Что такое пьезоэлементы, и где они применяются. Генератор из пьезоэлемента

Для Windows Phone 12.07.2019
Для Windows Phone

— способность некоторых материалов генерировать электрический заряд в ответ на приложенное механическое напряжение.

Пьезоэлектрические кристаллы проявляют пьезоэлектрический эффект .
Этот эффект имеет два свойства:
Первый — прямой пьезоэлектрический эффект, который означает, что материал обладает способностью превращать механическую деформацию в электрический заряд.
Второй — обратный эффект, при котором приложенный электрический потенциал преобразуется в механическую энергию деформации. Пьезоэлемент зажигалки — образец этого эффекта.

Пьезоэлектрический преобразователь

Пьезоэлектрическая пластина представляет собой устройство, которое использует пьезоэлектрический эффект для измерения давления, ускорения, деформации или силы путем преобразования их в электрический заряд.

Пьезоэлектричество — это электричество, генерируемое пьезоэлементом, эффект которого называется пьезоэлектрическим эффектом . Это способность некоторых материалов генерировать напряжение переменного тока (переменного тока) при механическом напряжении или вибрации или вибрировать при воздействии переменного напряжения или и то и другое.
Наиболее распространенным пьезоэлектрическим материалом является кварц.

Этот эффект оказывает определенная керамика, соли Рошеля и другие другие твердые вещества. Когда звуковая волна ударяет по одной или обеим сторонам пластин, пластины вибрируют. Кристалл поднимает эту вибрацию, что приводит к слабому напряжению переменного тока. Следовательно, между двумя металлическими пластинами возникает напряжение переменного тока, с формой волны, подобной форме звуковых волн.

И наоборот, если к пластинам подается сигнал переменного тока, это заставляет кристалл вибрировать синхронно с сигнальным напряжением. В результате металлические пластины также вибрируют и создают акустические помехи.
Практически каждый человек хотя бы один раз в жизни пользовался газовой зажигалкой, например моделью IMCO TRIPLEX, с пьезоэлементом. Это простое в исполнении и полезное в быту устройство позволяет добывать огонь всего одним щелчком. Огонь образуется из-за возгорания газа при контакте с электрическим разрядом, производимым пьезоэлементом зажигалки при нажатии на соответствующую клавишу.

При нажатии кнопки на пьезозажигалке мы слышим треск искры, далее газовая горелка разгорается.

Из чего состоит пьезозажигалка?

В пластмассовом корпусе находится блок пьзоэлемента и провода, которые используются как электроды.

Механизм действия пьезоэлемента

Основа - это блок пьезоэлемента, который отправляет от кнопки силу давления на сам пьезоэлемент. Основная составляющая пьезоэлемента - пьезокристалл . Это пластинка, вырезанная из кварцевого кристалла. Ее функция - механическую деформацию превращать в электрическое напряжение . Пластинка очень твердая, способна выдержать значительные изгибы и сжатия и выдавать высокое напряжение.
При плавном нажатии на кристалл, выдаваемое напряжение будет невелико, но оно будет длительным. При нажатии на кристалл с той же силой, но быстро и мгновенно - выдаваемое напряжение сильнее, но оно будет моментальным.
Поэтому для создания искры в пьезозажигалке используется это свойство кристалла . Для изменения силы удара с плавного на резкий в зажигалке имеется механизм: упругая пружина, которая находится под кнопкой пьезозажигалки. Нажимая на кнопку - сжимается и пружина. После нажатия на кнопку до конца - пружина отодвигает рычажок, на который она опирается. После этого пружина резко распрямляется. На другом конце пружины расположен металлический молоточек, который при раскрытии пружины с огромной скоростью ударяет в кристалл. На обратной стороне кристалла имеется металлическая подкладка, которая не дает кристаллу сдвинуться от движения молоточка.
В результате получается мгновенный и сильный удар по кристаллу, который вызывает искру.

Умельцы научились применять его в ремонте (точнее, в «убийстве») смартфонов или мобильных телефонов. Сразу же появляется логичный вопрос: а зачем индивиду со здоровой нервной системой ломать свой смартфон? Ситуация может быть разной. Кто-то желает сдать телефон по гарантии, так как он ему уже разонравился. Кто-то просто решил приколоться над дружком.

