Что значит ac и dc напряжение. Разница между переменным и постоянным током

Скачать Viber 30.04.2019
Скачать Viber

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.

Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

Трансформаторные блоки питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

DC/DC преобразователи

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс.

Рис. 1. Преобразователь 1,5В/5В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

Классификация конвертеров

Понижающие, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова - прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающие, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальные преобразователи - SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

Инвертирующие преобразователи - inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например .

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

Понижающий конвертер чоппер - конвертер типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

Рис.2. Функциональная схема чопперного стабилизатора

Входное напряжение Uin подается на входной фильтр - конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть либо . Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр - LCout, с которого напряжение поступает в нагрузку Rн.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

Широтно-импульсная модуляция - ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.

Рис.3. Импульсы управления

Здесь tи время импульса, транзистор открыт, tп - время паузы, - транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) . Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

Рис.4. Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе - фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

Рис.5. Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающие step-up или boost преобразователи

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

Рис.6. Функциональная схема повышающего преобразователя

Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальные преобразователи - SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

Рис.7. Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).

Рис.8. Принципиальная схема преобразователя SEPIC

На рисунке 9 показан внешний вид платы с обозначением основных элементов.

Рис.9. Внешний вид преобразователя SEPIC

На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.

Постоянным, или DC-током, называется поток электрических зарядов, со временем не меняющий своего направления и силы, которая согласно классическому определению этой величины измеряется в кулонах в секунду (или амперах).

При знакомстве с электрическими явлениями постоянного характера важно помнить не только о направлении протекания физических процессов, но и об их интенсивности (силе). В реальных условиях эксплуатации электротехнического или электронного оборудования значение DC редко бывает абсолютно постоянным.

Причины непостоянства

Дело в том, что на выходе любой выпрямительной схемы, преобразующей переменный ток, всегда имеются низкочастотные гармоники исходного сигнала, называемые пульсациями.

Обратите внимание! При работе аккумуляторов и гальванических элементов говорить о его постоянстве также не совсем корректно, поскольку это может относиться только к понятию «полярность».

Сила потока электронов в любой нагрузке со временем также меняется (убывает), что связано со снижением ЭДС источника питания.

Из приведённых выше рассуждений следует, что говорить о постоянстве токовых характеристик в данных цепях можно только с некоторой долей условности. Оно приемлемо лишь в ситуациях, когда изменениями его силы можно пренебречь.

Основные характеристики тока

При рассмотрении основных параметров этой физической величины сразу оговоримся, что часто употребляемый термин «сила тока» большинством специалистов признан не совсем корректным. Гораздо более подходящей для обозначения его скалярной характеристики является не сила, а скорость (иногда её называют интенсивностью) перемещения свободных электрических зарядов.

Согласно классическому представлению, эта скорость определяется как количество заряда, перемещающегося через заданное сечение проводящего материала в единицу времени. Именно этот показатель, принимаемый за единицу силы тока, носит название одного Ампера.

Таким образом, поток в один Ампер – это перемещение заряда в один Кулон через данное проводящее сечение за время, равное секунде. Ещё одна характеристика постоянного тока, связанная с его протеканием по нагрузке с сопротивлением R, называется падением напряжения, которое измеряется в Вольтах. Оно определяется как разность потенциалов, образуемая на проводнике при протекании через него одного Ампера.

Это же определение может быть представлено в следующем виде. Один Вольт – это такая разность потенциалов между разнесёнными в электрическом поле точками, которой достаточно для совершения работы в один Джоуль (при переносе между ними заряда в один Кулон).

К практическим характеристикам получаемой посредством выпрямителей токовой компоненты обычно относят следующие параметры:

  • Амплитуда пульсаций, определяемая как разность его предельных значений;
  • Показатель пульсаций, представляемый в виде отношения двух величин, в котором в числителе ставится ток AC, а в знаменателе – DC.

Исследуем последнюю более подробно.

DC составляющая

При исследовании формы нагрузочного тока на выходе диодного выпрямителя с помощью осциллографа удаётся разглядеть его пульсации, проявляющиеся из-за ограниченности возможностей фильтрующих компонентов (ёмкостей).

В отдельных случаях эти составляющие настолько малы, что они могут не учитываться при расчёте схем, в которых должны устанавливаться фильтрующие конденсаторы. При таком подходе к категории исследуемый показатель удобнее рассматривать как импульсный или пульсирующий и выделять две его составляющие: DC и ас. Рассмотрим каждую из этих компонент более подробно.

Постоянная DC

Указанная величина вычисляется как среднее значение токового действия в течение периода. Она в корне отлична от другой характеристики пульсирующего потока, называемой переменной составляющей ас.

Изменяющаяся компонента

Переменный ток (точнее составляющая пульсирующего тока) ас представляет собой периодическое колебание его амплитуды около уже рассмотренного ранее среднего положения. При расчёте этой величины следует исходить из того, что её значение включает следующие составляющие:

  • Постоянную часть;
  • Значение переменной компоненты (ас), определяемое как среднеквадратичная величина.

Обе они являются компонентами исследуемого токового сигнала и, подобно всем электрическим параметрам, имеют фиксированную мощность (то есть способность выполнять определённую работу). Последняя вычисляется как:

где I – это средняя квадратичная постоянной составляющей и пульсаций тока.

То есть при расчёте мощности компоненты постоянной DC и переменной ас суммируются как комплексные величины.

Дополнительная информация. Они представляются в этом случае в виде векторных составляющих исходного сигнала.

Также важно, что все рассмотренные определения, как и символы AC и DC, в равной степени применимы и для категории «напряжение».

В заключение ещё раз обратим внимание на то, что представление о постоянном токе чаще всего связано с неизменностью направления потока свободных электронов. Однако в реальности это понятие предполагает учёт ряда скалярных характеристик, к одной из которых относится интенсивность потока зарядов в пассивной нагрузке.

При изменяющемся во времени номинальном значении этой токовой составляющей считать его постоянным можно только условно, что допускается в рамках решаемой в каждом конкретном случае задачи.

Видео



Рекомендуем почитать

Наверх