Емкостный экран на что реагирует. Сенсорный экран

Вайбер на компьютер 06.09.2019
Вайбер на компьютер

Перед тем как рассмотреть емкостной или резистивный экран, требуется определиться с тем, что собой представляет сенсорная технология вообще. Тут все понятно: это экран, который определяет координаты нажатия. Если выражаться научно, то тут подразумевается метод управления интерфейсом, с помощью которого пользователь может нажимать непосредственно на интересующее место. На данный момент существует несколько методов реализации сенсорных экранов. Стоит рассмотреть каждый по отдельности.

Резистивная технология

Чтобы определиться, какой тип экрана, емкостный или резистивный, вам больше подходит, необходимо рассмотреть их. Второй вариант предполагает использование определенной производственной технологии. Снизу размещена панель из стекла, поверх которой находится прозрачная гибкая мембрана. На панели и мембране присутствует токопроводящее покрытие, то есть резистивное. При нажатии на экран происходит замыкание в определенной точке. Если знать напряжение на электродах с одной стороны и измерить его же на мембране, то получается отследить одну координату. Две координаты потребуют отключить одну группу электродов, чтобы включить другую. Это все в автоматическом режиме делает микропроцессор, как только происходит изменение напряжения на мембране. Резистивные экраны не позволяют реализовать мультитач.

Особенности резистивной технологии

Как и у любого другого типа реализованных устройств, тут имеются определенные черты, которые являются положительными или отрицательными в зависимости от ситуации. В качестве преимуществ обычно отмечается дешевое производство, а также возможность нажимать чем угодно, так как требуется только продавить мембрану. Точность позиционирования повышается за счет применения стилусов.

Негативные моменты

Основными недостатками можно назвать низкую степень пропускания света, высокую скорость появления царапин на поверхности, возможность нажатий в одну точку не более 35 миллионов раз, невозможность реализовать мультитач. Если вы не можете решить, емкостной или резистивный экран выбрать, то важно отметить еще и невозможность использования жестов типа скольжения, так как требуется нажать пальцем на экран и вести его не отпуская. В устройствах с такими элементами управления лучше использовать софт, требующий минимального использования «листающих» жестов.

Разбираясь в особенностях этой технологии, стоит отметить, что она может быть реализована несколькими способами, имеющими определенные различия. Емкостный сенсорный экран может быть просто емкостным и проекционно-емкостным. Первый вариант предполагает использование определенных элементов. Поверх стеклянной панели размещается прозрачный резистивный материал, например, сплав оксида олова или индия. По углам размещены электроды, которые подают небольшое переменное напряжение на проводящий слой. Если к экрану прикасаются токопроводящим предметом, то возникает утечка, и чем этот предмет ближе к электроду, тем ниже сопротивление экрана, то есть сила тока заметно увеличивается. А называется это все емкостной экран, так как переменный ток проводится предметом большей емкости. Чаще всего речь идет о пальце.

Особенности емкостных экранов

Как и прочие виды технологий, в данном случае речь идет о совокупности достоинств и недостатков. В качестве преимуществ перед остальными можно назвать высокую светопропускающую способность, значительный ресурс нажатий, простоту и удобство работы методом «листания». Недостатки здесь тоже имеются: требуется использовать только пальцы либо специализированные стилусы. Обычный емкостной экран не поддерживает технологию мультитач. Часто бывают случайные нажатия. К примеру, система может распознавать жест как «листание» даже в том случае, когда он не предполагается, так как сложно удержать палец строго на одном месте после нажатия.

Проекционно-емкостной сенсорный экран

В данном случае устройство отличается от предыдущих довольно сильно. Внутренняя сторона экрана представляет собой сетку электродов. Если происходит прикосновение предметом большей емкости к электроду, то образуется конденсатор, обладающий постоянной емкостью. Такие экраны используются на улице, так как позволяют устанавливать стекло, толщина которого достигает 18 мм, при этом удается получить не только максимально твердую поверхность, но и обеспечить вандалоустойчивость.

