Формула сопротивления тока по закону ома. U эл =I*R элемента. Формулировка и объяснение закона Ома

Скачать Viber 18.04.2019
Скачать Viber

Закон Ома для полной цепи

Ie Dt=I2RDt+I2rDt, e=IR+Ir

Для всех зарядов:

Правило ленца:

34.

Электроли́ты -

Электро́лиз -



Законы Фарадея:

36. Электрический ток в вакууме

Описание



Термоэлектронная эмиссия

магнитным.

Основные свойства поля:

Транзистор

Фоторези́стор

Терморезистор

Закон Фарадея:

,

Правило буравчика:

Парамагнетики:

Диамагнетики:

41. Электромагнитная индукция

Закон Фарадея:

Правило Ленца:

42. Самоиндукция -

Сила тока I прямо пропорциональна напряжению U и обратно пропорциональна электрическому сопротивлению R участка цели.

30. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

Выражается в Ом·mm²/м

Обозначается символом ρ

Зависимость сопротивления проводника от его физических размеров,рода вещества и от температуры: Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры; изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

где ρ0, ρt - удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt - сопротивления проводника при 0 °С и t °С, α - температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

31. Правила расчёта эквивалентного сопротивления напряжения и силы тока при последовательном и параллельном соединении потребители тока: В последовательное соединение в цепях переменного тока кроме резисторов могут входить реактивные элементы - индуктивности и емкости.

Пользуясь понятием потенциала, падение напряжения на последовательном соединении (рис. 1) можно представить суммой падений напряжений на отдельных элементах

Последовательное соединение не содержит узлов, поэтому по всем его элементам протекает одинаковый ток. Пусть этот ток равен i=Imsinwt, тогда, с учетом выражений для падения напряжения на реактивных элементах, выражение (1) преобразуется к виду

Таким образом, в случае заданного значения частоты последовательное соединение можно представить последовательным соединением резистора, реактивного элемента и источника ЭДС, параметры которых определяются по выражениям (3), (4), (6) и (7). Резистор, реактивный элемент и источник ЭДС являются минимальным набором элементов, с помощью которых можно представить последовательное соединение. При наличии в цепи реактивных элементов обоих типов (индуктивности и емкости) в минимальном наборе элементов (минимальной эквивалентной схеме) будет присутствовать только один из них.

При отсутствии каких-либо элементов в исходной схеме, например резисторов или источников ЭДС, будут отсутствовать и соответствующие компоненты эквивалентного представления.

32. Роль источника в электрической цепи : 1. Источник тока в электрической цепи осуществляет генерацию тока, не зависящего от сопротивления нагрузки.

2. Электродвижущая сила (ЭДС) - характеристика способности сторонних сил создавать большую или меньшую разность потенциалов на полюсах источника тока. Физический смысл ЭДС - электродвижущая сила равна работе сторонних сил по перемещению единичного заряда.

Природа сторонних сил: Природа сторонних сил может быть самой разной, но она должна быть «сторонней» - не электростатической. Отсюда следует, что

Сторонние силы не действуют на электрический заряд. В зависимости от их физической природы сторонние силы могут действовать на другие свойства заряженных частиц - массу, форму, размер, плотность, их коллективные свойства - концентрацию и пр.

Подавляющее большинство сторонних сил имеет не «полевой» характер. Поэтому описывать действие этих сил как проявление некоторого «поля сторонних сил» нежелательно. Если это представление все же используется, то необходимо учитывать, что «пробными телами» в этих «полях» служат не электрические, а другие «заряды» (см. текст к формуле (1)).

Действие сторонних сил всегда сопровождается генерацией электрической энергии - образованием разности потенциалов на некоторых разнесенных (проводящих) телах - «клеммах» генератора, на которых электрические заряды концентрируются. Поэтому

Сторонние силы «работают» лишь внутри генератора. Вне генератора на заряженные частицы действуют электростатические (потенциальные) силы.

Закон Ома для полной цепи

AСТ=Ie D t - работа сторонних сил, так как q=IDt,

AСТ=I2RDt+I2rDt - полная работа сторонних сил.

