Фреоновая система охлаждения от фирмы Kraftway. Конструируем систему охлаждения компьютера

Скачать на Телефон 23.07.2019
Скачать на Телефон

Экстремальное охлаждение... Низкие и сверхнизкие температуры... Умопомрачительный разгон процессора или видеокарты.. Мировые рекорды..
Кто из оверклокеров не мечтал об этих вещах, которые когда-то были удовольствием неординарным и дорогим. Сегодня же ситуация меняется - в интернете много информации на тему самодельных систем фазового перехода, и, при наличии желания и умения создать свою, личную, пусть даже по типичной схеме, пусть не самую производительную, но намного более дешевую "фреонку" может каждый, кто действительно этого захочет. Сегодняшний материал - яркий тому пример, достойный внимания и уважения!

Структура статьи такова:

1. Введение
2. Компоненты системы
3. Сборка системы
4. Вакуумирование и заправка
5. Практическая проверка самодельной системы фазового перехода
6. Тестирование системы, анализ результатов
7. Заключение

Введение

Фреонка! Как много в этом слове (особенно для знающих людей;))!
Уже несколько лет системы фазового перехода будоражат умы оверклокеров. Это - заветная мечта любого, ведь она позволяет открыть новые, доселе неведомые горизонты разгона. Сейчас ни один новый мировой рекорд по разгону компьютерных комплектующих не обходится как минимум без применения фреонки.
Несмотря на свою долгую историю, системы охлаждения на основе фазового перехода так и не стали массовыми. Причин тому есть великое множество. Так, если говорить о самодельных вариантах, то кого-то отталкивает сложность сборки, кого-то пугает конденсат и другие сложности в процессе эксплуатации. Немаловажным сдерживающим фактором является высокая цена, ведь стоимость серийных фреонок находится у отметки «1000 у.е», что для рядового оверклокера из постсоветского пространства - немыслимые деньги за охлаждение. Самоделки же, хоть и стоят в 3-4 раза дешевле, но все равно донедавна были уделом преимущественно обеспеченных людей и истинных фанатов разгона.
В данном материале я расскажу Вам, как собрать Систему Фазового Перехода своими руками и при этом потратить сумму, эквивалентную стоимости серийной СВО.

Компоненты системы

Приступим.
Основным донором для нашей фреонки станет старый кондиционер производства Бакинского завода. Вот так он выглядит:

…а вот его технические характеристики:

В кондиционере присутствует отдельная линия для охлаждения масла:

Пробный запуск показал полную работоспособность данного девайса. За несколько минут температура на испарителе опустилась до -7С:

Компрессор

Модель БК-2000 использует самый производительный из используемых в данных кондиционерах компрессоров. Это - среднетемпературный роторный ХГрВ 2,2-У2 мощностью 1100 Вт +5С (В БК-1800 и ниже используют ХГрВ 1,75-У2). Для всех кондиционеров БК родным является газ R22. Охарактеризовать данный компрессор можно так:

1. Огромная потребляющая мощность, - при запуске в квартире иногда мигает свет. Так что включать данный девайс одновременно с утюгами/чайниками противопоказано.

2. Шум. Производителем заявлено 60 Дб. О спокойной работе в таких условиях можно и не мечтать

3. Ощутимый нагрев компрессора во время длительной работы. Из-за этого в нём организована отдельная ветка для охлаждения масла. Напомню, что для роторных и поршневых компрессором немного различаются температурный порог для безболезненной работы, так для поршневых компрессоров - он находится в пределах 60-70 , а для роторного - 150-160 С.

Конденсатор

Конденсатор оставляем родной, чтоб не возиться с переделыванием линии охлаждения масла. Испаритель же отрезаем, промываем и сушим (он нам еще пригодится для будущих проектов;)).

Фильтр-осушитель и клапаны Шредера

Покупаем самый большой фильтр, так как компрессор старый, и наверняка внутри него собралось много различного мусора. Так как мы берём по минимуму, то вполне можно обойтись одним клапаном Шредера для заправки и вакуумирования:

Испаритель

Он был изготовлен на заводе, из медного цилиндра диаметром 50 мм и высотой 60 мм. Имеет 4 этажа c лабиринтами, по центру просверлено отверстие диаметром 2,5 мм - для капилляра. К сожалению, меди не осталось, и штуцер пришлось изготовить из латуни:

Вот он в разобранном состоянии:

Труборез

Можно обойтись и без него, используя ножовку, но, увы, она оставляет много стружки и заусениц, которые могут забить капилляр. Да и с труборезом намного легче управляться, разрез аккуратнее и его можно использовать в труднодоступных местах. Поэтому я и купил самый дешевый труборез:

Сделаю акцент на одной его особенности: он имеет пластмассовую рукоятку, которая от постоянной нагрузки очень быстро лопается. У меня она долго не выдержала, и, как достойная альтернатива, была использована ручка от маминого агрегата для консервации

Поэтому если не хотите лишних хлопот – будьте бдительны, и покупайте труборезы только с металлическими ручками.

Капилляр

Самым распространённым и используемым является капилляр диаметром 0,7-0,8 мм, но, увы, купить его в моём городе оказалось непосильной задачей. Обойдя все магазины, торгующие холодильной техникой, я смог найти только 0,9 мм. Задача расчета длины капилляра всегда индивидуальна, обычно для этого используют таблицу Гарри Ллойда, но, увы, в ней присутствуют только капилляры с диаметром 0,7 и 0,8 мм. Обратившись со своей проблемой в ветку «Немного экстрима или фреонка своими руками - 2» на форуме overclockers.ru, я получил в своё распоряжение программу "hlad 0.3.1", с помощью которой можно рассчитать необходимую длину капилляра.
Так как в базе данных моего компрессора нет, то основные данные были введены вручную. За объем прокачиваемого газа было взято 2,2 м3/ч. При температуре конденсации 50, и температуре кипения -30 градусов длина капилляра составила 4,1 м.

Отсасывающая трубка

Рассмотрим все возможные её вариации:

1. Медная трубка. Самый дешевый и надёжный вариант. Но есть один существенный минус - из-за плохой гибкости с ней трудно обеспечить хороший прижим испарителя к процессору.

2. Металлический заправочный шланг REFCO , идеальный вариант. Hесмотря на дороговизну, его преимущества налицо. Очень гибкий, длинный, удобный. Но найти его в продаже даже в Москве - задача весьма серьезная.

3. Желтый газовый шланг . Очень схож по свойствам с заправочным REFCO, это делает его выбором номер 2. Но имеет один существенный недостаток, - при минусовых температурах длина увеличивается на 20-30%.

4. Медная гофрированная трубка , используется при установке кондиционеров, ею заменяют медные трубки в местах крутых изгибов, где медь попросту ломается.

Самым доступным по цене является последний вариант. Найти эту трубку можно в магазинах, которые торгуют газовым либо холодильным оборудованием.

Горелка

Это, пожалуй, самый дорогой и важный инструмент, участвующий в нашей сборке. От неё зависит качество пайки и состояние нервной системы того, кто самостоятельно делает систему фазового перехода. Исходя из финансовой стороны Вашего проекта, можно из нижеприведенного списка выбрать агрегат себе по карману.

1. МАПП газ и горелка под него. Имеет температуру горения 1300 градусов цельсия, обладает достаточной мощностью для пайки трубок. Спаять испаритель им тоже возможно, но для этого объект пайки потребуется дополнительно разогревать на плите.
Цена:
горелка – в среднем 35 у.е, баллон – 12 у.е

2. Турбо-пропан. Состоит из специальной горелки и пропанового баллона. Неплохой вариант, имеет достаточную температуру горения для прогрева испарителя, но если испаритель достаточно массивный, опять же придется прибегнуть к помощи плиты. Цена горелки порядка 40 у.е.

3. Пропан-кислород.
Вот этой действительно «выбор джедая». С помощью этой горелки вы сможете паять всё - от ювелирной пайки маленьких деталей и швов до тяжелых и габаритных испарителей, конденсаторов и т.д.

Здесь я решил не экономить и взять по максимуму. Осмотр цен на готовые пропано-кислородные системы поверг меня в шок, за переносную горелку с пропановым баллоном на 5 л и 1 л кислородным, требовали от 120 до 140 у.е. Единственный выход - собирать самому по деталям. На барахолке были куплены: баллон от сжатого воздуха (6 у.е) на 1 литр, и 5-тилитровый пропановый (8 у.е). Баллон для сжатого воздуха был доставлен на заправочную станцию, где его освидетельствовали, перекрасили и заправили. Горелку я купил новую, из-за мизерной разницы в цене между б/у (10 у.е) и этой (14 у.е). Новый кислородный редуктор затянул на 18 у.е, а пропановый на 4 у.е. Ну и в довесок ко всему этому пришлось взять по 2 метра шлангов. В итоге получилась вот такая горелочка, общей стоимостью 50 у.е.:

Трубки

Изначально я не знал, трубки какого именно диаметра мне понадобятся, поэтому про запас взял по метру 6 мм, 8 мм, 10 мм и 12 мм:

Изоляция

Трубчатая изоляция представлена в любом магазине в широком ассортименте, а вот с листовой (для изоляция материнской платы) всё намного хуже. Купить её у нас в основном можно только заранее заказав, примерно по таким расценкам: за 1 квадратный метр толщиной 10 мм просят 16 у.е., а за столько же толщиной 25 мм - 34 у.е.
Поэтому было приобретено 2 метра обычного круглого K-Flex (15 мм - внутренний, 36 мм - внешний) для изоляции трубок:

А для изоляции материнской платы я купил трубчатую, но большого диаметра (10 см), и с толщиной стенки 15 мм. Преимущество её в том, что стенки тут достаточно толстые, и при разрезе из неё получается превосходная плоская изоляция:

Фреон

Для заправки системы у холодильщиков был куплен один литровый баллон фреона Р-22.

Заправочный шланг, манометры

Так как манометрическую станцию я не могу себе позволить, придется ограничиться заправочным шлангом.

Припой

Все детали в системе паялись 5% Харрисом. 3-х прутков с лихвой хватит для спайки всего контура и испарителя.

Сборка системы

Сперва я решил спаять испаритель. Так как это - один из важнейших элементов системы, то качество его пайки должно быть на высоте. За несколько минут горелка разогрела испаритель докрасна, и я нежно прошёлся прутком по соединениям. Припой очень быстро и легко заполнял все стыки, расползаясь по сторонам и порывая весь испаритель.
Чтобы проверить качество пайки, нужно опрессовать испаритель. Для этого впаиваем в него клапан Шредера (предварительно не забудьте выкрутить ниппель), надуваем фреоном и опускаем в ведро с водой. С первого же раза всё спаялось удачно и течей обнаружено не было.

После пайки на меди образуется толстый слой окалины, и не только снаружи, но и внутри, поэтому для безотказной работы его необходимо удалить.

Сделать это можно несколькими способами:

1. Промыть испаритель в концентрированной соляной или азотной кислоте.
2. Проварить испаритель в Coca-Cola.
3. Проварить его в растворе уксусной кислоты.

Вот так выглядел мой испариетль сразу после пайки...

А вот так - уже после процедуры очистки:

Через полчаса испаритель был чист, и я приступил к пайке отсасывающей трубки. Капилляр установился достаточно плотно, и я отрегулировал его так, чтобы он не доставал до дна 5-6 мм, и начал припаивать отсасывающую трубку. Правда, штуцер был из латуни, поэтому припой не «натекал» не него, и мне пришлось опять идти к холодильщикам, на этот раз за флюсом. С ним всё пошло как по маслу:

Пайка остальных деталей прошла быстро и без эксцессов.

Учтите, что фильтр нужно располагать под углом, чтобы фреон лучше стекал. Когда всё уже спаяно, полезно проверить систему на течи. Для этого заправляем ее небольшим количеством фреона и промазываем всё стыки мыльным раствором. Для большей надёжности я оставил систему с фреоном на двое суток. Через указанное время было установлено, что фреон всё еще был внутри и выходил с одинаковой интенсивностью.