Особенности проекционно-емкостных сенсоров

В данном случае, как и во всех остальных, имеются определенные преимущества и недостатки, о которых следует знать. В качестве достоинств можно назвать возможность реализации мультитач, реагирование на нажатие в перчатке, высокую степень пропускания света, а также долговечность самого экрана. Такие экраны способны реагировать на приближение пальцев без факта нажатия. Порог, когда происходит завершение касания, обычно настраивается программно. Крайняя точка - это обычно сам экран, так как продавливать его совершенно бесполезно.

Если рассматривать проекционно-емкостной экран, то он обладает и определенными недостатками, в качестве которых принято называть сложную и довольно дорогую электронику, невозможность использования обычного стилуса, вероятность случайных нажатий.

Мультитач технология

Невозможно определить подходящий тип сенсорного экрана, емкостный или резистивный, не решив вопрос, касающийся реализации данной технологии. Мультитач - это возможность множественных касаний. Настоящая реализация предполагает отслеживание координат нескольких нажатий одновременно. Если в смартфоне или планшете реализована такая технология, то с его помощью можно имитировать игру на музыкальном инструменте, к примеру, гитаре. Следует разобраться с этим подробнее.

Можно взять обычный емкостный или резистивный экран. Если нажать сначала, например, в левый верхний угол, а потом, не отрывая палец, другим нажать в правый нижний, то электроникой в качестве координат будет определен центр экрана, то есть середина отрезка между парой этих касаний. Это будет видно, если запустить специальное приложение, отслеживающее координаты нажатия. Однако встает вопрос о том, а как же реализовано масштабирование картинок, если все равно распознается только одно нажатие?

Тут все просто. Это самый обычный программный трюк. Вы нажали на емкостной экран - электроника это определила. Это будет точка «А». Теперь, не отпуская пальца, вы нажимаете в другое место, которое будет точкой «В», получается, что в этот момент точка нажатия переместилась мгновенно в сторону, образовав «С». Именно в этот момент, когда фактически отпускания пальца не было, а точка нажатия мгновенно переместилась, программно обрабатывается в качестве мультитача. Далее, если точка «С» становится ближе к «А», то определяется сдвигание пальцев, то есть в случае с изображением, картинку надо уменьшить, и наоборот. Еще один момент: если точка «С» описывает дугу вокруг одной из точек, то программа определяет это как вращение одного пальца вокруг другого, что вызывает необходимость поворота картинки в соответствующую сторону.

Использование резистивного и емкостного экранов

Профессиональными разработчиками традиционно используется первый тип, так как он позволяет управлять любым предметом при различных погодных условиях. При реализации резистивной технологии используется большее количество датчиков на квадратный сантиметр в сравнении с емкостной, поэтому на дисплее можно отображать мельчайшие значки, на которые допускается нажимать иглой. К примеру, операционная система Windows Mobile разрабатывалась с учетом такой особенности, поэтому хорошо работает с резистивными экранами. Такие дисплеи почти нечувствительны к случайным нажатиям. Однако многие разработчики сейчас нацелены создавать приложения, ориентированные на емкостный сенсорный экран. Это уже становится проблемой для устройств, выполненных с применением резистивной технологии.

Степень защищенности

Важно понимать, что для планшетных компьютеров и коммуникаторов дисплей является самой уязвимой частью. Емкостной экран является более предпочтительным вариантом в плане надежности. Его производительность в любых условиях заметно выше, а резистивные модели могут отказать, к примеру, если нести их вниз стеклом. Емкостный экран - это отказоустойчивый вариант. Даже если он сломан, то и дальше будет исполнять свои функции. Если решать, емкостный или резистивный экран выбрать, то стоит отметить, что в полевых условиях первый будет оптимальным вариантом.