Ie Dt=I2RDt+I2rDt, e=IR+Ir

Сила тока в замкнутой цепи прямо пропорционально ЭДС источника тока и обратно пропорциональна сумме внешнего и внутреннего сопротивления.

33. Формулы для работы тока на участке цепи и мощности электрического тока:

Для единичного заряда на участке A-B:

Для всех зарядов:

Поскольку ток есть ничто иное, как количество зарядов в единицу времени, то есть

по определению, в результате получаем:

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формулам:

Правило ленца: возникающие в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока которым он вызван.

Основные причины короткого замыкания и возгорания в бытовых условиях:

эксплуатация мощной техники, подключенной к розеткам, которые установлены в помещениях с повышенной влажностью;

плохой контакт штепселя с розеткой, приводящий в процессе использования к образованию высоких температур;

установка электротехнического оборудования, не соответствующего мощности используемых приборов;

прямой контакт проводов из разнородных материалов, который приводит к нагреванию смежных участков даже при нормальных электрических нагрузках;

скачок нагрузки в электросети;

плохая изоляция электропроводки;

наличие в домах грызунов, разрушающих электроизоляцию

34. Условия прохождения тока в жидкостях: Жидкости, как и твердые тела, могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам - растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.

Электроли́ты - вещества, расплавы или растворы которых проводят электрический ток вследствие диссоциации на ионы, однако сами вещества не проводят электрический ток.

Электролитическая диссоциация - процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении.

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Законы Фарадея: Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорционально эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

35. Электрический ток в газах - это направленное движение ионов и электронов.

Электрический ток в газах называется газовым разрядом.

Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду.

В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов.

Таким образом, проводимость газов имеет ионно-электронный характер.

Несамостоятельный разряд - это разряд, который зависит от наличия ионизатора.

Все газовые разряды делятся на два основных вида:

1. Несамостоятельный газовый разряд возникает в приборе при действии внешних (сторонних) ионизаторов. Этот разряд в свою очередь разделяется на несколько подвидов:

а) тихий разряд (возникает при воздействии на прибор ряда естественных ионизаторов: космических лучей, радиации земной коры, активной деятельности солнца и т. д.);

36. Электрический ток в вакууме

Движение заряженных свободных частиц, полученных в результате эмиссии, в вакууме под действием электрического поля

Описание

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj. Соответственно потенциальная энергия электрона уменьшается на eDj.

Термоэлектронная эмиссия - это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергиям) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.

В основе принципа действия полупроводникового диода - свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном - при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт.

37. Вокруг проводника с током в пространстве возникает поле наз-е магнитным.

Основные свойства поля:

Магнитное поле порождается электрическим полем

Магнитное поле определяется под действием на электрический ток

Вектор магнитной индукции и линии магнитной индукции:

В – (вектор магнитной индукции) это кол-ая характеристика магнитного поля.

За направление В принимается направ-е от южного полюса S к северному N магнитной стрелки к N сводно устанавливающийся в магнитном поле.

38. Электрический ток через контакт полупроводников p и n-типа.

При образовании контакта полупроводников p и n-типа происходит диффузия, часть электронов перейдут а полупроводник в n-типа. Возникшее эл поле препятствует перемещению.

Диод- это прибор для выпрямления эл тока.

Транзистор состоит из 2-х полупроводников p-типа между ними прослойка из примеси n-типа толщина прослоек примерно Мкм в транзисторе 3 выхода, из каждой части. Транзистор подключается в сеть так, что левый p n переход яв-ся прямым.

Фоторези́стор - полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

Важнейшие параметры фоторезисторов:

интегральная чувствительность - отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);

порог чувствительности - величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Терморезистор - полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.

39. Взаимодействие параллельных токов

Закон Фарадея:

,

где µ - магнитная характеристика среды, называемая магнитной проницаемостью.

Направление токов влияет на силу взаимодействия.

По аналогии с электростатикой, где сила определяет напряженность, а напряженность - индукцию, в магнетизме напряженность и индукция - силовые характеристики. Принято в электростатике основной силовой характеристикой считать напряженность, а в магнетизме - индукцию.

