученые провели всю первую половину дня за обсуждением исследований, а потом Суинни и Голлаб вместе с женами уехали в отпуск в Адирондакские горы, где у четы Голлаб был домик. Они не видели странный аттрактор своими глазами и не постигли многое из того, что происходит на пороге турбулентности, но были твердо убеждены, что Ландау ошибся, а Руэлль гораздо ближе подошел к истине.

Странный аттрактор, этот фрагмент мироздания, ставший зримым благодаря компьютеру, начинался как простая вероятность. Он лишь отмечал собой ту сферу, куда не удалось проникнуть богатому воображению многих ученых XX века. Когда вычислительные машины сделали свое дело, специалисты поняли, что полученное изображение, словно лицо давно знакомого человека, мелькало везде: в мелодии турбулентных потоков, за флером подернувших небо облаков. Природа была обуздана. Казалось, беспорядок введен в русло, разложен на узоры, в которых подспудно угадывался общий мотив.

Прошли годы, и признание феномена странных аттракторов подготовило благодатную почву для революции в изучении хаоса, дав тем, кто занимался расчетами, ясную программу исследований. Странные аттракторы стали искать везде, где в явлениях природы ощущалась неупорядоченность. Многие утверждали, что основой погоды на планете Земля служит не что иное, как странный аттрактор. Другие, сведя воедино миллионы цифр из сводок фондовых бирж и обработав их на компьютерах, вглядывались в результаты в надежде обнаружить аттрактор и там.

В середине 70-х годов такие открытия еще принадлежали будущему. Тогда никто не увидел аттрактора в итогах проведенного опыта, а ведущие к нему тропы застилал туман. Странный аттрактор наполнял математическим содержанием неизвестные дотоле основные характеристики хаоса, в частности «сильную зависимость от начальных условий». «Смешение» являлось другим свойством, имеющим смысл, скажем, для конструктора реактивных двигателей, интересующегося оптимальной комбинацией топлива и кислорода, но никто не знал, как измерять такие характеристики, привязывая к ним числа. Странные аттракторы казались фрактальными, т. е. их истинная размерность была дробной. Никто не знал, как измерить ее или как использовать результаты подобных измерений для решения реальных задач инженерии.

Самое же главное - никто не мог сказать, приоткроют ли странные аттракторы завесу тайны над нелинейными системами. Все еще казалось, что, в отличие от систем линейных, легко решаемых и классифицируемых, нелинейные системы не поддаются классификации - не найти двух похожих. Ученые уже подозревали наличие у них общих свойств, но когда дело доходило до замеров и вычислений, каждая нелинейная система оказывалась вещью в себе. Постижение одной из них совершенно ничего не давало для проникновения в другую. Аттрактор Лоренца раскрывал стабильность и скрытую структуру системы, которая при другом подходе казалась совершенно неструктурированной. Но каким образом эта двойная спираль могла помочь специалистам изучать объекты, не имеющие к ней никакого отношения? Никто не знал.

Все равно ученые ликовали. Открыватели новых форм поступались строгостью научного стиля. Руэлль писал: «Я не упомянул об эстетическом воздействии странных аттракторов. Эти клубки кривых и рои точек вызывают порой в воображении пышные фейерверки или загадочные галактики, иногда напоминают причудливо-странное буйство растений. Перед нами огромное царство неоткрытых форм и неведомого совершенства».

Эта глава имеет своей целью познакомить читателя с одной теорией, которая развивалась вне всякой связи с фрактальными множествами и все же оказалась буквально пронизана ими. Чаще всего ее называют «теорией странных аттракторов и хаотической (или стохастической) эволюции», однако в тексте главы вы, я надеюсь, найдете причины, побудившие меня дать этой теории новое имя (см. заголовок).

Для того чтобы попасть в настоящее эссе упомянутой теории, достаточно было всего лишь быть так или иначе связанной с фракталами; я же считаю оправданным посвятить ей целую главу. Первое оправдание (практическое): эта теория почти не требует какого бы то ни было особого представления, так как бóльшую часть ее основных положений можно рассматривать просто как новую интерпретацию выводов, полученных нами в главах 18 и 19.

Во-вторых, теория фрактальных аттракторов помогает – путем противопоставления – прояснить некоторые особенности фрактальной геометрии природы. В самом деле, моя работа связана, в основном, с формами, присутствующими в реальном пространстве, с формами, которые можно увидеть, пусть даже и в микроскоп; теория аттракторов же имеет дело исключительно с эволюцией во времени расположения неких точек в невидимом и абстрактном репрезентативном пространстве.

Особенно силен этот контраст оказывается в контексте турбулентности – моя первая большая тема (работу над ней я начал в 1964 г.), где я использовал ранние формы фрактальных методик и (вполне независимо от них) теорию странных аттракторов, которая вполне всерьез сочетается с изучением турбулентности в работе . До сих пор эти два подхода еще не пересеклись, но ждать осталось недолго.