Выводы

Если подводить итоги, то можно отметить, что оба варианта реализации дисплеев имеют свои преимущества и недостатки. При том что емкостный экран - это целая совокупность возможностей, резистивный ориентирован на использование в определенных ситуациях. Обычно все зависит от интерфейса, используемого в гаджете. удобен в использовании, площадь его нажатия заметно меньше, чем у пальца, однако при хорошей отзывчивости поверхности удобно обходиться и без этого приспособления. Постоянное совершенствование резистивных дисплеев привело к тому, что появились модели вполне твердые, то есть стойкие к формированию царапин, но при этом и отзывчивые. Такие варианты стали весьма удобны в эксплуатации.

Необходимость использовать специальный стилус для емкостных экранов иногда доставляет немалое неудобство, так как он обычно не идет в комплекте с устройством. А резистивная технология предполагает и сопровождение специальным приспособлением, и возможность нажатия любым твердым предметом. Одна из причин, по которой многие выбирают емкостный сенсорный экран - мультитач, однако стоит отметить, что чаще всего это программная реализация, как уже было описано, и при должном подходе она может быть применена и для резистивного. Проекционно-емкостная технология пока еще не стала настолько доступной, как этого хотелось бы.



Добавить свою цену в базу

Комментарий

Еще совсем недавно мало кто мог поверить в то, что телефоны с привычными кнопками уступят место устройствам, которые управляются с помощью прикосновения к экрану. Но времена меняются и спрос на кнопочные телефоны постепенно падает, а на смартфоны - растет.

Термин «тачскрин» образовался от двух слов - Touch и Screen, что в переводе с английского языка переводится как «сенсорный экран». Да, именно так - тачскрин и есть сенсорный экран, к которому вы прикасаетесь, когда пользуетесь своим смартфоном или планшетом. На деле же сенсорные экраны встречаются не только в мире мобильной техники. Так, вы могли видеть их при внесении средств на счет мобильного устройства через терминал, в банкомате, в билетных устройствах и т.д.

Своим появлением touch-screen обязан западным учёным. Самые первые образцы появились на свет во второй половине 60-ых годов прошлого века. На основании этого можно сделать вывод о том, что тачскрин используется вот уже более 40 лет. До появления смартфонов они использовались в банкоматах и т.д. В настоящий момент каждый человек, который пользуется сотовой связью, автомобильными навигаторами, посещает банки и магазины, сталкивается с данной технологией, порой даже не догадываясь о том, как она называется. Итак, мы разобрались в том, что такое тачскрин в телефонах. По сути, это то же самое, что и дисплей, реагирующий на касание пальцев. Он прекрасно используется вместо клавиатуры и активно применяется в мобильных технологиях. К достоинствам тачскрин можно отнести защиту от пыли, влаги и прочих неблагоприятных факторов окружающей среды, а также высокую степень надёжности. Если наше сенсорное устройство не всегда реагирует на касание, либо и вовсе отказывается это делать, к примеру, не желает менять яркость на iPad, скорее всего, из строя вышел именно touch-screen. Стоит он относительно недорого (особенно если нас интересует резистивный дисплей), и заменить его легко.

Основа тачскрина

Основа любого тачскрина - это матрица на жидких кристаллах, которая фактически является уменьшенной копией той, что находится в мониторе. На обратной стороне расположены диоды подсветки, а на лицевой - ряд слоев, которые фиксируют нажатие (резистивный экран) или прикосновение (емкостной экран).

Человек, который хорошо разбирается в том, что такое тачскрин, понимает, что большая часть произведенных устройств использует резистивный сенсорный экран. Это следует из их дешевизны и относительной простоты конструкции. Многие китайские «смартфоны», заполонившие рынок, имеют резистивный тип экрана, технология изготовления которого, кстати, появилась раньше, чем емкостная.

Виды сенсорных экранов

Сенсорные экраны подразделяются на резистивные, матричные, проекционно-ёмкостные, сенсорные экраны на поверхностно-акустических волнах, инфракрасные, оптическиие, тензометрические, сенсорные экраны DST и индукционные.

Резистивные сенсорные экраны

Подразделяются на четырехпроводные и пятипроводные.