Правило буравчика:

Если ток направлен по закрутке буравчика, то шляпка вращается по силовой линии. В каждой точке пространства направление силовых линий совпадает с направление касательной. Таким образом, силовые линии магнитного поля являются замкнутыми.

40. Существует несколько типов взаимодействия материалов с магнитным полем, в том числе:

Ферромагнетики и ферримагнетики: материалы которые, обычно, и считаются «магнитными»; они притягиваются к магниту достаточно сильно, так что притяжение ощущается. Только эти материалы могут сохранять намагниченность и стать постоянными магнитами. Ферримагнитные материалы, сходны, но слабее, чем ферромагнетики. Различие между ферро- и ферримагнитными материалами, связаны с их микроскопической структурой.

Парамагнетики: вещества, такие, как платина, алюминий, и кислород которые слабо притягиваются к магниту. Этот эффект в сотни тысяч раз слабее, чем притяжение ферромагнитных материалов, поэтому оно может быть обнаружено только с помощью чувствительных инструментов, либо с помощью очень сильных магнитов.

Диамагнетики: вещества, намагничивающиеся против направления внешнего магнитного поля. По сравнению с парамагнитными и ферромагнитными веществами, диамагнитные вещества, такие как углерод, медь, вода и пластики ещё слабее отталкиваются от магнита. Проницаемость диамагнитных материалов меньше проницаемости вакуума. Все вещества, не обладающие одним из других типов магнетизма, являются диамагнитными; к ним относится большинство веществ. Силы, действующие на диамагнитные объекты от обычного магнита, слишком слабы. Однако в сильных магнитных полях сверхпроводящих магнитов диамагнитные материалы, например, кусочки свинца, могут парить. Ну, а поскольку углерод и вода являются веществами диамагнитными, то в мощном магнитном поле могут парить даже и органические объекты. Например, живые лягушки и мыши.

41. Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Закон Фарадея: Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.

Правило Ленца: возникающие в замкнутом котуре индуктивный ток своим магнитным полем противодействует тому изменению магнитного потока которым он вызван.

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции. ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями. Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током. Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией. Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

42. Самоиндукция - возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру.

Индукти́вность (или коэффициент самоиндукции) - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.Возникающая при этом ЭДС называется ЭДС самоиндукции

Понятие напряжения.

Напряжение - это физическая величина, характеризующая электрическое поле, которое создает ток.
Электри́ческое напряже́ние
между точками A и B электрической цепи или электрического поля - физическая величина, значение которой равно отношению работы эффективного электрического поля (включающего сторонние поля), совершаемой при переносе пробногоэлектрического заряда из точки A в точку B , к величине пробного заряда.

Напряжение характеризует электрическое поле, создаваемое током.

Напряжение (U) равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.

Единица измерения напряжения в системе СИ:


Понятие сопротивления.

Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождениюэлектрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему .

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса иволнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R - сопротивление, Ом;

U - разность электрических потенциалов (напряжение) на концах проводника, В;

I - сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник. Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью. Электрической проводимостью называется способность материала пропускать через себя электрический ток. Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R,обозначается проводимость латинской буквой g.


5. Элементы электрических цепей. Активными элементами являются источники электрической энергии. Они подразделяются на источники напряжения – условное обозначение на рисунке. Пассивные элементы – элементы, которые не являются источниками электрической энергии. Они делятся на диссипативные и реактивные. Диссипативные элементы – элементы, осуществляющие диссипацию электрической энергии. Элементы с такими свойствами осуществляют преобразование электрической энергии в тепловую. Такими элементами являются резисторы. Они характеризуются электрическим сопротивлением, которое измеряется в омах (Ом). Реактивные элементы – элементы, способные накапливать электрическую энергию и отдавать ее либо источнику, от которого эта энергия была получена, либо передавать другому элементу. В любом случае этот элемент не превращает электрическую энергию в тепловую. Такими элементами являются катушка индуктивности и конденсатор. Электрической цепью называется такое соединение электрических элементов, при котором под воздействием источника электрической энергии в элементах протекает электрический ток. Узел – точка соединения трех и более элементов. Ветвь – участок цепи, содержащий хотя бы один элемент и находящийся между двумя ближайшими узлами. Контур – замкнутая часть электрической цепи. Перемычка – это электрический проводник с нулевым сопротивлением, подсоединенный своими концами к различным двум точкам схемы. Классификация электрической цепи осуществляется по следующим признакам: – наличие или отсутствие в цепи источника электрической энергии; – наличие или отсутствие в цепи диссипативных элементов; – в зависимости от характера вольтамперных характеристик электрических элементов; – в зависимости от количества выводов электрической цепи. Пассивной цепью называется цепь, не содержащая источника электрической энергии. В такой цепи присутствуют только диссипативные и реактивные элементы. Активной цепью называется цепь, содержащая хотя бы один источник электрической энергии. К активным цепям относятся цепи, содержащие и усилительные элементы – транзисторы и электронные лампы.