Из-за горячего нрава данного компрессора для его охлаждения я решил использовать высокооборотистые советские вентиляторы типа ВН-2 общим количеством 4 штуки:

Одна пара втягивала воздух через конденсатор, другая же наоборот продувала его:

Вакуумирование и заправка

В домашних условиях самым доступным способом вакуумирования является использование в качестве вакуумного насоса старого компрессора. Но, увы, такового у меня не оказалось, поэтому я опять обратился к холодильщикам, и они с помощью вакуумного насоса REFCO за несколько минут откачали весь воздух из системы до глубокого вакуума.
Из-за большого размера конденсатора и наличия в системе ресивера, объем закачиваемого фреона достаточно велик (порядка 1 кг). В обычных фреонках этот число колеблется в переделах 300-400 грамм.
Ну что же - включаем систему, подсоединяем заправочный шланг, приоткрывая кран на баллоне на 4-6 секунд. После каждой «порции» подачи газа ждём 3-5 минут, и снова добавляем фреона. Когда испаритель начнет обмерзать, добавляем еще немного и прекращаем заправку.
Через 10-15 минут на испарителе у меня начала появляется иней, уже к 30 минуте отсасывающая трубка промерзла на 10-15 см от испарителя, а температура опустилась до «-47».

Что ж, отличный результат! Посмотрим, что будет с изоляцией. Заизолировать отсасывающую трубку особого труда не вызвало.

Включаем… и система за 15 минут выходит на -67!

Потрясающий результат. Правда, мы должны учесть несколько факторов.

1. Для работы под нагрузкой придется добавить фреона, соответственно температура повысится.
2. Мультиметр в роли термометра далеко не лучший вариант, уже после -50 он начинает местами неплохо врать, поэтому о реальной температуре мы может только догадываться. Но сам факт достижения значения «-67» очень греет душу.

Практическая проверка самодельной системы фазового перехода

Этап подготовительный - изоляция материнской платы

К изоляции материнской платы нужно подойти со всей ответственностью, ведь даже маленькая капля конденсата может привести к нестабильности в работе, а иногда и к выходу системы из строя.
Аккуратно замеряем расположение конденсаторов и прочих элементов на плате, и вырезаем под них отверстия в изоляции (в качестве последней используем разрезанную трубчатую изоляцию, о которой говорилось выше).
Вот фото прижимной пластины из оргстекла, для плотного прилегания изоляции по всей площади контакта с материнской платой:

Для изоляции околосокетной зоны не использовалась никакая диэлектрическая смазка – это оказалось ненужным, ведь у меня и так получилась стабильно работающая система.

Конденсаторы тоже были заизолированы, ведь они находятся очень близко к процессорному разъему. Из-за установленного испарителя во время работы они довольно «неплохо» промерзали и покрывались инеем.

Крепление для испарителя было сделано из 15 мм фанеры, так как она, в отличие от оргстекла, спокойно держит температуры порядка -50 градусов Цельсия и ниже, тогда как 15 мм оргстекло в таких условиях промерзает насквозь.

Дальнейшая проверка включенной системы показала полное отсутствие конденсата.

Испытание на железе

Из-за жесткости отсасывающей трубки было потрачено два дня на доработку крепления, так как изначально не было плотного контакта испарителя и процессора. После долгих мучений у меня всё-таки получилось обеспечить нормальный прижим испарителя к процессору.

Не смотря на то, что основание испарителя отшлифовано «на коленке» с помощью пасты ГОИ и мелкой наждачной бумаги, как видите, добиться зеркального отражения довольно легко.
Для обдува околосокетной зоны и перестраховки против возникновения конденсата использовался агрессивный 120-мм вентилятор:

Сначала меня немного беспокоила вибрация, которая отчетливо передавалась во все стороны по полу на расстоянии 3-х метров от собранной системы, ну и, конечно, немного трясло испаритель. Правда, на стабильность это ни коим образом не повлияло, поэтому испытания проходили в режиме «чем богаты, тем и рады».

Ну что же нам делать с системой фазового перехода? Конечно, применять для разгона компонентов системы! Теперь стабильной для процессора стала частота 3050Мгц:

Вот так выглядела собранная система в рабочем состоянии, на фото – меряем датчиком температуру испарителя при проходе 3DMark01:

В тестах типа 3DMark01, SuperPI, SienceMark, RenderBench и так далее температура испарителя держалась в пределах -35 градусов, при более тяжелых нагрузках (типа s&m) она поднималась примерно до нуля.

Процессор попался средненький, поэтому из него получилось выжать только Russian Record (WR равен 3207Мгц). А жаль, ведь до мирового не хватило всего 29 МГц! 3178 МГц - предельная частота для моего процессора, при которой сохранялась какая-то стабильность в данных условиях:

Тестирование системы, анализ результатов

Конфигурация тестового стенда:

  • Процессор: АMD Athlon 64 3000+, 2.0 GHz, 1.40 V, 512 Kb (Venice, E6);
  • Материнская плата: DFI LP UT nForce3 250Gb;
  • Подводя итог по тестовой части, следует отметить вполне закономерный рост производительности системы в зависимости от частоты центрального процессора, который можно изобразить с помощью линейного графика.
    Может, для повседневного использования именно с этой фреонкой именно этой системы не так и много, но в бенчерских целях ничего лучше не придумаешь!

    Заключение

    Для начала - подведем итоги по стоимости самодельной системы фазового перехода в моем случае:

    • кондиционер - 30 у.е
    • фильтр - 3 у.е
    • клапан Шредера - 1 у.е
    • испаритель - 15 у.е
    • труборез - 6 у.е
    • капилляр - 8 у.е
    • трубки - 8 у.е
    • горелка - 50 у.е
    • заправочный шланг – 8 у.е
    • фреон - 6 у.е
    • изоляция - 8 у.е
    • припой - 3 у.е

    всего: 144 у.е.

    Фактически за сумму, равную стоимости хорошей покупной системы водяного охлаждения, можно получить отличный инструмент, который намного больше, нежели СВО, поможет любому оверклокеру в битве за рекорды.
    Правда, есть у медали и вторая сторона.

    Для комплексной оценки проведенной работы и полученного результата можно выделить следующие основные моменты:

    плюсы -

    • дешевизна;
    • возможность получать сверхнизкие температуры на процессоре, благодаря чему достичь новых высот при разгоне;
    • моральное удовлетворение от проделанной работы;)

    минусы -

    • огромное энергопотребление;
    • большое тепловыделение (правда, зимой этот минус превратится в неплохой плюс:));
    • вибрация всей системы в целом и испарителя в частности (присутствует в конкретном случае только из-за особенностей примененного компрессора);
    • слишком большой для нормальной работы шум системы.

    Да, эту систему фазового перехода из-за перечисленных отрицательных черт нельзя использовать при работе за компьютером на протяжении длительного времени. Тем не менее, результатом лично я остался очень доволен - масса удовольствия от процесса работы и результата и возможность поработать на экстремальных частотах этого стоят!
    Ну и не стоит забывать, что это - первый опыт в построении самодельной фреонки, который, безусловно, удался!

    Желаю всем удачи и низких температур!

    У Вас есть пожелания, критические замечания по данному материалу? Его обсуждение ведется .


Да-да, дорогой читатель, можешь не сомневаться, что если ты хоть раз в жизни осмелился преодолеть означенный производителем частотный рубеж и, самое главное, получил от этого удовольствие, то ты – один из нас (демонический хохот)! До глубокой старости ты не оставишь попыток разогнать все, что движется, пока в конечном итоге не разгонишь сам себя до второй космической скорости и не покинешь пределов Солнечной системы, дабы воссиять яркой звездою на небосклоне и дарить свет новым поколениям оверклокеров…

Нет, я не надышался продуктами разложения хладагентов, просто фантазия разыгралась. Ведь подобно тому как культуристы не прекращают «качаться» до тех пор, пока их туловище не перестанет помещаться между блинами штанги, а дамы, отважившиеся на первую операцию по увеличению груди, не успокаиваются, пока не лишат себя возможности спать иначе как на спине, и оверклокеры стремятся добиться все больших и больших успехов на своем поприще, не останавливаясь ни перед чем.
Сперва начинающий «разгонялкин» принимает историческое решение сменить шумный и малоэффективный штатный кулер на тихую и производительную «медную башню», покупает новый охладительный девайс и выжимает из своего железа некоторое количество халявных мегагерц.

Потом берет паяльник, делает вольтмод, разгоняет систему еще больше и понимает, что ему уже никак не обойтись без водянки… В конечном счете дело доходит и до экстремальных систем охлаждения. При этих словах вам на ум наверняка приходят укутанные в теплоизоляцию медные «стаканы» с сухим льдом или жидким азотом, с помощью которых устанавливаются мировые рекорды разгона. Однако многие забывают, что существует еще такой удобный и эффективный способ нетрадиционного охлаждения компьютера, как использование СО на основе фазового перехода, иначе известных как «фреонки».

На первый взгляд, фреоновое охлаждение по степени «экстремальности» соотносится с жидкоазотным примерно как спуск с горки в аквапарке – со сплавом на байдарках по бурной реке. Однако сложность и эффективность системы охлаждения связаны с ее внешней крутизной отнюдь не в пропорции 1:1. Ведь если отбросить все внешние спецэффекты от охлаждения жидким азотом или сухим льдом и исключить из рассмотрения вспомогательные устройства, что останется в итоге? Несложной конструкции металлическая емкость, в которой плещется очень холодная жидкость, – только и всего.

В то же время фреонка – вполне себе сложный и наукоемкий агрегат, который нельзя создать без серьезной подготовки. К тому же для его постройки нужно располагать куда большим набором специального оборудования и умений работы с последним, нежели требуется для одарения процессора или видеокарты «азотной» прохладой. Фактически, как бы парадоксально это ни звучало, самостоятельно перейти на азотное охлаждение проще, чем на фреоновое.

Но что же такого может предложить нам система охлаждения на основе фазового перехода (phase-change), чего неспособен дать жидкий азот или сухой лед? Конечно же, это не низкая температура: лучшие одноконтурные фреонки «домашнего приготовления» при работе под нагрузкой позволяют получить -40…-60 °C на испарителе, в то время как днище простого медного «стакана» спокойно может иметь температуру лишь на 3-5° выше, чем у налитого туда криопродукта.

Главный козырь фреоновых систем охлаждения – продолжительность работы. Если стакан охлаждает чип лишь до тех пор, пока последняя капля азота либо мельчайший остаток сухого льда не обратится в газ, то фреонка будет «морозить» кристалл, покуда на контактах розетки есть напряжение. А электроэнергия явно относится к числу более распространенных ресурсов, нежели замороженная углекислота или жидкий N2. Посему системы типа phase-change пригодны и для выполнения долгих бенчинг-сессий, и даже для работы в основном компьютере владельца в режиме 24/7 (так как путем определенных ухищрений их можно сделать очень тихими).

К тому же изготовление фреоновой системы охлаждения не должно влететь вам в очень уж увесистую копеечку: за 10 000-15 000 руб. можно собрать весьма производительную и добротную одноконтурную парокомпрессионную СО или даже целых две «бюджетные». Энтузиасты разрабатывали и с успехом воплощали проекты 200- и даже 100-долларовых фреонок, используя бывшие в употреблении холодильные агрегаты, причем в заявленную стоимость частично было включено и необходимое для работы оборудование (!).

Поскольку на выходе компрессора может быть и 15, и 20, а иногда и все 30 атмосфер, недостаточно прочный радиатор, использованный во фреонке, способен банально рвануть.