Сенсор резистивного экрана состоит из двух прозрачных пластмассовых пластин с тонкой токопроводящей сеткой, которые находятся на поверхности обычного жидкокристаллического экрана. Между пластинами - прозрачный диэлектрический слой. Программа выводит графический интерактивный интерфейс, который благодаря прозрачным материалам на матрице хорошо видно. Отвечая на запрос программы, пользователь нажимает на нужную точку интерфейса (например, изображение кнопки). - Расходится пластичный диэлектрик расходится, соприкасаются пластмассовые пластины, подавая ток с электрода одной на сетку другой. Появление тока фиксируется регистрирующим контроллером, который в соответствии с сеткой координат определит точку нажатия. Координаты точки поступают в программу и обрабатываются по заложенным алгоритмам.

Четырёхпроводной экран

Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микро-изоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y). В общих чертах алгоритм считывания таков:

На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко, и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.

Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.

Существуют также восьмипроводные сенсорные экраны. Они улучшают точность отслеживания, но не повышают надёжности.

Пятипроводной экран

Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим (5-проводной экран продолжает работать даже с прорезанной мембраной). На заднем стекле нанесено резистивное покрытие с четырьмя электродами по углам.

Изначально все четыре электрода заземлены, а мембрана «подтянута» резистором к +5В. Уровень напряжения на мембране постоянно отслеживается аналогово-цифровым преобразователем. Когда ничто не касается сенсорного экрана, напряжение равно 5 В.

Как только на экран нажимают, микропроцессор улавливает изменение напряжения мембраны и начинает вычислять координаты касания следующим образом:

На два правых электрода подаётся напряжение +5В, левые заземляются. Напряжение на экране соответствует X-координате.

Y-координата считывается подключением к +5В обоих верхних электродов и к «земле» обоих нижних.

Резистивные сенсорные экраны дёшевы и стойки к загрязнению. Резистивные экраны реагируют на прикосновение любым гладким твёрдым предметом: рукой (голой или в перчатке), пером, кредитной картой, медиатором. Их используют везде, где вандализм и низкие температуры не исключены: для автоматизации промышленных процессов, в медицине, в сфере обслуживания (POS-терминалы), в персональной электронике (КПК). Лучшие образцы обеспечивают точность в 4096×4096 пикселей.

Недостатками резистивных экранов являются низкое светопропускание (не более 85% для 5-проводных моделей и ещё более низкое для 4-проводных), низкая долговечность (не более 35 млн нажатий в одну точку) и недостаточная вандалоустойчивость (плёнку легко разрезать).

Матричные сенсорные экраны

Конструкция аналогична резистивной, но упрощена до предела. На стекло нанесены горизонтальные проводники, на мембрану - вертикальные.

При прикосновении к экрану проводники соприкасаются. Контроллер определяет, какие проводники замкнулись, и передаёт в микропроцессор соответствующие координаты.

Имеют очень низкую точность. Элементы интерфейса приходится специально располагать с учётом клеток матричного экрана. Единственное достоинство - простота, дешевизна и неприхотливость. Обычно матричные экраны опрашиваются по строкам (аналогично матрице кнопок); это позволяет наладить мультитач. Постепенно заменяются резистивными.

Ёмкостные сенсорные экраны

Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток.

Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.

В более ранних моделях ёмкостных экранов применялся постоянный ток - это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.

Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят токонепроводящие загрязнения. Прозрачность на уровне 90%. Впрочем, проводящее покрытие, расположенное прямо на внешней поверхности, всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, лишь установленных в защищённом от непогоды помещении. Не реагируют на руку в перчатке.

Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран, например, iPhone является проекционно-ёмкостным, а не ёмкостным.

Проекционно-ёмкостные сенсорные экраны

На внутренней стороне экрана нанесена сетка электродов. Электрод вместе с телом человека образует конденсатор; электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).

Компания Samsung сумела установить чувствительные электроды прямо между субпикселями AMOLED-экрана, это упрощает конструкцию и повышает прозрачность.