Тем, кто интересуется социологией науки, несомненно, покажется занимательным следующий факт: в то время как мои прецедентные исследования, связывающие математических чудовищ с реальными физическими структурами, встречаются с ощутимым сопротивлением, чудовищные формы абстрактных аттракторов воспринимаются с завидной невозмутимостью.

Третий довод в пользу необходимости разговора о фрактальных аттракторах связан с тем, что соответствующие эволюции выглядят «хаотическими» или «стохастическими». Как станет ясно из глав 21 и 22, многие ученые сомневаются в уместности применения случайного в науке; теперь же появляется надежда на оправдание случайности с помощью фрактальных аттракторов.

И наконец, те читатели, кто несколько глав (или пару эссе) назад согласился с моим утверждением о том, что многие из природных проявлений могут быть описаны только с помощью неких множеств, считавшихся ранее патологическими, возможно, с нетерпением ожидают перехода от «как» к «почему». Думаю, приведенные ранее описания и демонстрации дают представление о том, как легко в некоторых случаях оказывается подсластить упомянутые в предыдущих главах геометрические пилюли, чтобы их легче было проглотить. Я же хочу привить читателю вкус именно к фракталам – независимо от того, насколько горьким кажется этот вкус большинству зрелых ученых. Кроме того, я искренне убежден (и еще вернусь к этому в главе 42), что псевдообъяснение посредством подслащивания просто-напросто неинтересно. Таким образом, важность объяснения, судя по всему, сильно преувеличена, и мы будем прибегать к нему лишь в тех случаях, когда имеющееся объяснение действительно интересно – как, например, в главе 11. Вдобавок ко всему, я подозреваю, что когда фрактальные аттракторы лягут в основу фрактальной геометрии видимых естественных форм, появится много новых более детальных и убедительных объяснений.

Так как преобразования с аттракторами нелинейны, наблюдаемые фракталы, скорее всего, окажутся не самоподобными. Это замечательно: мне кажется, что использование фрактального аналога прямой для описания феноменов, управляемых нелинейными уравнениями, выглядит несколько парадоксально. Масштабно-инвариантные фракталы, хорошо объясняющие естественные феномены, могут выступать лишь как локальные приближения нелинейных фракталов.

Понятие аттрактора

Настоящая глава опирается, по большей части, на одно давнее и весьма основательно позабытое наблюдение Анри Пуанкаре: «орбиты» нелинейных динамических систем имеют свойство притягиваться к странным множествам, которые я определяю как нелинейные фракталы.

Рассмотрим для начала простейший аттрактор – точку. «Орбита», определяемая движением маленького шарика после помещения его в воронку, начинает с некоторой спиралевидной траектории, точная форма которой зависит от исходных положения и скорости шарика, однако, в конце концов, сходится к горловине воронки; если диаметр шарика превышает диаметр отверстия воронки, то он там и останется. Для нашего шарика начало горловины воронки является устойчивой точкой равновесия, или устойчивой неподвижной точкой. В рамках достаточно удобной альтернативной описательной терминологии (которую, естественно, не следует интерпретировать с антропоцентрических позиций) горловину воронки можно назвать притягивающей точкой, или аттрактором.

В физической системе устойчивыми и притягивающими могут быть также окружность или эллипс. Например, мы все полагаем (и даже пламенно надеемся – хотя никто из нас не проживет достаточно долго для того, чтобы это имело хот какое-то значение), что солнечная система устойчива, подразумевая, что если орбите Земли и суждено претерпеть какие- либо возмущения, то она, в конце концов «притянется» назад на свою теперешнюю колею.

В более общем виде, динамическую систему принято определять следующим образом: состояние системы в момент времени представляется точкой на прямой, в плоскости, либо в некотором более многомерном евклидовом «фазовом пространстве» , а ее эволюция между моментами и определяется правилами, в которые величина явным образом не входит. Любую точку в фазовом пространстве можно принять за начальное состояние при , а за ней последует орбита, определяемая функцией для всех .

Основное различие между такими системами заключается в геометрическом распределении значений при больших значениях . Принято говорить, что динамическая система имеет аттрактор, если существует некое правильное подмножество фазового пространства , обладающее следующим свойством: при почти любой начальной точке и достаточно большом точка оказывается в малой окрестности какой-либо точки, принадлежащей .

Понятие репеллера

Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте.

Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером.

Во многих случаях аттракторы и репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в основном горизонтальную поверхность с прогибами в обоих направлениях. Предположим, что сила тяжести направлена вниз, поместим шарик на верхней стороне поверхности и обозначим притягивающий прогиб буквой , а отталкивающий – буквой . Если теперь поместить шарик на нижней стороне поверхности и предположить, что сила тяжести направлена вверх, то прогибы и поменяются местами. В этой главе такие обмены играют центральную роль.