Честно говоря, пик увлечения фреонками в нашей стране пришелся на 2004-2005 годы. В это время писались статьи, ставшие ныне классическими, опробовались новые интересные конструкции, высказывались полные оптимизма предположения о том, что всего спустя пару лет «фреон» станет не менее распространенным, чем «вода»… Увы, сбыться этим предсказаниям было не суждено – даже жидкостные СО и поныне остаются большой редкостью, не говоря уже о системах на основе фазового перехода. Тем не менее изобилие достоинств, коими последние обладают, не позволяет мне о них не рассказать. Первая часть цикла будет посвящена теории и поможет вам войти в курс дела. Итак, поехали.

Back to school
Как показывает опыт общения со множеством пользователей самых разнообразных уровней продвинутости, даже «вращающиеся» в технической сфере люди, если их деятельность напрямую не связана с холодильными установками, очень слабо представляют себе, как работает система фазового перехода. В школе все из них, конечно же, знакомились с основами термодинамики, однако мало кому приходило в голову соотнести формулы и графики из учебника с принципом работы хотя бы самого обычного холодильника, стоящего у них в квартире. Поэтому, как это обычно и бывает, знания остались чисто абстрактными и постепенно выветрились из памяти.

А посему я предлагаю начать с самых азов. Что мы вообще подразумеваем под охлаждением? Понижение температуры тела. При этом, как известно, температура является одной из косвенных характеризующих энергии, которая (энергия) не появляется из ниоткуда и не исчезает бесследно, а лишь переходит из одной формы в другую. Соответственно, уменьшение температуры одного тела при неизменных остальных параметрах должно неизбежно выливаться в увеличение энергии (акцентирую внимание на этом слове – именно энергии, не обязательно температуры) другого тела, системы тел или же среды.

В наиболее тривиальном случае этим увеличением энергии является нагрев. То есть, выражаясь простым языком, осуществляется перенос тепла из одного места в другое. Согласно наиболее доходчивой формулировке второго начала термодинамики, теплота не может перейти от менее нагретого тела к более нагретому без каких-либо других изменений в системе. Именно поэтому, кстати, при помощи обычного воздушного кулера нельзя охладить чип до температуры ниже комнатной, а при помощи водяной СО – ниже температуры циркулирующей жидкости (о чем порой забывают некоторые «кулхацкеры» с особо богатой фантазией).

Две вышеупомянутые системы охлаждения служат для рассеивания тепла, выделяемого кристаллами, либо внутри корпуса компьютера (кулеры), либо за его пределами (если стоит водянка). Существуют и такие, в которых «лишнее» тепло идет не на повышение температуры среды, а на кипячение жидкости либо плавление твердых тел (а эти процессы требуют больших затрат энергии, чем просто нагрев). Примерами подобных «холодильников» могут служить уже знакомые вам стаканы-испарители для жидкого азота или сухого льда. При этом основной их недостаток – невозобновляемость процесса – уже был описан выше.

Но должна же существовать какая-то возможность производить циклический процесс испарения-конденсации в замкнутом объеме! При этом, конечно же, хотелось бы добиться перехода из одного агрегатного состояния в другое при низких температурах, например -20…-50 °C. Точками кипения примерно в этом диапазоне обладают газы-хладагенты, именуемые фреонами. Однако чтобы наблюдать испарение жидкости, сопровождающееся отбором тепла от интересующего объекта, при столь низких температурах, надо сначала эту самую жидкость получить – а как это можно сделать, если охлаждать ее нечем (она сама должна служить для охлаждения)?

Снова возвращаемся к школьной программе по физике и вспоминаем, что «пограничные» температуры веществ (плавления, испарения) прямо пропорциональны давлению. При повышенном давлении жидкость может не превращаться в газ даже при температурах, заметно превышающих оную ее точки кипения при 1 атм, тогда как при разрежении, наоборот, она закипает раньше. Для большей ясности можете вспомнить про одноразовую зажигалку, в которой спокойно плещется сжиженный газ комнатной температуры, и про тот интересный факт, что высоко в горах (где как раз-таки ниже давление) вода может закипать уже при 80 °С. Таким образом, манипулируя давлением, мы можем «двигать» точку испарения / конденсации хладагента туда, куда нам нужно. В случае с искомой системой охлаждения – вверх, то есть к диапазону плюсовых температур по шкале Цельсия.

Подробных физических выкладок я не привожу намеренно, потому что прекрасно понимаю, что большинство читателей лишь пробегутся по ним глазами, а те немногие, кто обладает глубокими познаниями в области термодинамики, и так прекрасно с ними знакомы.

Холодильник наизнанку
Думаю, этого краткого введения вполне достаточно, чтобы перейти к принципам функционирования «классической» фреонки. Данное устройство состоит из компрессора, конденсатора, фильтра, капиллярной трубки, испарителя и отсасывающего шланга, соединенных между собой герметично при помощи медных трубок. Фреон проходит через эти узлы именно в том порядке, в каком они перечислены, и при этом с ним происходят любопытнейшие изменения. Итак, вначале, пока фреонка выключена, во всем ее внутреннем пространстве хладагент существует в виде газа под сравнительно невысоким давлением (3-8 атмосфер).

Как только компрессор включается в сеть, он начинает нагнетать газ в сторону конденсатора, резко увеличивая давление (а заодно нагревая, но это уже побочный эффект). В конденсаторе (представляющем собой, как правило, большой радиатор, через который «змейкой» проходит трубка) находящийся под давлением фреон, охлаждаясь, постепенно начинает конденсироваться (переходить в жидкое состояние). Поскольку газ, как известно, обладает большей энергией, чем жидкость, при его сжижении нужно рассеивать значительное количество тепла, для чего конденсатор снабжают большой поверхностью теплосъема и ставят на его обдув мощный вентилятор. В обычных холодильниках обходятся лишь большим плоским радиатором из трубок, благо габариты позволяют.

Фреонку обычно собирают так, что точка входа трубки, идущей из компрессора в конденсатор, находится наверху, а выход – внизу. Таким образом, жидкость под действием силы тяжести стекает к нижней части конденсатора, что обеспечивает наименьшее количество пузырей несконденсировавшегося газа. Затем трубка, выйдя в нижней части конденсатора, вновь взмывает резко вверх (уточню, что мы говорим о фреонке, установленной горизонтально), чтобы затем войти в фильтр. Это, как правило, металлический (обычно медный) цилиндр диаметром 15-50 мм и длиной 8-20 см, внутри которого с одной стороны находится решетка, служащая для задержания мелкого мусора, попавшего внутрь системы или образовавшегося в ней при ее сборке и заправке, а с другой – тончайшая сетка.

Пространство между ними заполнено гранулами поглощающего воду материала (например, силикагеля или цеолита). Поэтому данный узел правильнее называть не просто фильтром, а фильтром-осушителем. Жидкий фреон с небольшими примесями газообразного поступает в верхнюю часть расположенного под углом фильтра, чтобы, опять же, за счет силы тяжести внизу образовался слой исключительно жидкости. Из фильтра она поступает в длинную и тонкую капиллярную трубку, по которой, постепенно замедляя свой ход (за счет трения о стенки), движется к испарителю.

Важно подобрать длину и диаметр трубки так, чтобы давление упало до величины, недостаточной для «удерживания» фреона в жидком состоянии, уже после подхода к испарителю, а дозировка была не меньше и не больше необходимой. Сам испаритель чем-то напоминает водоблок – в нем тоже присутствуют элементы, способствующие лучшему теплообмену. Только, как правило, в испарителях для фреонок есть несколько так называемых «этажей», которые кипящий хладагент омывает последовательно, чтобы в наиболее полной мере отобрать у них (а значит, и у охлаждаемого объекта) тепло для парообразования.

Затем фреон, уже почти полностью превратившись в газ, должен поступить назад в компрессор для повторения цикла. Для возврата хладагента из испарителя служит отсасывающая трубка. Она должна обладать достаточной гибкостью и длиной (чтобы было легко устанавливать испаритель), а также ни в коем случае не пропускать газ – иначе систему придется часто дозаправлять, а это и неудобно, и накладно. Иногда отсасывающую трубку оснащают так называемым докипателем, который ориентирован противоположно фильтру: газ с остатками жидкости подается в него снизу, а компрессор сверху «засасывает» уже исключительно испаренный фреон. Попадание внутрь жидкого хладагента может вывести компрессор из строя из-за так называемого гидростатического удара.

Таким образом, в схеме фреонки можно выделить две линии – высокого и низкого давления. Первая начинается на выходе компрессора и оканчивается на подходе к испарителю, а вторая состоит из отсасывающей трубки и докипателя. Соответственно, граничными узлами являются компрессор и капиллярная трубка.
Вы можете спросить, почему я назвал этот фрагмент текста «Холодильник наизнанку». Отвечаю: в тех СО на основе фазового перехода, что стоят у каждого из нас в квартирах, роль испарителя играют стенки морозильных камер, расположенные вокруг остужаемых объектов, тогда как фреонка, наоборот, охлаждает компьютер исключительно локально и, в каком-то смысле, «изнутри».

Итак, мы в общих чертах изучили устройство некой среднестатистической фреонки. Однако изобилие различных типов компонентов позволяет создавать огромное количество модификаций, которые могут значительно отличаться друг от друга даже по ключевым параметрам. Сейчас я предлагаю рассмотреть наиболее распространенные виды составных частей фреонки и понять, какими преимуществами и недостатками обладает каждый из них.

Компрессор
Современная промышленность выпускает сотни различных моделей компрессоров, отличающихся принципом работы, температурным диапазоном, холодильной мощностью, типом приведения в действие и множеством других ТТХ. Чаще всего встречаются поршневые, винтовые, центробежные и спиральные компрессоры, из которых большая часть может быть герметичными или полугерметичными. В быту обычно используются герметичные поршневые электрические компрессоры, рассчитанные на однофазное напряжение 220 В. Нагнетатели иных типов либо применяются только для промышленных нужд (и обладают огромными потребляемыми мощностями), либо непригодны для использования дома из-за высокого уровня шума.

Основные потребительские характеристики компрессора – хладопроизводительность, марка необходимого фреона, тип используемого масла, способ крепления трубок и вышеупомянутая «громкость». Во многих случаях важными оказываются габариты и вес устройства – например, тогда, когда фреонку необходимо установить в корпусе компьютера или в ином ограниченном объеме.

Итак, пойдем по пунктам. Холодильная мощность компрессора, в отличие от мощности потребляемой, одной цифрой не описывается, потому как она зависит от температуры охлаждаемого объекта. К примеру, компрессор, рассчитанный на отвод 300 Вт тепла при -25 °C, при +5 градусах будет иметь хладопроизводительность порядка 1100 Вт, при -5 – 720 Вт, при -15 – 470 Вт, а при -45 – всего 190 Вт. Противоречий с физикой здесь нет, поскольку мы не говорим о «превращении» одних ватт в другие, а лишь указываем, нагрузку какой мощности компрессор будет способен «держать» при заданной температуре. Обычно каждый компрессор снабжается табличкой, в которой указана его холодильная мощность при 4-6 температурах и нескольких типах (если для него это допустимо) используемого хладагента.
Вот мы плавно подошли и ко второму вопросу. Фреоны различных марок заметно отличаются по температурам кипения, эффективности и, конечно же, стоимости. Наиболее распространенным является газ R-22 с температурой кипения -41° при атмосферном давлении.