Прозрачность таких экранов до 90 %, температурный диапазон чрезвычайно широк. Очень долговечны (узкое место - сложная электроника, обрабатывающая нажатия). На ПЁСЭ может применяться стекло толщиной вплоть до 18 мм, что приводит к крайней вандалоустойчивости. На непроводящие загрязнения не реагируют, проводящие легко подавляются программными методами. Поэтому проекционно-ёмкостные сенсорные экраны широко применяются и в персональной электронике, и в автоматах, в том числе установленных на улице. Многие разновидности поддерживают мультитач.

Сенсорные экраны на поверхностно-акустических волнах

Экран представляет собой стеклянную панель с пьезоэлектрическими преобразователями (ПЭП), находящимися по углам. По краям панели находятся отражающие и принимающие датчики. Принцип действия такого экрана заключается в следующем. Специальный контроллер формирует высокочастотный электрический сигнал и посылает его на ПЭП. ПЭП преобразует этот сигнал в ПАВ, а отражающие датчики его соответственно отражают.

Эти отражённые волны принимаются соответствующими датчиками и посылаются на ПЭП. ПЭП, в свою очередь, принимают отражённые волны и преобразовывают их в электрический сигнал, который затем анализируется с помощью контроллера. При касании экрана пальцем часть энергии акустических волн поглощается. Приёмники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Реагирует на касание предметом, способным поглотить волну (палец, рука в перчатке, пористая резина).

Главным достоинством экрана на поверхностных акустических волнах (ПАВ) является возможность отслеживать не только координаты точки, но и силу нажатия (здесь, скорее, способность точно определять радиус или область нажатия), благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания (экран не прогибается под нажатием пальца и не деформируется, поэтому сила нажатия не влечет за собой качественных изменений в обработке контроллером данных о координатах воздействия, который фиксирует только область, перекрывающую путь акустических импульсов).

Данное устройство имеет очень высокую прозрачность, так как свет от отображающего прибора проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях для борьбы с бликами стекло вообще не используется, а излучатели, приёмники и отражатели крепятся непосредственно к экрану отображающего устройства. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, американской компании Tyco Electronics и тайваньской фирмы GeneralTouch, они выдерживают до 50 млн касаний в одной точке, что превышает ресурс 5-проводного резистивного экрана.

Экраны на ПАВ применяются, в основном, в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило, экраны ПАВ различают на обычные - толщиной 3 мм, и вандалостойкие - 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3 метра (по данным Elo Touch Systems). На рынке предлагаются варианты подключения к компьютеру как через интерфейс RS232, так и через интерфейс USB. На данный момент большей популярностью пользуются контроллеры к сенсорным экранам ПАВ, поддерживающие и тот, и другой тип подключения - combo (данные Elo Touch Systems).

Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, - то есть, например, пластиковая банковская карточка в данном случае неприменима.

Точность этих экранов выше, чем матричных, но ниже, чем традиционных ёмкостных. Для рисования и ввода текста они, как правило, не используются.

Инфракрасные сенсорные экраны

Принцип работы инфракрасной сенсорной панели прост - сетка, сформированная горизонтальными и вертикальными инфракрасными лучами, прерывается при касании к монитору любым предметом. Контроллер определяет место, в котором луч был прерван.

Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения, например, в электронных книгах. Из-за простоты и ремонтопригодности схема популярна у военных. Часто на таком принципе делают клавиатуры домофонов. Данный тип экрана применяется в обильных телефонах компании Neonode.

Оптические сенсорные экраны

Стеклянная панель снабжена инфракрасной подсветкой. На границе «стекло-воздух» получается полное внутреннее отражение, на границе «стекло - посторонний предмет» свет рассеивается. Остаётся заснять картину рассеивания, для этого существуют две технологии:

В проекционных экранах рядом с проектором ставится камера.

Так устроен, например, Microsoft PixelSense.