Фрактальные аттракторы. «хаос»

Бóльшая часть элементарной механики имеет дело с динамическими системами, аттракторами которых являются точки, почти окружности и другие фигуры евклидовой геометрии. Однако в действительности такие фигуры представляют собой редкие исключения, и поведение большинства динамических систем несравнимо более сложно: их аттракторы и репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих разделах описываются примеры систем с дискретным временем, .

Аттрактор-пыль. Коэффициент Фейгенбаума . Простейший пример можно получить с помощью возведения в квадрат (см. главу 19). В качестве вступления рассмотрим еще одно представление канторовой пыли : , , охватываемый интервал . Такое множество является пределом множества , определяемого как множество точек вида . При , каждая точка множества разделяется на две, а множество представляет собой результат бесконечного количества таких бифуркаций.

Согласно П. Грассбергеру (источник – препринт статьи), аттрактор отображения при вещественных аналогичен множеству , но с двумя различными коэффициентами подобия, одним из которых является коэффициент Фейгенбаума (см. ). После бесконечного количества бифуркаций этот аттрактор превращается во фрактальную пыль с размерностью .

«Хаос». Ни одна точка множества за конечный промежуток времени не посещается дважды. Многие авторы описывают эволюции на фрактальных аттракторах как «хаотические».

Самоаффинные деревья. Расположив множество в плоскости , получим дерево. Поскольку , это дерево асимптотически самоаффинно с остатком.

Комментарий. В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач.

Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными.

Самоинверсные аттракторы

Согласно главе 18, множества в цепях Пуанкаре является как наименьшими самоинверсными, так и предельными множествами. Переформулируем последнее свойство: при произвольно выбранной начальной точке ее преобразования под действием последовательности инверсий подходят произвольно близко к каждой точке множества . Предположим теперь, что эта последовательность инверсий выбирается посредством отдельного процесса, независимого от настоящего и предыдущего положений точки . При довольно широком разбросе начальных условий всегда можно ожидать (и часто эти ожидания оправдываются), что результирующие последовательности положений будут притягиваться множеством . Таким образом, огромное количество публикаций по группам, порождаемым инверсиями, можно интерпретировать в терминах динамических систем.

Обращение «времени»

Дальнейшие поиски систем с интересными фрактальными аттракторами привели меня к системам, аттракторы которых геометрически стандартны, а вот репеллеры оказываются весьма занятными. Эти два множества легко можно поменять местами, тем самым пустив время вспять, при условии, что операции динамической системы допускают существование обратных операций (орбиты не сливаются и не пересекаются), так что, зная положение точки , можно определить все при . Однако данные конкретной системы, которые мы хотим обратить во времени, представляют собой особый случай. Их орбиты похожи на реки: в направлении вниз по склону их путь однозначно определен, вверх же по склону – каждая развилка требует особого решения.

Попытаемся, например, обратить - преобразование , с помощью которого мы получили канторову пыль в главе 19. При определены две различные обратные функции, и можно, пожалуй, условиться преобразовывать все в . Аналогичным образом, две различные обратные функции имеет отображение . В обоих случаях осмысленная инверсия предполагает выбор между двумя функциями. В других примерах возможных вариантов больше. Напомню: нам нужно, чтобы выбор между ними осуществлялся посредством отдельного процесса. Эти соображения приводят нас к обобщенным динамическим системам, которые и будут описаны в следующем разделе.

Разложимые динамические системы

Потребуем, чтобы одна из координат состояния (назовем ее определяющим индексом и обозначим через ) эволюционировала независимо от состояния остальных координат (обозначим это состояние через ), при условии, что преобразование из состояния в состояние будет определяться как состояние , так и индексом . В тех примерах, которые я изучил наиболее подробно, конкретное преобразование выбирается из конечного набора, включающего в себя различных возможностей , причем выбирается в соответствие со значением некоторой целочисленной функции . Иными словами, я рассматривал динамику произведения - пространства на некоторое конечное индексное множество.

Вообще говоря, в примерах, стимулировавших это обобщение, последовательность либо действительно случайна, либо ведет себя так, словно является случайной. К рассмотрению случайности мы с вами приступим только в следующей главе, однако я не думаю, что это обстоятельство может нам помешать. Гораздо серьезнее другое: динамические системы представляет собой воплощенный образчик полностью детерминированного поведения, и поэтому просто не вправе допускать какую бы то ни было случайность! Мы, однако, можем ввести воздействие случайности, не постулируя ее явно – нам нужно лишь присвоить функции значение какого-нибудь в достаточной степени перемешивающего эргодического процесса. Возьмем, например, иррациональное число и сопоставим функции целую часть числа . Здесь стоило бы сделать еще несколько заявлений, принципиально не сложных, но весьма громоздких, так что я, пожалуй, от этого воздержусь.