6. Закон Ома.
Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Немецкий физик Георг Ом (1787 -1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорционально напряжению U на концах проводника:
I = U/R
где R - электрическое сопротивление проводника.
Уравнение выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорционально сопротивлению проводника.
Участок цепи, в котором не действуют э.д.с. (сторонние силы) называют однородным участком цепи, поэтому эта формулировка закона Ома справедлива для однородного участка цепи.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Закон Ома . I= , где = R+ R i


7. Первый закон Кирхгофа. Второй закон Кирхгофа.

1 закон Кирхгофа (относится к узловым точкам)

Алгебраическая сумма токов ветвей, образующих узел, равна 0: ∑i=0

Причём знак «+» присваивается току, входящему в узел, знак «-» - выходящему из узла.

Например i 1 +i 2 -i 3 -i 4 =0 (узел б)

Узлом называется такая точка схемы, где сходятся три и более ветвей.

m – число узлов

m-1- уравнение для решения

i 1 +i 2 -i 3 -i 4 =0 (узел б)

2 закон Кирхгофа (относятся к любому контуру);

Алгебраическая сумма ЭДС, действующих в контуре, равна алгебраической сумме падений напряжений на пассивных элементах этого контура, включая и внутреннее сопротивление источника:

Знак «+» присваивается ЭДС, совпадающего по направлению с обходом контура, знак «-» приписывается падению напряжения, если направление тока не совпадает с направлением обхода.

Наприм, для контура abfgdca, выбрав направление обхода по часовой стрелке (см. рис.), второй закон Кирхгофа запишем так:

E 1 -E 2 =r i i 1 -r 4 i 2 -r 02 i 2 -r 5 i 2 +r 2 i 1 +r 01 i 1 .

8. Мостовые цепи. Мостовая цепь, мост электрический, электрический четырёхполюсник, к одной паре зажимов (полюсов) которого подключен источник питания, а к другой - нагрузка. Классическая Мостовая цепь состоит из четырёх сопротивлений, соединённых последовательно в виде четырёхугольника (рис.), причём точки а, b, c и d называются вершинами. Ветвь, содержащая источник питания UП, называется диагональю питания, а ветвь, содержащая сопротивление нагрузки ZH - диагональю нагрузки или указательной диагональю. Сопротивления Z1, Z2, Z3 и Z4, включенные между двумя соседними вершинами, называются плечами Мостовая цепьДиагонали Мостовая цепь, как мостики, соединяют две противолежащие вершины (диагональ нагрузки, например, ранее так и называлась - мост). Схема, представленная нарис., известна в литературе как четырёхплечий мост.


9.Получение синусоидальной ЭДС. Действующие значения синусоидальных токов и напряжений.

Переменным током называется ток, периодически меняющийся по величине и направлению.

Получение переменного тока:

Пусть в однородном магнитном поле постоянного магнита равномерно вращается с угловой скоростью W рамка площадью S. Магнитный поток через рамку Ф=BScosa, где a – угол между нормалью к рамке.

Т.к. при равном. Вращении рамки угл. Скорость W=a/t, то угол а будет изменяться по закону а=wt, и формула примет вид: Ф=BScos(wt).

Т.к. при вращ. Рамки пересек. Её магн. Поток всё время меняется, то по закону эл. Инд. В ней будет наход. ЭДС инд.:

Е=dФ/dt =BSwsin(wt)=E 0 sin(wt)

Где Е 0 =BSw –амплитуда синусоидальной ЭДС

Таким образом в рамке возникает синусоидальный Эдс, а если замкнуть рамку на нагрузку, то в цепи потечёт синусоидальный ток.