Либо светочувствительным делают дополнительный четвёртый субпиксель ЖК-экрана.

Позволяют отличить нажатия рукой от нажатий какими-либо предметами, есть мультитач. Возможны большие сенсорные поверхности, вплоть до классной доски.

Тензометрические сенсорные экраны

Реагируют на деформацию экрана. Точность тензометрических экранов невелика, зато они отлично выдерживают вандализм. Основное применение - банкоматы, билетные автоматы и прочие устройства, расположенные на улице.

Сенсорные экраны DST

Сенсорный экран DST (Dispersive Signal Technology) регистрирует пьезоэлектрический эффект в стекле. Возможно нажатие на экран рукой или любым предметом.

Отличительной особенностью является высокая скорость реакции и возможность работы в условиях сильного загрязнения экрана. Однако палец должен двигаться, неподвижный палец система не замечает.

В данной статье мы рассмотрим различные виды сенсорных экранов, их особенности, плюсы и минусы технологии.

«Мультитач»

Данная технология позволяет распознавать одновременно несколько нажатий в разных точках экрана. Это открывает новые возможности в управлении устройством. Примером технологии «мультитач» является Apple iPhone .

Емкостные сенсорные экраны

Например: HTC Wildfire

Чувствительный элемент емкостного сенсорного экрана представляет собой стекло, покрытое прозрачным проводящим составом (обычно применяется сплав оксида индия и оксида олова). По углам панели размещены четыре электрода, которые подают на проводящий слой небольшое переменное напряжение.

При прикосновении пальцем (или иным проводящим предметом) к такому экрану, образуется емкостная связь между пальцем и экраном (утечка тока), что вызывает импульс тока в точку контакта. Контроллер экрана замеряет силу образующегося при этом тока по всем четырем электродам. Электрический ток из каждого угла экрана пропорционален расстоянию до точки касания, таким образом контроллеру достаточно просто сравнить эти токи для определения места касания.

Плюсы: надежный прозрачный экран с малым временем отклика, обладающий высокой прочностью и долговечностью.

Минусы такого экрана заключаются в том, что управлять им можно только пальцами или специальным стилусом, обладающим электрической ёмкостью. Потому зимой можете забыть об использовании такого экрана в перчатках. И к тому же при низких температурах электрические характеристики сенсора изменяются, и порой он может работать некорректно (от неправильного определения координат нажатия до полной неработоспособности).

Проекционно-емкостные экраны

Например: Apple iPhone

Существует еще одна разновидность емкостного сенсора – проекционно-емкостный экран. На его тыльную сторону нанесена сетка электродов, на которые подаётся слабый ток, а место касания определяется по точкам с повышенной ёмкостью.

Такие экраны, кроме высокой прозрачности и долговечности, имеют еще два важных преимущества – стекло-подложка может быть сделана сколь угодно прочной (и довольно толстой), к тому же они позволяют использовать технологию «мультитач», которую не могли себе позволить обычные ёмкостные экраны.

Минусом может являть немного более низкая точность определения координат нажатия.

Резистивные сенсорные экраны

Например: HTC Touch Diamond

Резистивный экран реагирует только на давление. Экран представляет собой стеклянный жидкокристаллический дисплей, на который наложена гибкая мембрана. На соприкасающиеся стороны нанесён резистивный состав, а пространство между плоскостями разделено диэлектриком.

При нажатии на экран пальцем (или любым другим предметом), он соприкасается с мембраной, и в точке касания начинает протекать ток. Чтобы определить место касания, контроллер экрана попарно замеряет напряжение между электродами, размещенными по краям панели. Такой экран называется 4-проводным (существуют также 5-6-7-проводные, имеющие некоторые отличия).