Роль «странных» аттракторов

Сторонники «странных» аттракторов выдвигают в свою защиту следующие два соображения. . Поскольку динамические системы со стандартными аттракторами не в состоянии объяснить турбулентность, то, может быть, ее удастся объяснить с помощью систем с аттракторами, топологически более «странными». (это напоминает мое собственное рассуждение (см. главу 11) – высказанное, кстати, совершенно независимо от приведенного – о том, что если дифференциальное уравнение не имеет стандартных особенностей, следует попытать счастья с особенностями фрактальными. . Аттракторы до смешного простых систем – таких, как при вещественных и в интервале - действительно странны и во многих отношениях характерны для более сложных и более реалистичных систем. Таким образом, топологически странные аттракторы, вне всяких сомнений, являются, скорее, правилом, нежели исключением.

«Фрактальные» или «странные»?

Все известные «странные» аттракторы представляют собой фрактальные множества. Для многих «странных» аттракторов существуют оценки размерности . Во всех случаях . Следовательно, эти аттракторы суть не что иное, как фрактальные множества. Во многих случаях размерность «странно – аттракторных» фракталов служит мерой не иррегулярности, а того, как накладываются друг на друга гладкие кривые или поверхности – своего рода фрагментации (см. главу 13).

С. Смейл представлял свой знаменитый аттрактор, называемый соленоидом, дважды. Оригинальное определение было чисто топологическим (размерность при этом оставалась неопределенной), пересмотренный же вариант имеет метрический характер (см. , с. 57). Я, в свою очередь, предложил ввести в теорию странных аттракторов понятие размерности и оценил в значение отображения Энона , которая оказалась равной 1,26. Ожидается появление многих других статей в том же духе.

Обратное утверждение. Являются ли все фрактальные аттракторы странными – вопрос семантики. Все больше авторов согласны со мной в том, что аттрактор, как правило, можно считать странным, если он фрактален. Мне такое отношение представляется вполне здравым, если учесть, что слово «странный» выступает как синоним слов «чудовищный», «патологический» и других подобных эпитетов, которыми некогда награждали отдельные фрактальные множества.

Однако прилагательному «странный» иногда придается некий особый терминологический смысл настолько, надо сказать, особый, что аттрактор Зальцмана – Лоренца характеризуется не просто как «странный», но как «странно – странный». В этом свете «странность» аттрактора связывается главным образом с нестандартными топологическими свойствами, в то время как нестандартные фрактальные свойства просто сопутствуют им в качестве «нагрузки». Замкнутая кривая с двойными точками не является в этом смысле «странной», какой бы смятой она ни была: это значит, что большинство из исследованных мною фрактальных аттракторов нельзя считать странными.

При таком определении термина «странный» рассуждения в предыдущем разделе теряют всякую привлекательность. Однако если модифицировать понятие странности с тем, чтобы оно из топологического стало фрактальным, то эту привлекательность можно вернуть. Вот почему я считаю, что победы в споре достойны те, кто определяет «странное» как «фрактальное». А поскольку они и в самом деле побеждают, я не вижу большого смысла в сохранении термина, необходимость в котором исчезла в тот момент, когда я показал, что фракталы не более странны, чем, скажем, горы или береговые линии. Кроме того, не стану скрывать: к термину «странный» я испытываю какую-то личную неприязнь.

Рис. 282 и 283. Притяжение к фракталам

Приведенные здесь фигуры иллюстрируют длинные орбиты последовательных состояний двух разложимых динамических систем. Нагрудник фараона на рис. 283 представляет собой самоинверсное (см. главу 18) множество, основанное на четырех инверсиях, подобранных таким образом, чтобы предельное множество являлось совокупностью окружностей. Дракон Сан-Марко на рис. 282 – самоквадрируемое (см. главу 19) множество и основан на двух инверсиях отображения .

Определяющий индекс в этих случаях выбирается из четырех (или, соответственно, двух) возможностей с помощью псевдослучайного алгоритма, примененного 64 000 раз. Несколько первых точек на рисунке опущены.

Области в окрестностях точек заострения и самопересечения заполняются чрезвычайно медленно.

Аттракторы классифицируют по:

  1. Формализации понятия стремления: различают максимальный аттрактор, неблуждающее множество, аттрактор Милнора, центр Биркгофа, статистический и минимальный аттрактор.
  2. Регулярности самого аттрактора: аттракторы делят на регулярные (притягивающая неподвижная точка, притягивающая периодическая траектория, многообразие) и странные (нерегулярные - зачастую фрактальные и/или в каком-либо сечении устроенные как канторово множество ; динамика на них обычно хаотична).
  3. Локальности («притягивающее множество») и глобальности (здесь же - термин «минимальный» в значении «неделимый»).

Также, есть известные «именные» примеры аттракторов: Лоренца , Плыкина , соленоид Смейла-Вильямса , гетероклинический аттрактор (пример Боуэна).