Во второй части статьи я расскажу о том, исходя из каких критериев нужно подбирать компоненты системы, что такое каскады и автокаскады и чем плохи фреонки со множеством испарителей…

При этом марка используемого фреона всегда жестко связана с типом масла, которое применяется в компрессоре для снижения трения. Масла разделяются на синтетические и минеральные, и подбирать газ нужно так, чтобы он не вступал со смазкой в химическую реакцию – иначе компрессор выйдет из строя. Наиболее инертным и, соответственно, универсальным является синтетическое масло. Также совместимость должна выражаться в том, чтобы масло ни в коем случае не замерзало при температуре кипения фреона. Ведь когда я ранее описывал движение хладагента по системе, я опускал тот немаловажный факт, что вместе с газом по фреонке всегда течет и масло. Детали компрессора буквально «купаются» в нем, иначе его работа была бы невозможна. Ну а если масло замерзнет, то мы столкнемся просто-напросто с закупоркой трубок и, как следствие, падением эффективности системы практически до нуля до того момента, как смазка растает. А при особом невезении можно получить и трещины.

По способу подсоединения к системе разделяют компрессоры, рассчитанные на пайку или на использование штуцеров (резьбовых соединительных элементов). Вторые могут быть удобнее в монтаже, но для установки штуцеров нужно уметь хорошо развальцовывать трубы (увеличивать их диаметр за счет пластичности меди) и обладать необходимым инструментом, так что чаще прибегают к простому спаиванию трубок.

Конденсатор
Иногда этот узел не совсем верно называют конденсором (очевидно, чтобы не путать с электронным компонентом). Конструктивно он прост, а внешне в общем-то мало отличается от радиатора водянки (разве что размерами) или автопечки. Однако есть у него одно отличие, незаметное глазу, – куда большая стойкость к высоким давлениям. Поскольку на выходе компрессора может быть и 15, и 20, а иногда и все 30 атмосфер, недостаточно прочный радиатор, использованный во фреонке, способен банально рвануть.

Фильтр
Необходимость данного узла, думаю, особых сомнений не вызывает. Внутри фреонки помимо хладагента неизбежно присутствует мелкий мусор (в первую очередь окалина, возникшая при пайке), поэтому, дабы узкое отверстие капиллярной трубки не забилось, необходимо, чтобы все это осталось на решетках фильтра. Также важно правильно ориентировать фильтр: в нем всегда есть вход и выход. Нужно, чтобы фреоно-масляно-водно-грязевая смесь последовательно проходила через решетки большого размера, осушитель и мелкие сетки, но никак не наоборот, иначе фильтр забьется. Для хорошего осушения стоит выбирать фильтр внутренним объемом не менее 15 см3, ибо вода для системы в сотню раз опаснее, чем масло, – просто потому, что замерзает уже при температурах в районе 0 °С.

Капиллярная трубка
Вообще говоря, такое название данного узла системы неверно. Ошибка выходит того же плана, что и при назывании копировального аппарата «ксероксом». А все дело в том, что использование медной трубки малого диаметра – лишь один из способов дозированной подачи жидкого фреона в испаритель. Как я уже кратко упоминал выше, трубка замедляет ход жидкости за счет огромного гидравлического сопротивления стенок (обратно пропорционального, вообще говоря, квадрату внутреннего диаметра и прямо пропорционального длине). Нужно грамотно подбирать трубку и длину необходимого участка – иначе можно столкнуться либо с недостатком жидкого фреона в испарителе и, как следствие, низкой эффективностью, либо, наоборот, с его избытком и риском попадания в компрессор. И опять же, низкой эффективностью по причине того, что значительная часть фреона будет кипеть в отсасывающей трубке.

Вместо капилляра можно использовать вентиль, дроссель, ТРВ или же автомобильный инжектор. Вторым по популярности после трубки является ТРВ – терморегулирующий вентиль, степень открытия которого зависит от температуры на интересующем объекте (испарителе, как правило). Благодаря этому элементу можно поддерживать относительно стабильную температуру на узле. Правда, есть и существенные недостатки: качественные ТРВ дороги, а доступные нередко реагируют с большим запаздыванием, лишний раз «раскачивая» систему, вместо того чтобы стабилизировать ее. Обычные же вентили или дроссели плохи тем, что могут травить фреон. Так что трубка является простым, негибким, но одновременно крайне надежным и испытанным временем решением.

Испаритель
Единственный узел фреонки, который нельзя приобрести в обычном магазине, торгующем холодильным оборудованием. Его необходимо изготовить самостоятельно или купить у других энтузиастов. Конструкции испарителей столь же различны, сколь конструкции водоблоков, но схема многоэтажного лабиринта пользуется наибольшей популярностью. Как правило, на станке вытачиваются отдельные уровни «башни», которые затем соединяются воедино пайкой. В каждом слое есть отверстие для капиллярной трубки – она должна доставлять фреон к самому нижнему уровню, который расположен ближе всего к охлаждаемому объекту. Необходимо, чтобы кипящий фреон двигался по каналам испарителя достаточно продолжительное время, дабы в наиболее полной мере «отобрать» тепло у процессора или ядра видеокарты.

Отсасывающая трубка
Как правило, в качестве оной используют металлические гофрированные шланги для подключения газовых плит – они достаточно гибки и надежны, чтобы можно было без проблем устанавливать испаритель на процессор или видео, и не травят газ. Правда, работать на скручивание такие изделия отказываются наотрез. Реже, когда не нужно регулярно демонтировать испаритель, применяют медные трубки, и уж совсем в единичных случаях используют резиновые заправочные шланги, которые, хоть и удобны гибкостью и простотой монтажа, неизбежно вызывают потери фреона. Нередко внутри отсасывающей трубки скрываются не только пары хладагента, но и капилляр, идущий в испаритель. Это предохраняет его от повреждений, а также дополнительно охлаждает текущий по нему фреон, что позволяет выиграть 1-2°. «Точки проникновения» малой трубки в большую, как правило, расположены в местах подсоединения шланга к испарителю и ко входу компрессора.

Корпус
Данный компонент фреонки не относится к числу обязательных, однако, не поленившись его изготовить, вы сэкономите немало времени и нервов, а работа с прибором будет приносить больше удовольствия. Часто для этой цели используются старые «толстенькие» системные блоки, в которые можно без матюков и с применением минимума слесарного инструмента установить фреонку. Отверстие для отсасывающей трубки, как правило, вырезается либо в крышке, либо в боковой стенке корпуса, а провода заводятся сзади.

Некоторые умельцы выносят фреонку в отдельный отсек большого серверного корпуса, чтобы получить в конечном итоге нечто, весьма похожее на готовые заводские решения. Также зачастую монтажную пластину, на которой покоится агрегат, наращивают до каркаса при помощи несложных конструкций из металлического профиля, чтобы обезопасить драгоценный прибор от ударов и искривлений, а заодно повысить удобство переноски. При создании корпуса в виде глухой коробки было бы крайне полезным оклеить его изнутри звуко- и виброизолирующим материалом, дабы снизить уровень шума, производимого фреонкой. Важно лишь не забывать о надлежащей степени охлаждения компрессора.

Теплоизоляция
Дабы испаритель и отсасывающая трубка не покрывались слоем снега и льда, их «укутывают» специальным материалом, минимизирующим теплообмен. Также необходимо тщательно затеплоизолировать пространство вокруг охлаждаемого объекта, чтобы, опять-таки, избавиться от конденсата, а заодно не переохладить те элементы, которым низкие температуры совершенно ни к чему (электролитические конденсаторы, например). На этом, пожалуй, будем закругляться. В следующей части статьи я расскажу о том, исходя из каких критериев нужно подбирать компоненты системы, что такое каскады и автокаскады, чем плохи фреонки со множеством испарителей и о других весьма и весьма интересных вещах.

Уж сколько раз твердили миру…
Наверное, нет на свете оверклокера, которому бы не приходила в голову идея собрать компьютер в холодильнике, дабы покорить новые вершины разгона. Однако все из них, кто решил перед этим обратиться за советом к более опытным товарищам, получали один и тот же ответ: «Брось эту затею». Итак, давайте разберемся почему.
Представим себе обычную морозильную камеру среднестатистического холодильника: температура около -10°, достаточно места почти для любого компа без корпуса – вроде бы идиллия. Но, как говорится, «было гладко на бумаге, да забыли про овраги». Первый же вопрос – размещение кабелей. Через приоткрытую дверцу? Уже спустя пару часов огромная «шуба» поглотит большую часть внутреннего пространства, а температура вырастет.

Сверлить боковые стенки? Все равно пойдет ненужный влажный воздух, да еще и можно повредить фреоновые трубки. Ну и, наконец, главная проблема – выпадение конденсата. Все почему-то забывают, что продукты, лежащие в холодильнике, так чудесно замораживаются только потому, что сами не выделяют тепла. Вся холодильная мощность компрессора идет на однократное охлаждение «ништяков» и последующее поддержание температуры. А современный комп просто-напросто нагреет морозилку до плюсовой температуры, все «потечет», и, как следствие, нам обеспечены короткое замыкание и гибель железа. Одновременно – и неплохой урок тому, кто «гонялся за дешевизной»

Вот, кстати говоря, что мне удалось обнаружить на bash.org.ru:

«xxx: знал я одного чувака, он в 98 году купил пень на 350мгц, налил в ванну глицерина, разобрал холодильник, вынул катушки, сунул в ванну, охладил глицерин почти до нуля, положил в него комп и разогнал до 1.3ггц.
yyy: А где же он мылся тогда?
xxx: после всего что я написал ты еще думаешь что он мылся?!»

Увы, хоть данная цитата и довольно забавна, вся она – «ложь, обман и жульничество». Ванну, т. е. примерно 200 л, глицерина не так-то просто добыть, а он сам по себе обладает довольно посредственной теплопроводностью, да еще и замерзает уже при +18°. В холодильнике нет никаких катушек, которые можно было бы вытащить и использовать для охлаждения. Ну и, наконец, ни один Pentium II даже под жидким азотом никому не удавалось разогнать выше 675 МГц.

Третий в моем обзоре тип системы охлаждения, пожалуй, один из самых интересных, эффектных и эффективных.

Как я уже говорил, с законами физики не поспоришь. Рост тактовых частот и производительности современного компьютера неизбежно сопровождается повышением энергопотребления его элементов, следствием этого является увеличение тепловыделения. В свою очередь, это заставляет производителей создавать все новые и все более эффективные системы охлаждения.

Первый раз с такой системой я познакомился поздно – в конце 2006 года на выставке Home Interactive Technologies (HIT) в Питере. Тогда я участвовал в конкурсе моддинга и рядом с моим модом стоял мод парня, который сделал шикарнейший мод с применениям водяного охлаждения.

Система жидкостного охлаждения – это такая система охлаждения, в качестве теплоносителя в которой выступает какая-либо жидкость.
Вода в чистом виде редко используется в качестве теплоносителя (связано это с электропроводностью и коррозионной активностью воды), чаще это дистиллированная вода (с различными добавками антикоррозийного характера), иногда - масло, другие специальные жидкости.

Главная разница в использовании воздушного и жидкостного охлаждения заключается в том, что во втором случае для переноса тепла вместо нетеплоемкого воздуха используется жидкость, обладающая гораздо большей, по сравнению с воздухом, теплоемкостью.

Принцип действия системы жидкостного охлаждения отдаленно напоминает систему охлаждения в двигателях автомобиля - через радиатор вместо воздуха, прокачивается жидкость, что обеспечивает гораздо лучший теплоотвод. В радиаторах охлаждаемого объекта вода нагревается, после чего вода из этого места циркулирует в более холодное, т.е. отводит тепло.

Журчит ручей

Типичная система состоит из водоблока, в котором происходит передача тепла от процессора теплоносителю, помпы, прокачивающей воду по замкнутому контуру системы, радиатора, где происходит отдача тепла от теплоносителя воздуху, резервуара (служит для заполнения системы водой и прочих сервисных нужд) и соединительных шлангов.

Поверхность соприкосновения водоблока с процессором обычно отполирована до зеркального отражения, по уже озвученным мною причинам. Через знакомый термоинтерфейс водоблок крепится на охлаждаемый объект. Обычно он крепится с помощью специальных скоб, что исключает его возможность двигаться. Бывают водоблоки и для видеокарт, но явных отличий от принципа действия процессорных водоблоков нет – все различия в креплении и форме радиатора.