Особенность резистивного экрана состоит в том, что для его срабатывания требуется физическое усилие, причем нажатия ногтем он распознает лучше, чем подушечкой, реагирует на любые прикасающиеся к поверхности предметы. Устройства с резистивными экранами часто комплектуются стилусами. Такой дисплей обеспечивает более высокую точность управления (стилусом реально попасть буквально в пиксел, тогда как пальцем на емкостном экране – только в достаточно большую по площади область), но из-за постоянного контакта с твердыми предметами гибкая мембрана быстро покрывается царапинами. Именно резистивными экранами оснащено большинство мобильных устройств.

К недостаткам резистивных экранов относится также низкое светопропускание - не более 70-85%, из-за чего требуется повышенная яркость подсветки.

Зато эти экраны предельно дёшевы в производстве, чем и объясняется их широкое распространение.

Предназначен, в первую очередь, для вывода и ввода информации за счёт жестикуляции или нажатия на дисплей. Сейчас существует множество разновидностей, позволяющих напрямую взаимодействовать с устройством. Встроенные сенсоры можно увидеть во многих устройствах: смартфонах, планшетах, плеерах, видеокамерах и фотоаппаратах. Существующие типы сенсорных экранов обладают своими достоинствами и недостатками. Для того чтобы решить, какой из них лучше, необходимо более детально изучить особенности каждого. В нашем случае мы остановимся на сенсорных дисплеях, встроенных в планшеты.

Отметим, что типы сенсорных разделяются на четыре основных типа:

  • Ёмкостные.
  • Проекционно-ёмкостные.
  • Дисплеи с поверхностно-акустическими волнами (ПАВ).
  • Резистивные.

Наиболее распространены ёмкостные и резистивные. Их главное отличие заключается в том, что первые распознают касание, а вторые нажатие (стилусом или пальцем). По правде сказать, резистивные сенсоры устанавливаются в более дешёвых моделях планшетов и считаются пережитками. Ёмкостные широко используются в новых моделях мобильных устройств.

Почему, собственно говоря, они так называются? Объект большой ёмкости проводит по устройства электрический переменный ток. Поверхность представляет собой не что иное, как стеклянную панель, покрытую резистивным прозрачным сплавом. Проводящий слой обладает большим уровнем напряжения и при соприкосновении с каким-либо предметом или пальцем совершается утечка тока. В результате этого датчиками фиксируется утечка тока, вследствие чего происходит мгновенное вычисление координат точки нажатия.

Преимущества дисплея

Существуют проекционно-ёмкостные типы экранов . Они считаются более продвинутыми и отличаются повышенной чувствительностью, быстрой реакцией, а главное, позволяют взаимодействовать с устройством через перчатки. Очень важным фактором является поддержка технологии мультитач. Благодаря ей можно нажимать на поверхность двумя или даже тремя пальцами. Это обусловлено тем, что одновременно находятся координаты нескольких точек, на которых направлено действие.

Главными достоинствами передовых сенсорных экранов является устойчивость к любым загрязнениям, прочность и надёжность. Кроме того, можно спокойно осуществлять работу на проекционно-ёмкостных экранах в холодную погоду. Они отличаются стойкостью к низким температурам. Быстрая реакция является безусловным преимуществом перед ёмкостным дисплеем. Достаточно одного лёгкого касания для вывода информации.

Применение в жизни

Следует сказать о том, что ёмкостные дисплеи устанавливают не только в планшеты, но также и в информационные киоски, банкоматы и охраняемые здания. Круг использования проекционно-ёмкостных дисплеев намного шире. Их можно встретить в платёжных терминалах, ноутбуках, электронных киосках и любых устройствах, которые поддерживают технологию мультитач. Для взаимодействия с проекционно-ёмкостными экранами можно использовать специальный токопроводящий стилус, однако его мало кто применяет. Гораздо удобнее совершать все действия в ручном режиме.

Говорить о недостатках ёмкостных и проекционно-ёмкостных экранов не приходится. Единственным минусом, пожалуй, является их высокая стоимость, однако она в полной мере себя оправдывает. Если хотите приобрести устройство с качественным сенсорным типом экрана, придётся заплатить соответствующую сумму.