Свойства и связанные определения

При всех определениях аттрактор полагается замкнутым и (полностью) инвариантным множеством.

С понятием аттрактора также тесно связано понятие меры Синая-Рюэлля-Боуэна : инвариантной меры на нём, к которой стремятся временные средние типичной (в смысле меры Лебега) начальной точки либо временные средние итераций меры Лебега. Впрочем, такая мера существует не всегда (что иллюстрирует, в частности, пример Боуэна).

Виды формализации определения

Поскольку всё фазовое пространство в любом случае сохраняется динамикой, формальное определение аттрактора можно давать, исходя из философии, что «аттрактор это наименьшее множество, к которому всё стремится» - иными словами, выкидывая из фазового пространства всё, что может быть выкинуто.

Максимальный аттрактор

Пусть для динамической системы задана область U, которая переводится строго внутрь себя динамикой:

\overline{f(U)}\subset U

Тогда максимальным аттрактором системы в ограничении на U называется пересечение всех его образов под действием динамики:

A_{max}=\bigcap_{n=1}^{\infty} f^n(U).

То же самое определение можно применить и для потоков: в этом случае, необходимо потребовать, чтобы векторное поле, задающее поток, на границе области было направлено строго внутрь неё.

Это определение часто применяется как для характеризации множества как «естественного» аттрактора («является максимальным аттрактором своей окрестности»). Также его применяют в уравнениях с частными производными .

У этого определения есть два недостатка. Во-первых, для его применения необходимо найти поглощающую область. Во-вторых, если такая область была выбрана неудачно - скажем, содержала отталкивающую неподвижную точку с её бассейном отталкивания - то в максимальном аттракторе будут «лишние» точки, около которых на самом деле несколько раз подряд оказаться нельзя, но текущий выбор области этого «не чувствует».

Аттрактор Милнора

По определению, аттрактором Милнора динамической системы называется наименьшее по включению замкнутое множество, содержащее ω-предельные множества почти всех начальных точек по мере Лебега. Иными словами - это наименьшее множество, к которому стремится траектория типичной начальной точки.

Неблуждающее множество

Точка x динамической системы называется блуждающей , если итерации некоторой её окрестности U никогда эту окрестность не пересекают:

\forall n>0 \quad f^n(U)\bigcap U =\emptyset. Иными словами, точка блуждающая, если у неё есть окрестность, которую любая траектория может пересечь только один раз. Множество всех точек, не являющихся блуждающими, называется неблуждающим множеством.

Статистический аттрактор

Статистический аттрактор A_{stat}, в окрестности которого почти все точки проводят почти всё время: для любой его окрестности U для почти любой (в смысле меры Лебега) точки x выполнено

\frac{1}{N}\# \{j\le N \mid f^j(x)\in U \} \to 1, \quad N\to\infty.

Минимальный аттрактор

Минимальный аттрактор определяется как наименьшее по включению замкнутое множество A_{min}, в окрестности которого почти вся мера Лебега проводит почти всё время: для любой его окрестности U выполнено

\frac{1}{N}\sum_{j=0}^{N-1} (f_*^j (Leb))(U) \to 1, \quad N\to\infty.

Примеры несовпадений

Локальность, минимальность и глобальность

Регулярные и странные аттракторы

Регулярные аттракторы

Притягивающая неподвижная точка

(пример: маятник с трением)

Предельный цикл

Странные аттракторы

(примеры: аттрактор Лоренца, аттрактор Рёсслера, соленоид Смейла-Вильямса; комментарий про эффект бабочки и про динамический хаос.)

Странный аттрактор - это притягивающее множество неустойчивых траекторий в фазовом пространстве диссипативной динамической системы . В отличие от аттрактора, не является многообразием , то есть не является кривой или поверхностью. Структура странного аттрактора фрактальна . Траектория такого аттрактора непериодическая (она не замыкается) и режим функционирования неустойчив (малые отклонения от режима нарастают). Основным критерием хаотичности аттрактора является экспоненциальное нарастание во времени малых возмущений. Следствием этого является «перемешивание» в системе, непериодичность во времени любой из координат системы, сплошной спектр мощности и убывающая во времени автокорреляционная функция .

Динамика на странных аттракторах часто бывает хаотической : прогнозирование траектории, попавшей в аттрактор, затруднено, поскольку малая неточность в начальных данных через некоторое время может привести к сильному расхождению прогноза с реальной траекторией. Непредсказуемость траектории в детерминированных динамических системах называют динамическим хаосом , отличая его от стохастического хаоса , возникающего в стохастических динамических системах . Это явление также называют эффектом бабочки , подразумевая возможность преобразования слабых турбулентных потоков воздуха, вызванных взмахом крыльев бабочки в одной точке планеты, в мощное торнадо на другой её стороне вследствие многократного их усиления в атмосфере за некоторое время. Но на самом деле взмах крыла бабочки не создает торнадо обыкновенно, так как на практике наблюдается такая тенденция, что такие маленькие колебания в среднем не меняют динамики таких сложных систем как атмосфера планеты, и сам Лоренц по этому поводу говорил: И это, пожалуй, важная и удивительная вещь, без которой было бы трудно, а то и вообще невозможно изучать хаотическую динамику (динамику, которая чувствительна к малейшим изменениям начальных условий системы).