Одна из частых проблем обладателей систем жидкостного охлаждения это перегрев околопроцессорно-сокетных элементов материнской платы, которые могут греться ни чуть не хуже своего старшего брата. Связано это с тем, что обычно в таких системах отсутствует циркуляция холодного воздуха. Как этого избежать? Совет, пожалуй, один – выбирайте системы (совмещайте) с дополнительным кулером, который будет охлаждать остальные греющиеся силовые элементы.

Водоблок через специальные трубки соединяется с радиатором, крепиться который может как внутри системного блока, так и снаружи (например, с задней стороны системника). Второй вариант, пожалуй, предпочтительнее. Судите сами: больше свободного места внутри системного блока, более низкая температура окружающей среды положительно влияет на радиатор. Плюс он дополнительно обдувается корпусным вентилятором.

Резервуар для жидкости, или иначе, расширительный бачок, так же может находиться снаружи системного блока. Его объем в штатных системах варьируется от 200мл до литра.

Производители систем охлаждения стараются заботиться о своих пользователях и прекрасно понимают, что для хорошей системы охлаждения место найдется внутри не каждого системного блока. Тем более, нужно учитывать, что каждый производитель как-то хочет выделиться на фоне других. Поэтому существует огромный выбор внешних систем жидкостного охлаждения (понятное дело, что без соединительных трубок с радиатором на конце никак не пренебречь). Их не стыдно выставить напоказ; обычно внутри таких систем скрывается сразу все – помпа, резервуар, продуваемый вентиляторами радиатор. Но и стоят они, обычно, демонстративно дорого.

Итог по системам водяного охлаждения

Для чего же применять жидкостные системы охлаждения? Ведь если посудить строго, то обычных штатных кулеров всегда достаточно, в обычных условиях работы ПК (если бы это было не так, то их бы не ставили, а ставили системы жидкостного охлаждения). Поэтому чаще всего такую систему следует рассматривать с позиции разгона – тогда, когда возможностей воздушной системы охлаждения будет не хватать.

Другим плюсом жидкостной системы охлаждения является возможность ее установки в ограниченном пространстве корпуса. В отличие от воздуха, трубки с жидкостью можно задать практически любые направления.

Ну и еще один плюс такой системы – ее беззвучность. Чаще всего помпы заставляют циркулировать поток воды по системе, не создавая шума больше значения в 25 дБ.

Минус, как я уже отметил – зачастую, дороговизна установки.

Система охлаждения на элементах Пельтье

Среди нестандартных систем охлаждения можно отметить одну очень эффективную систему – на основе элементов Пельтье. Жан Шарль Атаназ - французский физик, открывший и изучивший явление выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Устройства, принцип работы которых использует данный эффект, называются элементы Пельтье.

В основе работы таких элементов лежит контакт двух проводников с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт этих материалов, электрону необходимо приобрести энергию, чтобы он мог перейти в зону с бОльшей энергией проводимости другого полупроводника. Охлаждение места контакта полупроводников происходит при поглощении этой энергии. Нагревание же места контакта происходит при протекании тока в обратном направление.

На практике используются только контакт двух полупроводников, т.к. при контакте металлов эффект настолько мал, что незаметен на фоне явления теплопроводности и омического нагрева.

Элемент Пельтье содержит одну или несколько пар небольших (не больше 60х60 мм) полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре [обычно теллурида висмута (Bi2Te3) и германида кремния (SiGe)]. Они попарно соединены металлическими перемычками, которые служат термическими контактами и изолированы не проводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединены так, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости - протекающий электрический ток протекает последовательно через всю цепь. В зависимости от того, в каком направлении течет электрический ток, верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом переносится тепло с одной стороны элемента Пельтье на противоположную и создаётся разность температур.

При охлаждении нагревающейся стороны элемента Пельтье (радиатором или вентилятором) температура холодной стороны становится ещё ниже.

Итог по элементам Пельтье


К достоинствам такой системы охлаждения можно отнести небольшие размеры и отсутствие каких-либо подвижных частей, а также газов и жидкостей.
Ложкой дегтя является очень низкий коэффициент полезного действия, что приводит к большой потребляемой мощности для достижения заметной разности температур. Если включить термоэлектрическую пластинку без нагрузки (процессор не будет греться), то Вы рискуете стать свидетелем интересной картины – на элементе Пельтье, при охлаждении до точки росы, появится иней, который хлебом не корми – дай закоротить контакты.

Так же, если элемент Пельтье выйдет из строя, то будет еще одно зрелище – из-за отсутствия контакта между радиатором (или кулером) и процессора, последний моментально нагреется и может выйти из строя.

Элементы Пельтье еще обязательно найдут широкое применение, так как без каких-либо дополнительных устройств они легко позволяют получить температуры ниже 0°C.

Системы фазового перехода (фреоновые установки)

Чувствуете, как читая текст, становится все холоднее и холоднее? Еще бы – медленно, но верно спускаемся в диапазон низких температур.
Сейчас мы рассмотрим не очень распространенный, но очень эффективный класс систем охлаждения – системы, хладагентом в которой выступают фреоны. Отсюда и название – фреоновые устанвоки. Но более правильно было бы называть такие системы системами фазового перехода. На принципе действия таких систем работают практически все современные бытовые холодильники.

Но давайте по-порядку. Один из вариантов охладить тело - заставить вскипеть на нем жидкость. Для перехода жидкости в пар, необходимо затратить энергию (энергия фазового перехода) – то есть закипая, жидкость отбирает тепловую энергию от окружающих ее предметов. Но мысленно возвращаясь в стены школьного кабинета физики, мы вспомним, что при текущем давлении мы не сможем нагреть жидкость выше температуры ее кипения. Кто из нас показывали друзьям такой фокус – наливая сок в пластиковый стаканчик и держа под дном стакана пламя? Можете попробовать - никаких катаклизмов не произойдет, пока весь сок не выкипит;)

Всем известная Википедия трактует слово «Фреоны» как галогеноалканы, фторсодержащие производные насыщенных углеводородов (главным образом метана и этана), используемые как хладагенты. Кроме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже - брома. Известно более 40 различных фреонов; большинство из них выпускается промышленностью. Фреоны - бесцветные газы или жидкости, без запаха.

Если же взять такую жидкость, которая будет закипать, скажем, при -40°С, то сосуд, в котором свободно кипит эта жидкость (такой сосуд называют испарителем), будет очень сложно нагреть. Его температура будет стремиться к -40°С. А поставив такой сосуд на нужный нам объект охлаждения (например, на процессор), мы сможем добиться того, чего и хотели – охладить систему.

Но понятное дело, лазить с определенным интервалом под стол и заливать жидкость в испаритель никто не будет – нужно из пара жидкости опять получить саму жидкость, которая будет снова подаваться в испаритель. Вот Вам пища для самостоятельных размышлений.

Ладно-ладно. В результате размышлений вы должны прийти к схеме следующего вида: мощный компрессор после испарителя качает газ и подает его под большим давлением в конденсор. Там газ конденсируется в жидкость и отдает тепло. Конденсор, выполненный в виде радиатора, рассеивает тепло в атмосферу – этот этап мы уже хорошенько рассмотрели в предыдущих системах. Далее жидкий фреон поступает к испарителю, где выкипая, отбирает тепло – вот и весь замкнутый цикл. Цикл «фазовых переходов» потому так и назван - фреон попеременно меняет свое агрегатное состояние.

Системы фазового перехода, испарители (холодильники) которых устанавливаются непосредственно на охлаждаемые элементы, называются системами «Direct Die». Холодными в такой системе являются только сам испаритель и отсасывающая трубка, остальные же элементы могут иметь комнатную температуру или выше. Холодные элементы нужно тщательно теплоизолировать для предотвращения образования конденсата.

Минусом фреонок является относительная громоздкость испарителя и отсасывающей трубки, поэтому объектом охлаждения выбираются лишь процессор и видеокарта.

Есть и еще одна разновидность систем охлаждения, о которой я пока не упомянул – чиллеры. Этот класс систем состоит в основном из систем жидкостного охлаждения, отличием же является наличие второй части (холодильника теплоносителя), которая работает вместо радиатора – зачастую эта часть является той самой системой фазового перехода. Достоинством такой системой является то, что ей можно охладить все элементы системника, а не только видеокарту и процессор (в отличие от «direct die»-систем). Система фазового перехода чиллера охлаждает лишь теплоноситель системы жидкостного охлаждения, то есть в замкнутом контуре течет очень холодная жидкость. Отсюда и минус систем такого типа – необходимость изолирования ВСЕЙ системы (водоблоки, трубки, насосы и т.п.). Если же изолировать не хочется, то можно использовать маломощную фреоновую установку для чиллера, но тогда об экстремальном разгоне можно будет забыть. Тут уж выбирайте, Вам шашечки или ехать.

Итог по фреонкам


К блестящей стороне медали можно отнести возможность достижения очень низких температур, возможность постоянной работы (в отличии от системы, которая рассмотрена далее). Высокий КПД системы (потери минимальны). Из постоянных систем охлаждения, фреонки – самые мощные. При этом они позволяют выносить тепло из корпуса, что положительно сказывается на температурах внутри него.

К стороне медали, намазанной дегтем, относятся такие особенности системы, как сложность изготовления такой системы [ серийно выпускаемых систем не так много, цены сопоставимы со стоимостью запуска шаттла;) ]. Небольшой вес и маленькие габариты – все это в полной мере отсутствует в установках данного типа.

Условная стационарность системы. Практически во всех случаях (кроме тех случаев, когда Вы не планируете заниматься экстремальным разгоном) – потребуется теплоизоляция всей системы. Ну и самый, пожалуй, негативный момент – более чем ощутимый шум от работы (50-60 дБ).

Еще одним минусом фреонок является то, что на покупку фреона нужна лицензия. У кого ее нет, выбор не велик: в свободной продаже есть только один - R134a (точка кипения которого -25°С).

Существует еще один хладагент - R290 (пропан), но сейчас он не используется в охладительных системах (возгораемость). Он обладает очень хорошими свойствами: точка кипения -41°С, совместим с любым маслом компрессора и главное, дёшев.
Одевайте варежки, «слоники» и шапки с шубой - мы добрались до самого холодного момента в этой статье.

Система экстремального охлаждения

Ну и в завершающей главе моей сегодняшней статьи станут системы, в качестве хладагента в которых используется жидкий азот.

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, температурой кипения (при нормальном атмосферном давлении) которой равна ни много ни мало -195.8 градусов по Цельсию! Для хранения жидкого азота применяют специальные резервуары - сосуды Дьюара объемом от 6 до 40 литров. Тут вот Word подсказывает, что 40 литров это еще и 70.39 английских пинтов, 84.52 американских, 10.56 галлонов или 42.46 квартов;)

Установки данного типа предназначены только для экстремального охлаждения, в экстремальных условиях. Одним словом, при разгоне.

Всем по стакану

Системы с жидким азотом не содержат никаких помп (температура, знаете ли, не располагает;) или других подвижных элементов. Она представляет из себя высокий металлический (медный или алюминиевый) стакан с дном, который плотно соединяется с центральным процессором. Достать такую штуковину не так-то просто (хотя что в наше время не купишь?) – поэтому умельцы зачастую делают его самостоятельно.

Основной проблемой при разработке стакана является обеспечение процессора при полной нагрузке минимальной температурой. Ведь теплопроводные свойства жидкого азота сильно отличаются от той же воды. Он берет лишь тем, что «промораживает» стенки стакана, позволяя охладить процессор до температуры ниже 100 градусов. А так как тепловыделение камешка в простое и в режиме полной нагрузки отличается достаточно существенно (а скачки происходят мгновенно) - стакан часто не в состоянии вовремя эффективно отвести тепло. Для современного процессора оптимальной температурой является -110-130 градусов. Да, подойдет не любой термоинтерфейс. DeDaL советует AS ceramique.