Характеристики резистивных экранов

Устройство и применение

Более простой и дешёвой технологией является резистивный сенсор, состоящий из пластиковой мембраны и проводящей подложки. При нажатии на мембранную часть происходит лёгкое замыкание с подложкой. Электроника управления при этом вычисляет сопротивление, которое возникает между краями двух частей. В результате происходит вычисление координат точки нажатия.

Зачастую резистивные сенсорные экраны используются в недорогих моделях планшетов и других мобильных устройствах, коммуникаторах, КПК, медицинском оборудовании и промышленных управленческих устройствах. К гаджетам со встроенным резистивным дисплеем в комплекте идёт специальный стилус. Несмотря на это, с таким можно работать и любым другим тупым предметом. Реагируют резистивные дисплеи и на пальцы, даже в перчатках. Правда, есть один небольшой нюанс - воздействие на поверхность не должно быть очень сильным , в противном случае можно повредить экран.

Особенности использования

Если говорить о недостатках дисплеев резистивного типа, то они очень чувствительны к любым механическим повреждениям . Устройство с таким экраном ни в коем случае нельзя носить в кармане с ключами или использовать вместо стилуса другой предмет. Иначе на дисплее останутся некрасивые царапины, а это может привести к снижению чувствительности. Для того чтобы обезопасить себя от подобных рисков, необходимо наклеить защитную плёнку на резистивную поверхность. Кроме того, при низких температурах он всё равно будет работать плохо. Если говорить о прозрачности, пропускается всего 84% света, исходящего от экрана - это очень низкий показатель.

Многие пользователи задаются вопросом: какой тип сенсорного экрана лучше? Однозначного ответа нет. Если по цене, то самыми недорогими являются дисплеи резистивного типа. По качеству, естественно, опережают проекционно-ёмкостные. Однако есть ещё одни тип сенсорного экрана, о котором стоит рассказать.

Такие дисплеи работают следующим образом: пьезоэлементы, расположенные по углам устройства, преобразуют приходящий электросигнал в ультразвуковые волны. Они тут же поступают на поверхность дисплея. Вдоль краёв дисплея распространены отражающие элементы, а на противоположной стороне присутствуют сенсоры, которые фиксируют и передают волны ультразвука. Преобразователь трансформирует их в электросигнал. При касании он ослабляется, и вычисляются координаты касания. Следует отметить, что вычисляется и интенсивность касания, чего нет у других типов экранов. Однако, в отличие от своих конкурентов, этот вариант не в полной мере определяет координаты, следовательно, вы не сможете рисовать на таких экранах .

обладают высокой прозрачностью и долговечностью . Экран практически не имеет проводящих поверхностей и может выдержать до 50 миллионов касаний. Существенным недостатком является то, что загрязнители блокируют работу устройства, а корректная работа дисплея осуществляется только во взаимодействии с поглощающими акустическими волнами. Дисплеи ПАВ встраивают не только в планшеты, но и в игровые автоматы, охраняемые киоски и прочие устройства.

Благодаря сенсорным экранам значительно упростился графический интерфейс и управление . Доступ к функциям стал более простым. Сенсорные дисплеи позволяют делать минимум движений и получать информацию в полном объёме. Несмотря на то, что видов существует несколько, все они имеют свои преимущества. Какое устройство выбирать, решать только пользователю, отталкиваясь от собственных финансовых возможностей и предпочтений.

Статья:

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Предисловие

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея "жертвенного" телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них - жидкокристаллического (LCD - liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается "thin-film transistor" - тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве "жертвенного" телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи (TFT LCD , и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки).Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из "активных" составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

В варианте же с OGS отражающая поверхность - только одна (внешняя), "воздух-стекло".

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который "всплывает", если дисплей разбить. Если в "обычном" дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые - не верно. Вероятность того, что разбилась только внешняя поверхность - довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Экран

Теперь переходим к следующей части - собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе" угла:

Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp) .

Структура дисплеев AMOLED

Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.



Рекомендуем почитать

Наверх