Среди странных аттракторов встречаются такие, хаусдорфова размерность которых отлична от топологической размерности и является дробной. Одним из наиболее известных среди подобных аттракторов является аттрактор Лоренца .

Именные примеры

Аттрактор Лоренца

Система дифференциальных уравнений, создающих аттрактор Лоренца, имеет вид:

\dot x = \sigma (y - x)

\dot y = x (r - z) - y

\dot z = x y - b z

Соленоид Смейла-Вильямса

Соленоид Смейла-Вильямса - пример обратимой динамической системы , аналогичной по поведению траекторий отображению удвоения на окружности. Более точно, эта динамическая система определена на полнотории , и за одну её итерацию угловая координата удваивается; откуда автоматически возникает экспоненциальное разбегание траекторий и хаотичность динамики. Также соленоидом называют и максимальный аттрактор этой системы (откуда, собственно, и происходит название): он устроен как (несчётное) объединение «нитей», наматывающихся вдоль полнотория.

Аттрактор Плыкина

Пример Боуэна, или гетероклинический аттрактор

Аттрактор Эно

www.ibiblio.org/e-notes/Chaos/ru/strange_r.htm

Гипотезы

Гипотеза Палиса

Гипотезы Рюэля

См. также

Напишите отзыв о статье "Аттрактор"

Примечания

Ссылки и литература

  • A. Gorodetski, Yu. Ilyashenko. Minimal and strange attractors, International Journal of Bifurcation and Chaos, vol. 6, no. 6 (1996), pp. 1177-1183.
  • А. С. Городецкий. Минимальные аттракторы и частично гиперболические множества динамических систем. Дисс. к. ф.-м. н., МГУ, 2001.
  • Статья Дж. Милнора , Scholarpedia.
  • . LENTA.RU. Проверено 28 марта 2013. .
  • Е. В. Никульчев. Геометрический метод реконструкции систем по экспериментальным данным // Письма в ЖТФ. 2007. Т. 33. Вып. 6. С. 83-89.
  • Е. В. Никульчев.