После изготовления стакана, его (и материнскую плату) нужно тщательно теплоизолировать, чтобы конденсат, который неминуемо образуется от такого перепада температур, не замкнул какие-нибудь контакты на материнской плате. Обычно используют различные пористые и пенистые материалы, например вспененный каучук – неопрен. В несколько слоев обматывают отрезанным куском, после чего закрепляют тем же скотчем.

С изоляцией материнской платы несколько сложнее. Чаще всего поступают так – заклеивая разъемы, все «заливают» диэлектрическим лаком. Причем, с обратной стороны материнской платы такую процедуру тоже нужно проделать – в районе процессорного сокета. Такая лакировка абсолютно не мешает работе платы (хотя, вы автоматически лишаетесь гарантии – так, на всякий случай, если еще не лишились) – но зато вы почти гарантированно исключаете возможность пострадать от протекания жидкого азота.

Махмуд, поджигай!

Дальше все просто. После того, как Вы тщательно соберете все компоненты, можно приступать. С помощью какой-то промежуточной емкости (например, термос или какой-то другой теплоизолированный стакан) наливаете азот в стакан на материнской плате, после чего можете мучить свою систему, например, проведением забугорского синтетического теста;)

Кстати о тестах – вот список тех бенчмарков, которые официально приняты:
- 3Dmark 2001
- 3Dmark 2003
- 3Dmark 2005
- 3Dmark 2006
- Aquamark 3.0
- Super Pi как самый фундаментальный
- Pifast

Для часа работы компьютера достаточно 4-5 литров азота. Заливать в стакан нужно примерно до половины, причем постоянно поддерживая этот уровень.

Достать азот в наше время не является нерешаемой задачей. На каком-нибудь заводе вам его отпустят по цене рублей в 30 за литр. Попробовать купить его можно и в различных медицинских учреждениях. Естественно, нужно везде заранее созваниваться и все узнавать!

Что будет, если азот попадет на какую-либо часть тела? Смотря на какую. Если в глаза – пиши-пропало. Если же немного прольется на руку – ничего страшного не случится. Дело в том, что на поверхности кожи азот сразу закипает, благодаря этому между рукой и азотом образуется воздушная прослойка. Но все в этом мире не вечно… поэтому купаться и даже умываться крайне не советую. Устрашающего вида теплоизоляционные перчатки на руках тех, кто работает с азотом – это чаще всего просто требуемая техника безопасности, за несоблюдение которой больно ругают.

Что является недостатком такой системы охлаждения? Мне кажется, тут все очевидно. Вряд ли кто-то будет спокойненько серфить интернет или моделировать что-то, пусть и ресурсоемкое. Систему с азотом нельзя собрать в небольшую системку под столом и чтобы она там сама по себе стояла. Говоря иначе, такое охлаждение не подходит для решения бытовых задач – нужен постоянный и ответственный контроль, все нужно стараться делать тщательно и без ошибок.

Но зато как элегантно и демонстративно это со стороны…;)

Морозная свежесть


Итак, самое время подвести итоги. Мы узнали, что является самым главным нагревателем в компьютере - это центральный процессор, он же камень. После камня друг за другом идут видеокарта, чипсет материнской платы, жёсткий диск, системная память и различные платы расширения. Практически всегда и на всех компонентах компьютера, требующих охлаждения, оно(охлаждение) уже установлено и для штатного режима работы его вполне достаточно. Если Вы не собираетесь разгонять компьютер, то и модифицировать систему охлаждения Вам не имеет смысла.

Основное, что нужно помнить – что обязательно нужна вентиляция внутри корпуса, т.к. холодный воздух, приходящий из окружающей среды, для той же видеокарты будет намного полезней, чем установка или замена идущего в комплекте кулера на более дорогой.

Если же в Ваши планы входит разгон, то всегда нужно помнить 4 простых правила, однажды кем-то озвученных:

1. Всегда есть вероятность схода с дистанции каких-то участников мероприятия, по разным причинам - начиная от неправильных действий разгоняющего и кончая неправильными действиями производителя, не предугадавшего, что вот именно данная конкретная железка пойдет В РОССИЮ и там ее однозначно будут эксплуатировать на различных нештатных режимах.

2. Гарантии (и возможности продать это оборудование как исправное) в таком случае вы скорее всего лишаетесь, и винить в этом вы будете вынуждены только себя.

3. Устройства «noname» китайского производства рекомендуется исключить из состава вашей машины.

4. Три кита, на которых держится разгон - голова на плечах, руки с правильной заточкой, хорошее охлаждение. При отсутствии хотя бы одного из них можете расслабиться и о разгоне забыть.

Титры

Возможно, в каких-то моментах я был не прав – каюсь. Возможно, Вы все это давно знали – тогда искать причину «вселения злого духа» в компьютер Вам нужно самостоятельно и в другом месте. Я же свою миссию, рассказать об основных системах охлаждения, считаю выполненной;) Задавайте вопросы, комментируйте.

P.S. Глава про азотное охлаждение была проверена и одобрена мировым рекордсменом по экстремальному охлаждению, DeDal -ом. Благодарю за помощь! ;)

P.P.S Если кому понравилась картинка с бумером (делал сам), то вот фулсайз)

Который проводит фирма Gigabyte. Требовалось написать обзор корпуса 3D Aurora. Я сначала согласился, а потом, когда прикинул что к чему, призадумался. Ведь я же не профессиональный писатель обзоров, к тому же серийными корпусами не пользуюсь уже года как три, как минимум. И если честно и пристально посмотреть правде в глаза, становится кристально ясно – писать этот обзор совершенно неинтересно и, естественно, ужасно не хочется. Я уже хотел звонить и отказываться, но все откладывал и откладывал. Прошло какое-то время, и обещание самым естественным образом забылось.

Две недели назад до меня все же дошла очередь на получение корпуса. Я так "обрадовался", что дня три не открывал коробку. Но чувство долга в конце концов победило, и я заглянул внутрь. Скажу сразу: удивительно, но кейс мне понравился. Первое, что поразило, – это размеры: высота 54.5, глубина 51.5, а ширина обычная – 20.5 см.

Корпус выпускается в двух цветовых решениях, черном и серебристом. Мне достался черный вариант. Корпус позиционируется как high-end решение и не комплектуется блоком питания.

На меня эта черная громадина сразу произвела впечатление своим стильным, запоминающимся видом. Дизайнеры поработали на славу. Корпус хотя и большой, но легкий. Изготовлен почти целиком из алюминия. Покраска качественная, ровная, с шелковистым отблеском.

Доступ к пяти 5.25" отсекам и двум 3.5" открывает массивная алюминиевая дверка. Фиксируется дверка в закрытом положении магнитом. В качестве защиты от распоясавшихся злоумышленников эту дверку можно закрыть на ключ. Рядом с 3.5" отсеками расположены кнопки Power и Reset. Нажатие легкое, с приятным на слух легким щелчком.

Ниже дверки располагается выступающая панель, усыпанная вентиляционными отверстиями. За ней расположен 120-мм вентилятор с подсветкой. Воздух внутрь корпуса он втягивает через пылезащитный фильтр. Свет от вентилятора очень красиво пробивается сквозь вентиляционные отверстия.

Справа от этой панели, на боку, расположены два USB, один IEEE 1394 и пара mini-jack"ов: микрофон и наушники. Здесь же расположены и два светодиодных индикатора работы системного блока и активности HDD.

Вот внешний вид корпуса со снятой лицевой панелью

Алюминиевые боковые стенки имеют непривычное крепление. Для того чтобы их снять, стенки нужно не сдвигать, а немного оттянуть и приподнять вверх. Левая стенка для удобства оперативного снятия имеет ручку-защелку и еще один замок с ключом. Имеется в ней также и окно, но не традиционное, из акрилового стекла, а сетчатое, скорее даже дырчатое. Для дополнительной защиты внутренностей от пыли это окно ограждено изнутри еще более мелкой сеткой. Стоит корпус на четырех ножках, которые для устойчивости корпуса можно раздвинуть.

Шасси корпуса довольно крепкое благодаря большому количеству ребер жесткости и дополнительным усиливающим элементам. Нет ни намека на шаткость конструкции. Внутри корпуса много свободного пространства, особенно понравилось большое расстояние между материнской платой и отсеком блока питания.

Корпус рассчитан на безотверточную сборку. Дисководы устанавливаются с помощью пластиковых салазок. Заглушки слотов карт расширения не выламываемые, а съемные, и крепятся все одновременно специальным рычагом-ключом.

Отсек для жестких дисков расположен поперек корпуса. Комфортную температуру винчестерам обеспечивает обдув этого отсека 120-мм вентилятором. В этом же отсеке расположен черный пластиковый бокс, содержащий два переходника питания для SATA-устройств, набор пластиковых салазок для установки 5.25" и 3.5" устройств в корпус, два пластмассовых крепежа для проводов, два комплекта ключей (разных) для передней дверцы и боковой крышки и комплект крепежных винтов.

Провода, идущие внутри корпуса от вентиляторов и лицевой панели, прикреплены к корпусу и уложены в черную трубку. Трассировка довольно удачна.

А теперь о том, что привлекло мое внимание к этому корпусу. Это, как ни странно, задняя панель.

На ней расположены два 120-мм прозрачных вентилятора с подсветкой. Ниже находятся два отверстия, защищенных резиновыми заглушками с лепестками. Сделано это для установки системы водяного охлаждения 3D Galaxy, производства все той же Gigabyte. Вот эти вентиляторы и отверстия превратили скучную процедуру написания обзора в увлекательное занятие.

Когда я увидел эти два 120-мм вентилятора на задней стенке корпуса, то мне сразу вспомнилась давняя идея встроить самодельную фреоновую систему охлаждения в стандартный корпус. Хотелось не просто встроить систему в корпус, а сделать это красиво, интересно и по возможности оригинально. Но я все никак не мог найти подходящий корпус, большой и прочный. Как-никак, компрессор, конденсор и прочие медные трубки весят прилично. К тому же компрессор при работе вибрирует. И, конечно, кроме прочностных ограничений хотелось, чтобы кейс стильно выглядел. 3D Aurora как раз и отвечал всем этим требованиям.

Все фреоновые системы, которые мне встречались, строились как блок, на котором стоит стандартный корпус. В дне корпуса приходится прорезать отверстие под испаритель. Но при такой компоновке отверстие должно быть приличных размеров. Калечить качественный корпус не хотелось, а здесь почти готовое решение.

Сразу начали вырисовываться контуры системы. Если разместить снаружи корпуса, напротив вытяжных вентиляторов, конденсор, то он будет ими отлично охлаждаться, заодно вентилируя корпус. Через готовые отверстия, предназначенные для трубок водяного охлаждения, прекрасно можно пропустить медные соединительные трубки системы. Остается только компрессор. Куда поместить его?

Недавно, экспериментируя со своей целиком самодельной фреоновой системой...

Я с удивлением обнаружил, что прекрасно слышу шум помпы, установленной в системе водяного охлаждения чипсета материнской платы. До этого я, как человек, избалованный бесшумностью своего основного компьютера ...

Считал фреонки ужасно шумными устройствами. Обычными воздушными кулерами я тоже давненько не пользовался, поэтому сравнивать было не с чем. А тут оказалось, что сквозь шум от двух не самых слабых компрессоров отчетливо слышна помпа производительностью 700 л/ч. Выходит, компрессоры шумят не так уж и сильно!

Так почему бы тогда не расположить компрессор просто на крыше корпуса? Это улучшит его охлаждение. Как выяснилось, шум от компрессора не так уж и велик. Прочности корпуса от Gigabyte для такой цели более чем достаточно. И я приступил к осуществлению задуманного.