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков.

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока , нагрузки и проводников . Источник тока обеспечивает разность потенциалов , которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока . Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке . Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.

Если изолированный проводник поместить в электрическое поле \(\overrightarrow{E} \), то на свободные заряды \(q\) в проводнике будет действовать сила \(\overrightarrow{F} = q\overrightarrow{E}\) В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю.

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Направленное движение заряженных частиц называется электрическим током.

За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока \(I\) - скалярная физическая величина, равная отношению заряда \(\Delta q\), переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени \(\Delta t\), к этому интервалу времени:

$$I = \frac{\Delta q}{\Delta t} $$

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в Амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы \(A_{ст}\) сторонних сил при перемещении заряда \(q\) от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

$$ЭДС=\varepsilon=\frac{A_{ст}}{q}. $$

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в Вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов \(\Delta \phi_{12} = \phi_{1} - \phi_{2}\) между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе \(\mathcal{E}\), действующей на данном участке. Поэтому полная работа равна

$$U_{12} = \phi_{1} - \phi_{2} + \mathcal{E}$$

Величину U 12 принято называть напряжением на участке цепи 1-2. В случае однородного участка напряжение равно разности потенциалов:

$$U_{12} = \phi_{1} - \phi_{2}$$

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока \(I\), текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению \(U\) на концах проводника:

$$I = \frac{1}{R} U; \: U = IR$$

где \(R\) = const.

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит Ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока \(I\) от напряжения \(U\) (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

$$IR = U_{12} = \phi_{1} - \phi_{2} + \mathcal{E} = \Delta \phi_{12} + \mathcal{E}$$
$$\color{blue}{I = \frac{U}{R}}$$

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd ) является однородным.

Рисунок 1.8.2.

Цепь постоянного тока

По закону Ома

$$IR = \Delta\phi_{cd}$$

Участок (ab ) содержит источник тока с ЭДС, равной \(\mathcal{E}\).

По закону Ома для неоднородного участка,

$$Ir = \Delta \phi_{ab} + \mathcal{E}$$

Сложив оба равенства, получим:

$$I(R+r) = \Delta\phi_{cd} + \Delta \phi_{ab} + \mathcal{E}$$

Но \(\Delta\phi_{cd} = \Delta \phi_{ba} = -\Delta \phi_{ab}\).

$$\color{blue}{I=\frac{\mathcal{E}}{R + r}}$$

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи (внутреннего сопротивления источника).

Сопротивление r неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока . В этом случае участок (ab ) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (\(R\ \ll r\)), тогда в цепи потечет ток короткого замыкания

$$I_{кз}=\frac{\mathcal{E}}{r}$$

Сила тока короткого замыкания - максимальная сила тока, которую можно получить от данного источника с электродвижущей силой \(\mathcal{E}\) и внутренним сопротивлением \(r\). У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то \(\Delta \phi_{ba} = -\Delta \phi_{ab} = \mathcal{E}\), т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I , разность потенциалов на ее полюсах становится равной

$$\Delta \phi_{ba} = \mathcal{E} - Ir$$

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной \(\mathcal{E}\) и внутренним сопротивлением r в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность \(\overrightarrow{E}\) электрического поля внутри батареи и силы, действующие на положительные заряды:\(\overrightarrow{F}_{э}\) - электрическая сила и \(\overrightarrow{F}_{ст}\) - сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы - вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением \(R_{В}\). Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:

$$R_{В} \gg R_{1}$$

Это условие означает, что ток \(I_{В} = \Delta \phi_{cd} / R_{В}\), протекающий через вольтметр, много меньше тока \(I = \Delta \phi_{cd} / R_{1}\), который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением \(R_{А}\). В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию

$$R_{А} \ll (r + R_{1} + R{2})$$

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы - вольтметры и амперметры - бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая - мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

Вторая - метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

Этот круг также, как и треугольник можно назвать магическим.



Рекомендуем почитать

Наверх