Отрывок, характеризующий Аттрактор

Вскоре после отъезда принца, так скоро, что он еще не мог доехать до Семеновского, адъютант принца вернулся от него и доложил светлейшему, что принц просит войск.
Кутузов поморщился и послал Дохтурову приказание принять командование первой армией, а принца, без которого, как он сказал, он не может обойтись в эти важные минуты, просил вернуться к себе. Когда привезено было известие о взятии в плен Мюрата и штабные поздравляли Кутузова, он улыбнулся.
– Подождите, господа, – сказал он. – Сражение выиграно, и в пленении Мюрата нет ничего необыкновенного. Но лучше подождать радоваться. – Однако он послал адъютанта проехать по войскам с этим известием.
Когда с левого фланга прискакал Щербинин с донесением о занятии французами флешей и Семеновского, Кутузов, по звукам поля сражения и по лицу Щербинина угадав, что известия были нехорошие, встал, как бы разминая ноги, и, взяв под руку Щербинина, отвел его в сторону.
– Съезди, голубчик, – сказал он Ермолову, – посмотри, нельзя ли что сделать.
Кутузов был в Горках, в центре позиции русского войска. Направленная Наполеоном атака на наш левый фланг была несколько раз отбиваема. В центре французы не подвинулись далее Бородина. С левого фланга кавалерия Уварова заставила бежать французов.
В третьем часу атаки французов прекратились. На всех лицах, приезжавших с поля сражения, и на тех, которые стояли вокруг него, Кутузов читал выражение напряженности, дошедшей до высшей степени. Кутузов был доволен успехом дня сверх ожидания. Но физические силы оставляли старика. Несколько раз голова его низко опускалась, как бы падая, и он задремывал. Ему подали обедать.
Флигель адъютант Вольцоген, тот самый, который, проезжая мимо князя Андрея, говорил, что войну надо im Raum verlegon [перенести в пространство (нем.) ], и которого так ненавидел Багратион, во время обеда подъехал к Кутузову. Вольцоген приехал от Барклая с донесением о ходе дел на левом фланге. Благоразумный Барклай де Толли, видя толпы отбегающих раненых и расстроенные зады армии, взвесив все обстоятельства дела, решил, что сражение было проиграно, и с этим известием прислал к главнокомандующему своего любимца.
Кутузов с трудом жевал жареную курицу и сузившимися, повеселевшими глазами взглянул на Вольцогена.
Вольцоген, небрежно разминая ноги, с полупрезрительной улыбкой на губах, подошел к Кутузову, слегка дотронувшись до козырька рукою.
Вольцоген обращался с светлейшим с некоторой аффектированной небрежностью, имеющей целью показать, что он, как высокообразованный военный, предоставляет русским делать кумира из этого старого, бесполезного человека, а сам знает, с кем он имеет дело. «Der alte Herr (как называли Кутузова в своем кругу немцы) macht sich ganz bequem, [Старый господин покойно устроился (нем.) ] – подумал Вольцоген и, строго взглянув на тарелки, стоявшие перед Кутузовым, начал докладывать старому господину положение дел на левом фланге так, как приказал ему Барклай и как он сам его видел и понял.
– Все пункты нашей позиции в руках неприятеля и отбить нечем, потому что войск нет; они бегут, и нет возможности остановить их, – докладывал он.
Кутузов, остановившись жевать, удивленно, как будто не понимая того, что ему говорили, уставился на Вольцогена. Вольцоген, заметив волнение des alten Herrn, [старого господина (нем.) ] с улыбкой сказал:
– Я не считал себя вправе скрыть от вашей светлости того, что я видел… Войска в полном расстройстве…
– Вы видели? Вы видели?.. – нахмурившись, закричал Кутузов, быстро вставая и наступая на Вольцогена. – Как вы… как вы смеете!.. – делая угрожающие жесты трясущимися руками и захлебываясь, закричал он. – Как смоете вы, милостивый государь, говорить это мне. Вы ничего не знаете. Передайте от меня генералу Барклаю, что его сведения неверны и что настоящий ход сражения известен мне, главнокомандующему, лучше, чем ему.
Вольцоген хотел возразить что то, но Кутузов перебил его.
– Неприятель отбит на левом и поражен на правом фланге. Ежели вы плохо видели, милостивый государь, то не позволяйте себе говорить того, чего вы не знаете. Извольте ехать к генералу Барклаю и передать ему назавтра мое непременное намерение атаковать неприятеля, – строго сказал Кутузов. Все молчали, и слышно было одно тяжелое дыхание запыхавшегося старого генерала. – Отбиты везде, за что я благодарю бога и наше храброе войско. Неприятель побежден, и завтра погоним его из священной земли русской, – сказал Кутузов, крестясь; и вдруг всхлипнул от наступивших слез. Вольцоген, пожав плечами и скривив губы, молча отошел к стороне, удивляясь uber diese Eingenommenheit des alten Herrn. [на это самодурство старого господина. (нем.) ]
– Да, вот он, мой герой, – сказал Кутузов к полному красивому черноволосому генералу, который в это время входил на курган. Это был Раевский, проведший весь день на главном пункте Бородинского поля.
Раевский доносил, что войска твердо стоят на своих местах и что французы не смеют атаковать более. Выслушав его, Кутузов по французски сказал:
– Vous ne pensez donc pas comme lesautres que nous sommes obliges de nous retirer? [Вы, стало быть, не думаете, как другие, что мы должны отступить?]
– Au contraire, votre altesse, dans les affaires indecises c"est loujours le plus opiniatre qui reste victorieux, – отвечал Раевский, – et mon opinion… [Напротив, ваша светлость, в нерешительных делах остается победителем тот, кто упрямее, и мое мнение…]
– Кайсаров! – крикнул Кутузов своего адъютанта. – Садись пиши приказ на завтрашний день. А ты, – обратился он к другому, – поезжай по линии и объяви, что завтра мы атакуем.
Пока шел разговор с Раевским и диктовался приказ, Вольцоген вернулся от Барклая и доложил, что генерал Барклай де Толли желал бы иметь письменное подтверждение того приказа, который отдавал фельдмаршал.
Кутузов, не глядя на Вольцогена, приказал написать этот приказ, который, весьма основательно, для избежания личной ответственности, желал иметь бывший главнокомандующий.
И по неопределимой, таинственной связи, поддерживающей во всей армии одно и то же настроение, называемое духом армии и составляющее главный нерв войны, слова Кутузова, его приказ к сражению на завтрашний день, передались одновременно во все концы войска.
Далеко не самые слова, не самый приказ передавались в последней цепи этой связи. Даже ничего не было похожего в тех рассказах, которые передавали друг другу на разных концах армии, на то, что сказал Кутузов; но смысл его слов сообщился повсюду, потому что то, что сказал Кутузов, вытекало не из хитрых соображений, а из чувства, которое лежало в душе главнокомандующего, так же как и в душе каждого русского человека.
И узнав то, что назавтра мы атакуем неприятеля, из высших сфер армии услыхав подтверждение того, чему они хотели верить, измученные, колеблющиеся люди утешались и ободрялись.