По решению представителей фирмы Gigabyte корпус одновременно является и призом победителю конкурса. Я, естественно, пока таковым не являюсь и должен возвратить изделие неповрежденным. Поэтому задача несколько усложнялась.

Из-за этих ограничений я прикрепил компрессор L57TN не к верхней крышке корпуса, а к алюминиевой платформе, потихоньку открученной от гладильной доски. (Потом пришлось объяснять супруге, что штукенция эта, скорее всего, отвалилась сама, упала на пол в кладовке и, естественно, куда-то завалилась. Потом она, конечно, найдется... Но не буду отвлекаться.) Платформу эту с установленным компрессором через прокладку из пенофола я и поставил на крышу корпуса. Заодно это должно снизить вибрацию от работающего компрессора.

Теперь о конденсоре. Конденсор, чтобы не мешать подключению устройств к материнской плате, должен быть не шире 120-мм вентилятора, а по высоте соответствовать двум таким вентиляторам. Готовый такой не подобрать, но можно попробовать сделать самому.

Простейший конденсор можно изготовить, намотав спиралью обычную медную трубку. Но спираль имеет большие габариты. Поэтому я сделал из дерева шаблон плоской спирали и уже на него намотал медную трубку диаметром 6 мм.

По бокам спирали припаял медную проволоку с крепежными колечками, соответствующими крепежным отверстиям вытяжных вентиляторов. После я прикинул, как это будет размещаться вживую.

Крепить испаритель и всасывающую трубку к системе я решил на развальцовке. Соединительные муфты легко проходят в отверстия корпуса.

Чтобы не повредить корпус горелкой я, что смог, спаял отдельно от корпуса. Капиллярную трубку смотал в бухту, а последнюю часть пропустил через всасывающую трубку в испаритель.

Испаритель я применил самодельный. Сделан он из половинки серийного кулера Volkano7+.

Так выполняется развальцовка:

В качестве всасывающей я применил обычную медную трубку диаметром 10 мм. Не стал применять сильфон из нержавейки из-за того, что размеры корпуса позволяют помещать в него материнскую плату и без сильного отгиба испарителя. Да и не известно, кто окажется первым в конкурсе – возможно, придется вернуть корпус. Поэтому нестись в магазин за сильфоном я посчитал неразумным.

Вот что получилось.

Чтобы точнее подогнать размеры трубки, пришлось поставить в корпус материнскую плату.

Система собрана, спаяна и опрессована – пора приступать к теплоизоляции. Испаритель я изолировал полосой 3-мм пенофола, приклеив его на двусторонний скотч.

Предварительно я прикрепил к испарителю датчик от электронного термостата Dixell XR20C. На этом же устройстве будет построена и автоматика включения компьютера. Фреоновой системе для охлаждения процессора до определенной величины нужно время, иначе прилично разогнанный процессор может просто перегреться. Вышеуказанное устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле.

У реле есть несколько контактов. Два контакта – контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора – аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается – аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы.

Для данной системы я собрал самодельный блок питания, но можно было купить и готовый. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он в данном случае должен составлять не менее одного ампера.

Всю эту электрическую часть я поместил в корпус от Hardcano, заменив у того лицевую панель на обычную заглушку 5.25" отсека, выкрашенную в серебристый цвет. Все-таки в пластмассе вырезать отверстия гораздо проще, чем в алюминии.

На фотографии видно, что электромонтаж не закончен. Справа от терморегулятора расположен выключатель. С его помощью и включается компрессор, да и все остальное. После сборки устанавливаем блок в отсек и подключаем к нему все провода.

Монтируем все комплектующие в корпус. Под материнскую плату для теплоизоляции я поместил кусок листового пенофола. Толщину подобрал такую, чтобы винты, крепящие материнскую плату к шасси, немного сжали этот теплоизолятор. Между платой и пенофолом не должно быть воздушных пузырей, иначе из этого воздуха при работе системы охлаждения на плату может выпасть конденсат и замкнуть контакты платы. Для гарантированного исключения этого неприятного момента плату под прокладкой я промазал слоем технического вазелина.

По отпечатку термопасты примеряем прилегание испарителя к процессору. Испаритель к процессору я прижимаю с помощью резьбовых шпилек. Корпус, как уже говорил, сверлить нельзя, и пришлось прикрутить эти шпильки прямо к отверстиям в материнской плате. Тут приключилась пара неприятностей, о которых я расскажу в заключительной части статьи.

После этого заканчиваем теплоизоляцию. Осталось самое простое – теплоизоляция трубок. Берется трубчатый рубафлекс, разрезается вдоль ножницами, одевается на трубки и склеивается. Вот и все готово для заправки системы.

Заправляю систему фреоном марки R22. Подробнее о заправке и вакуумировании написано уже более чем достаточно, поэтому не буду отнимать время и описывать эту процедуру еще раз. Напомню только, что в системе использовался компрессор марки L57TN, длина капилляра 2.9 метра. Заправляю систему до промерзания всасывающей трубки до входа в компрессор.

Система без нагрузки выдает температуру -43.8°C.

Выключаю систему. Проверяю еще раз прилегание испарителя к процессору, оказавшееся не слишком плотным. Всасывающая трубка имеет приличную жесткость и немного пружинит. К тому же теплоизоляция на испарителе немного ниже самого испарителя. Сделано это для исключения попадания воздуха в щели теплоизоляции. Притягивать же сильно испаритель к процессору я боюсь. Шпильки-то прикручены не к шасси корпуса, а к материнской плате, и есть риск выломать их из платы.

Отпечаток термопасты получается несколько "однобоким", а верхний левый угол испарителя почти не касается процессора. Но что делать, будем пробовать как есть.

Включаю систему. По достижении температуры на испарителе –20 включается сам компьютер. Автоматика отработала успешно, операционная система загружается – все нормально.

Конфигурация установленного железа такова:

  • процессор – AMD Athlon 64 3200+;
  • материнская плата – DFI Lan Party UT nF4 SLI-D;
  • видеокарта – Leadtek PX7800GT;
  • память – Digma DDR500;
  • жесткий диск – Seagate 160 Gb;
  • блок питания – Hiper R type 480 W;
  • термопаста – КПТ-8.

Первым делом проверяю систему на разгон процессора.

Но тут началась чертовщина. Дальше процессор почему-то гнаться отказался. Я снизил частоту опять до 3100 MHz, но Windows перестал грузиться. Еще более понизил частоту – опять то же самое. И тут я попробовал рукой прижать испаритель к процессору. Система загрузилась. Тогда я еще немного подтянул крепежные гайки. Система снова загрузилась при 3100 MHz, но тест S&M не проходила. Тогда я заглянул в BIOS. Там в разделе мониторинга температура процессора прыгала как гимнаст на батуте: то –14, то +14. Все ясно, причина в плохом прижиме испарителя к процессору. Видимо, от вибрации контакт процессор–испаритель меняется, и, как следствие, скачет температура, что и сказывается на стабильности работы системы.

Дальше подтягивать гайки уже откровенно страшно. Существует большая вероятность выдрать шпильки вместе с текстолитом платы. Но прижим все равно недостаточен. Выход только один: сверлить отверстия в шасси компьютера и сжимать процессор уже не между платой и испарителем, а между металлическим шасси и испарителем, без риска повреждения материнской платы. А сверлить корпус нельзя. Очень жаль, но придется остановиться на этом.

Теперь несколько слов о личных впечатлениях о работе системы. Плохой прижим испарителя – легко устраняемый дефект. Можно прямо по месту просверлить отверстия и закрепить все как следует. И если даже при плохом контакте операционная система загружается с частотой процессора 3100 МГц, то, скорее всего, при нормальном охлаждении этот результат увеличится. Теплоизоляция прекрасно справляется со своей задачей. Никаких следов конденсата не было обнаружено.

О шуме. Компрессор работает очень тихо. Если наклониться над ним и прислушаться, то слышен небольшой шелест. Основной шум исходит из открытого корпуса. Видимо, по нагнетающей трубке и через станину компрессора вибрация передается корпусу, и он издает низкочастотный гул. Я вначале был поражен, что шум идет не от компрессора, а из корпуса. Но потом разобрался, в чем дело. Судя по всему, для комфортной эксплуатации оклеивание корпуса виброшумоизоляцией обязательно.

Неплохо было бы привернуть ручки на верхнюю крышку корпуса. Вес корпуса за счет системы охлаждения увеличился, и передвигать его стало сложно. К тому же взяться не за что.

Также из-за размещения компрессора на верхней крышке корпуса центр тяжести системного блока поднялся. Поэтому теперь даже с разложенными ножками корпус немного неустойчив. Неплохо бы утяжелить нижнюю часть корпуса каким-нибудь балластом. Это поможет и снизить вибрацию корпуса.

Желательно укрепить верхнюю крышку корпуса – виброшумоизолировать и прикрепить компрессор непосредственно к ней. Также необходимо увеличить толщину резиновых прокладок, через которые конденсатор крепится к корпусу, и попробовать сделать амортизаторы между витками конденсора. Все это должно дополнительно снизить шумность системы. Хотя и в таком виде самым шумным компонентом системы является вентилятор видеокарты.

Если суммировать все вышесказанное, то мы получили удобный, качественный корпус с прекрасной вентиляцией и с возможностью встраивания не только водяной, но и фреоновой системы охлаждения. Можно сказать, мечта оверклокера. Когда смотришь на этот корпус, не оставляет чувство, что перед тобой солидная, добротная и вместе с тем красивая и стильная вещь.

Времена однотипных корпусов безвозвратно прошли. Серые, невзрачные решения сменили яркие и экстравагантные модели со множеством интересных функций и эргономичным дизайном, способные стать стильным дополнением любого интерьера. И если раньше компьютер в любом помещении, прямо скажем, мозолил глаза, то теперь он может оказаться более элегантным и красивым, чем иной предмет мебели. Он уже не только выполняет роль ящика для сборки компьютерной системы, но и выглядит достойно. К тому же выпускаемые в настоящее время компьютерные корпуса можно разделить на несколько категорий в зависимости от мощности будущей системы и сферы ее применения. Есть корпуса для геймеров (хотя многие из них отличаются от бюджетных моделей лишь внешними деталями), оверклокеров, компьютерных энтузиастов, корпуса для моддинга и создания портативных систем, а также бюджетные корпуса для офисных компьютеров. В общем пользователь непременно найдет корпус, который будет отвечать всем его требованиям.

В настоящей статье мы познакомим вас с корпусом, который можно причислить к передовым решениям, основная задача которых предложить новые идеи для всей индустрии, направить ее развитие в новое русло и заставить взглянуть на привычные проблемы по-новому. Это корпус от компании Thermaltake с загадочным названием Xpressar RCS100 - первый корпус с фреоновым охлаждением центрального процессора.

Он был представлен два года назад на выставке Computex 2008. Тогда все были очарованы новинкой от Thermaltake - миниатюрной системой охлаждения на основе фреона. Данная система многие годы использовалась в других отраслях, но для охлаждения компьютерных компонентов была предложена крупным производителем впервые.

Как известно, уже давно ведутся поиски инновационного источника охлаждения, который бы положил конец шумным кулерам. Поначалу большие надежды возлагались на жидкостное охлаждение, которое, казалось бы, соответствовало всем требованиям компьютерной индустрии. Однако такие системы не выдержали главного испытания - испытания временем: они не получили широкого распространения и, за исключением краткого ажиотажа, не вызвали никаких перемен в компьютерном мире. Некоторые производители до сих пор поставляют подобные решения на рынок, но, если говорить начистоту, вряд ли их ждет большое будущее. Такие системы остаются дорогими и, несмотря на некоторые преимущества, обладают рядом недостатков. Тем не менее безоговорочно следует признать одно: создание жидкостного охлаждения было необходимым этапом, который следовало пройти хотя бы для того, чтобы исключить из рассмотрения эту технологию. Итак, поиск идеального охлаждения продолжается. Пока подавляющее большинство пользователей продолжает применять старый и проверенный метод охлаждения компонентов; оверклокеры, работающие с экстремальными режимами современных систем, строят собственные охлаждающие контуры на основе жидкого азота. Решение от Thermaltake, которое мы рассмотрим, занимает среднюю позицию: с одной стороны, это больше, чем обычный корпус, а с другой - это серийное решение, которое не требует особых инженерных навыков для использования.

Корпус Xpressar RCS100

Серьезность изделия мы ощутили сразу же: коробка, в которую корпус бережно упакован, весит около 30 кг. При знакомстве с корпусом и его спецификацией становится понятной причина столь внушительного веса: шасси корпуса, как и его боковые панели, изготовлено из стали марки SECC толщиной 1 мм.

Основой для системы Xpressar RCS100, представляющей собой симбиоз корпуса и продвинутой системы охлаждения центрального процессора, послужил корпус знаменитой серии Xaser VI. Модель относится к классу Super Tower и имеет габаритные размеры 605x250x660 мм. Порадовало стилистическое решение корпуса: дизайнеры не стали утяжелять и без того громоздкую конструкцию большим количеством внешних «спецэффектов» типа огромных вентиляторов и светящихся панелей. В результате, несмотря на внушительные размеры, дизайн корпуса получился довольно сдержанным и аккуратным. Классический черный цвет, плавные очертания и линии удачно сочетаются с некоторыми более резкими, привычными для игровых корпусов деталями.

На верхней и нижней частях стального шасси имеются надстройки. Эти металлические конструкции, помимо защиты корпуса от внешних воздействий, выполняют целый ряд функций. В результате установки нижней надстройки корпус немного приподнимается над поверхностью, на которой стоит, за счет чего образуется воздушный зазор между нею и дном корпуса.

Верхняя надстройка выполняет роль площадки для размещения целого ряда функциональных устройств. В передней ее части находится интерфейсная панель, на которой располагаются внешние разъемы и клавиши управления. В их число вошли четыре разъема USB 2.0, два разъема eSATA, один IEEE-1394, два аналоговых разъема mini-jack для подключения наушников и микрофона, кнопки включения/выключения и перезагрузки компьютера, а также LED-индикатор работы жесткого диска. Примечательно, что столь большой набор интерфейсных разъемов и клавиш удалось разместить на довольно небольшой площади, которая, помимо всего прочего, гармонично вписалась в стилистику корпуса. Клавиша включения/выключения компьютера оформлена в виде светящейся буквы X, которая напоминает пользователю о принадлежности корпуса к серии Xaser VI. Любителям моддинга и красивых эффектов также придется по вкусу небольшая глянцевая створка, под которой скрывается вышеописанная интерфейсная панель, - при нажатии на определенную точку створка приподнимается, открывая доступ к разъемам. Такое решение весьма практично - в разъемы попадает меньше пыли. За интерфейсной панелью располагается дополнительный отсек, который становится доступен при сдвигании верхней стенки назад. Судя по всему, он предназначен для хранения мелких деталей, таких как крепежные винты и монтажные ленты.

Передняя панель корпуса закрыта внушительной алюминиевой дверцей с логотипом серии Xaser. В верхней и нижней ее частях имеются прочные выпуклые металлические решетки, которые, помимо эстетической функции, служат для забора воздуха внутрь корпуса. На передней панели расположены заглушки монтажных окон для 5,25-дюймовых устройств: четыре окна являются воздухозаборной решеткой для установленного за ними вентилятора, а остальные семь готовы к установке 5,25-дюймовых приводов. Все заглушки вынимаются без помощи инструментов, что значительно облегчает процесс сборки.

Боковые стенки имеют привычный вид: гладкая глянцевая поверхность с двумя решетками на каждой стороне и несколькими декоративными углублениями. Сняв стенки корпуса с двух сторон, мы пришли в легкое недоумение. На первый взгляд внутри корпуса творится полная неразбериха: провода, трубки, завернутые в теплоизоляцию, непонятные механизмы и устройства. Этот сумбур, как вы уже, должно быть, догадались, был внесен установкой охлаждающей системы Xpressar, к детальному изучению которой мы приступим чуть позже. А пока, сняв охлаждающую систему, рассмотрим более привычные для нас вещи.

Внутренняя компоновка корпуса выполнена на достойном уровне. В области передней стенки блока расположены две корзины для установки приводов. Верхняя корзина имеет семь монтажных мест для 5,25-дюймовых устройств, нижняя - для пяти 3,5-дюймовых приводов. Все монтажные места оборудованы специальными крепежами, которые позволяют установить то или иное устройство без помощи отвертки и других инструментов. Корзина для 3,5-дюймовых устройств имеет съемную основу и развернута к стенке корпуса для удобства извлечения приводов. Между передней стенкой и корзиной расположен 140-мм вентилятор, который продувает всю корзину насквозь и способствует быстрому отводу тепла от жестких дисков системы.

Монтажное место для установки блока питания также выполнено очень удачно: три опоры (две стационарные и одна регулируемая) позволяют жестко удерживать блок на месте и в то же время не загромождают внутреннее пространство. На верхней стенке размещен второй 140-мм охлаждающий вентилятор системы.

Особого внимания заслуживает реализация подложки материнской платы - после откручивания пары крепежных винтов она легко вынимается из корпуса вместе с задней стенкой. Это очень удобно, поскольку можно собрать систему вне корпуса, а затем просто установить подложку на место. В случае установки охладительной системы Xpressar данная конструктивная особенность корпуса и вовсе окажется незаменимой. Подложка имеет несколько отверстий для разводки кабелей питания и интерфейсных шлейфов, а зазор между подложкой и стенкой корпуса позволит уложить все кабели в нужном порядке и не занимать при этом внутренний объем корпуса.

Остается добавить, что к корпусу прилагается весьма внушительный комплект. Помимо документации, в нем обнаружились многочисленные крепежные винты для сборки системы, хомуты и ленты для разводки кабелей, отсек­переходник для монтажа привода 3,5-дюйма в 5,25-дюймовый отсек, дополнительная заглушка для FDD-привода, еще один 140-мм вентилятор, а также контейнер для хранения различных комплектующих, который можно установить в пятидюймовый отсек.

Теперь, когда мы вкратце ознакомились с устройством корпуса, рассмотрим более детально систему охлаждения - безусловно, его главную особенность.

Фреоновое сердце

Принцип работы системы охлаждения на основе фреона, несмотря на внешне сложное устройство, довольно прост. В замкнутом контуре находится газ (фреон), который в процессе фазового перехода из одного агрегатного состояния в другое охлаждает контактную площадку, присоединенную к центральному процессору компьютера. Рассмотрим данный процесс более детально.

Сначала сжиженный фреон, находясь в состоянии охлаждения и низкого давления, поступает к контактной площадке центрального процессора. Под воздействием выделяемого процессором тепла происходит фазовый переход фреона из жидкого в газообразное состояние. При помощи миниатюрного компрессора давление фреона в системе поднимается, газ разогревается, но при этом остается в газообразном состоянии. Однако в таком состоянии фреон уже способен к обратному переходу в жидкое состояние. Для этого при помощи охлаждающего блока, в основе которого лежат вентилятор, длинный контур из медных тепловых трубок и алюминиевые радиаторные пластины, температура фреона понижается, за счет чего газ конденсируется и переходит в жидкое состояние. В заключение цикла вновь образовавшаяся жидкость проходит через расширительный клапан, вследствие чего давление на данном участке падает, готовя фреон к повторному фазовому переходу в газообразное состояние. Такой цикл фазовых переходов давно работает на благо человечества в холодильных бытовых системах.

Проблемы, которые предстояло решить разработчикам Thermaltake, фактически сводились к двум: сделать систему охлаждения миниатюрной и избежать такого неприятного последствия работы фреонового охладителя, как конденсат. И если первая проблема не представляла особой сложности, то вторая заслуживала детального изучения, поскольку ее последствия являются фатальными для компьютера. Однако решение тоже оказалось довольно простым: поскольку рабочая температура центрального процессора находится в зоне так называемой комнатной температуры и выше, нет нужды охлаждать процессор сильнее. То есть задача Xpressar в данном случае сводится к поддержанию температуры в диапазоне 20-45 °С, при этом системе легко удается избежать образования внешнего конденсата. Работа компрессора, а следовательно, и скорость охлаждения контактной площадки регулируются по принципу широтно­импульсной модуляции, также известной как PWM. Иными словами, Xpressar воспринимает сигналы системы подобно обычному четырехконтактному кулеру и регулирует скорость работы охладительного контура. Это, ко всему прочему, решает проблему с охлаждением процессора в режиме «сна», когда оно практически не требуется.

Однако необходимо сделать ряд оговорок, на которые обязательно нужно обратить внимание тем, кто задумался об установке Xpressar. Во­первых, система с Xpressar предполагает установку процессора с тепловыделением более 70 Вт в нормальном режиме работы. Делается это для того, чтобы избежать переохлаждения контактной площадки и образования конденсата. Во­вторых, как указано на официальном сайте компании Thermaltake, система охлаждения требует предварительной подготовки, а именно прогрева в течение пяти минут. В-третьих, установить подобную систему можно только на системы с процессорными гнездами Intel LGA 775 и Intel LGA 1366. Кроме того, перед сборкой системы следует ознакомиться со списком рекомендуемого оборудования, которое может применяться с Xpressar.

Заключение

Система Xpressar безусловно является новым словом в компьютерной индустрии. Как у всех новинок, у нее есть свои плюсы и минусы. Главное преимущество системы заключается в высокоэффективном охлаждении, которое не могут обеспечить привычные вентиляторы, кулеры и даже жидкостные системы охлаждения для ПК. Основной недостаток - такие системы пока не актуальны для рядовых пользователей. Кулеры с активным охлаждением успешно решают проблему охлаждения любых современных систем, а стоят на порядок дешевле, занимают меньше места, их легче чинить и менять. Кроме того, система Xpressar подходит для весьма ограниченного числа плат и процессорных гнезд, что также снижает ее шансы оказаться в ПК обычного пользователя. Эта проблема возникает из-за того, что конструкция лишена какой­либо мобильности вследствие наличия в ней металлических трубок и конструкций. На наш взгляд, если система станет гибкой, то есть появится возможность подвода охлаждающей площадки в любое место системной платы, то такие решения действительно могут обрести популярность. Кроме того, подобным образом можно будет охлаждать и другие компоненты, а именно графические платы.

Возникнет ли потребность в таких системах в будущем - сказать сложно, поскольку технологии совершенствуются чересчур быстро и строить какие­либо прогнозы в данной сфере довольно тяжело. Сейчас же к Xpressar проявят интерес прежде всего оверклокеры и компьютерные энтузиасты, которые экспериментируют с экстремальными режимами работы системы. Для них решение компании Thermaltake действительно может стать панацеей, поскольку, в отличие от сложных установок на базе жидкого азота, Xpressar не требует лабораторных условий и открытых стендов. Кроме того, по слухам, компания Thermaltake продолжает разработку данной серии и в будущем может появиться более мобильное решение, которое, как сегодня СЖО (системы жидкостного охлаждения), будет занимать несколько 5-дюймовых слотов.

Если говорить о готовом решении на базе корпуса Xaser VI, то производитель выбрал очень удачную оболочку для новой системы охлаждения. Данный корпус очень удобен и позволит построить систему по любым запросам. Единственным его минусом являются большие габариты - не каждый пользователь готов поставить подобный корпус дома. Как бы то ни было, мы считаем, что стремление Thermaltake найти что­то новое, взглянуть на проблему охлаждения иначе более чем похвально и рано или поздно принесет плоды.



Рекомендуем почитать

Наверх