Полк князя Андрея был в резервах, которые до второго часа стояли позади Семеновского в бездействии, под сильным огнем артиллерии. Во втором часу полк, потерявший уже более двухсот человек, был двинут вперед на стоптанное овсяное поле, на тот промежуток между Семеновским и курганной батареей, на котором в этот день были побиты тысячи людей и на который во втором часу дня был направлен усиленно сосредоточенный огонь из нескольких сот неприятельских орудий.
Не сходя с этого места и не выпустив ни одного заряда, полк потерял здесь еще третью часть своих людей. Спереди и в особенности с правой стороны, в нерасходившемся дыму, бубухали пушки и из таинственной области дыма, застилавшей всю местность впереди, не переставая, с шипящим быстрым свистом, вылетали ядра и медлительно свистевшие гранаты. Иногда, как бы давая отдых, проходило четверть часа, во время которых все ядра и гранаты перелетали, но иногда в продолжение минуты несколько человек вырывало из полка, и беспрестанно оттаскивали убитых и уносили раненых.
С каждым новым ударом все меньше и меньше случайностей жизни оставалось для тех, которые еще не были убиты. Полк стоял в батальонных колоннах на расстоянии трехсот шагов, но, несмотря на то, все люди полка находились под влиянием одного и того же настроения. Все люди полка одинаково были молчаливы и мрачны. Редко слышался между рядами говор, но говор этот замолкал всякий раз, как слышался попавший удар и крик: «Носилки!» Большую часть времени люди полка по приказанию начальства сидели на земле. Кто, сняв кивер, старательно распускал и опять собирал сборки; кто сухой глиной, распорошив ее в ладонях, начищал штык; кто разминал ремень и перетягивал пряжку перевязи; кто старательно расправлял и перегибал по новому подвертки и переобувался. Некоторые строили домики из калмыжек пашни или плели плетеночки из соломы жнивья. Все казались вполне погружены в эти занятия. Когда ранило и убивало людей, когда тянулись носилки, когда наши возвращались назад, когда виднелись сквозь дым большие массы неприятелей, никто не обращал никакого внимания на эти обстоятельства. Когда же вперед проезжала артиллерия, кавалерия, виднелись движения нашей пехоты, одобрительные замечания слышались со всех сторон. Но самое большое внимание заслуживали события совершенно посторонние, не имевшие никакого отношения к сражению. Как будто внимание этих нравственно измученных людей отдыхало на этих обычных, житейских событиях. Батарея артиллерии прошла пред фронтом полка. В одном из артиллерийских ящиков пристяжная заступила постромку. «Эй, пристяжную то!.. Выправь! Упадет… Эх, не видят!.. – по всему полку одинаково кричали из рядов. В другой раз общее внимание обратила небольшая коричневая собачонка с твердо поднятым хвостом, которая, бог знает откуда взявшись, озабоченной рысцой выбежала перед ряды и вдруг от близко ударившего ядра взвизгнула и, поджав хвост, бросилась в сторону. По всему полку раздалось гоготанье и взвизги. Но развлечения такого рода продолжались минуты, а люди уже более восьми часов стояли без еды и без дела под непроходящим ужасом смерти, и бледные и нахмуренные лица все более бледнели и хмурились.
Князь Андрей, точно так же как и все люди полка, нахмуренный и бледный, ходил взад и вперед по лугу подле овсяного поля от одной межи до другой, заложив назад руки и опустив голову. Делать и приказывать ему нечего было. Все делалось само собою. Убитых оттаскивали за фронт, раненых относили, ряды смыкались. Ежели отбегали солдаты, то они тотчас же поспешно возвращались. Сначала князь Андрей, считая своею обязанностью возбуждать мужество солдат и показывать им пример, прохаживался по рядам; но потом он убедился, что ему нечему и нечем учить их. Все силы его души, точно так же как и каждого солдата, были бессознательно направлены на то, чтобы удержаться только от созерцания ужаса того положения, в котором они были. Он ходил по лугу, волоча ноги, шаршавя траву и наблюдая пыль, которая покрывала его сапоги; то он шагал большими шагами, стараясь попадать в следы, оставленные косцами по лугу, то он, считая свои шаги, делал расчеты, сколько раз он должен пройти от межи до межи, чтобы сделать версту, то ошмурыгывал цветки полыни, растущие на меже, и растирал эти цветки в ладонях и принюхивался к душисто горькому, крепкому запаху. Изо всей вчерашней работы мысли не оставалось ничего. Он ни о чем не думал. Он прислушивался усталым слухом все к тем же звукам, различая свистенье полетов от гула выстрелов, посматривал на приглядевшиеся лица людей 1 го батальона и ждал. «Вот она… эта опять к нам! – думал он, прислушиваясь к приближавшемуся свисту чего то из закрытой области дыма. – Одна, другая! Еще! Попало… Он остановился и поглядел на ряды. „Нет, перенесло. А вот это попало“. И он опять принимался ходить, стараясь делать большие шаги, чтобы в шестнадцать шагов дойти до межи.



Рекомендуем почитать

Наверх