Ломать, не делать

Разряд тока, произведенный пьезоэлементом зажигалки, может сломать смартфон. Достаточно будет 8-12 раз «прощелкать» металлические разъемы гаджета, вход для наушников, оголенные части платы. При таком воздействии телефон откажется работать. При этом никаких видимых повреждений или оплавленных элементов не будет. Теперь вы можете с радостью нести сломанный гаджет в салон и требовать возврата денег. В сервисном центре ничего не должны понять.

Но пьезоэлементом газовой зажигалки нельзя вывести из строя обыкновенные «звонилки», сработанные в КНР. Не знаю почему, но даже после 50 ударов слабым током кнопочный телефон продолжил исправно функционировать.

Использование пьезоэлемента для других целей

  • в качестве источника высокого напряжения в опытах по физике,
  • для вывода из строя домашней электроники (это уже хулиганство!), щелкнув несколько раз по металлическим разъемам техники, мало вероятно, что кто-то догадается в чем причина поломки, так как это будет выглядеть как пробой,
  • умельцы могут сделать магнитную пушку.

ОСТОРОЖНО! Не направлять в лицо, не стрелять в людей!

Делаем магнитную минипушку

Необходимые материалы для изготовления минипушки :
1 . любая бутылка

2 . корпус шариковой ручки

3 . пьезоэлемент из старой зажигалки
4 . термоклей
5 . ножницы
6 . спрей для волос

Шаг 1 : Берем ручку и вынимаем колпачки с 2 —ух сторон .

Шаг 2 : Собираем минипушку .

Сначала берем бутылку от лекарства и делаем отверстие для того чтобы вставить туда корпус авторучки, далее с использованием термоклея делаем соединение
герметичным.

  • можно вывезти из строя домофон (лучше не портить общественное имущество!),
  • можно сделать минишокер , сняв предварительно защиту,

Настоящего электрошокера сделать не получится, а вот подшутить над одноклассниками — вполне реально.

Делаем мини электрошокер

Потребуется:
— пьезоэлемент (вынутый из зажигалки),
— металлическая ручка,
— фольга,
— пассатижи.

Разбираем ручку, все детали ручки должны быть металлические. Выводной провод тока пьезоэлемента подкручиваем и вставляем в стержень пасты. И далее собираем, как показано на видео.
А дальше можете подшутить над другом — предложить ему попользоваться вашей ручкой.
Ток будет слабым, а эффект от неожиданности — очень сильным!

  • можно попробовать сделать микросварку ,
  • можно искрой нанести надписи ,
  • можно сделать устройство активной охраны .

Удачных вам экспериментов, друзья.

Подробности Просмотров: 1206

Принцип поджигания, основанный на пьезоэффекте (от греч. ?? – piezo – давлю). Это явление, открытое братьями Жаком и Пьером Кюри в 1880 г, заключается в том, что при сдавливании монокристаллов некоторых веществ на их гранях возникают электрические заряды. Такой монокристалл заменяет в конструкции зажигалки кремень.
Пьезоэлемент в зажигалке представляет собой маленький кристалл кварца, наделенный пьезоэлектрическими свойствами. Когда к кристаллу прилагается напряжение, кристаллическая решетка деформируется и меняются размеры кристалла. Это называется прямым пьезоэффектом. И, наоборот, при растяжении или сжатии кристалла кварца на его поверхности образуется напряжение. Этот явление называется обратным пьезоэффектом. Слабый удар по кристаллу кварца, разположенному в зажигалке, порождает напряжение в несколько сотен вольт. Так происходит электрический пробой, и между электродами проскакивает искра. Газ загорается.
К слову сказать, пеьезозажигалка - это наукоемкое изделие, детище высоких технологий второй половины ХХ века и является своего рода мини- электростанцией … на ладони. В самом деле, не чудо ли, когда нажатие пальца на клавишу силой всего 20-30 Н напрямую преобразуется в высокое напряжение 10-20 тысяч Вольт? Более того, это практически неиссякаемый источник энергии, срок службы пьезоэлементов такого механизма не менее 12 лет!


Эти зажигалки не нуждаются в источниках энергии или других расходных материалах (кроме газа конечно же).
Пьезоэлектричество генерируется в ходе инновационного процесса, в котором не используются стандартные электрические провода. Вместо этого искру получают при помощи естественных сил. Воспламенитель пьезо очень надежен.
Пьезоэлектричесво не использует электрические соединения, хотя во многих приборах для получения искры в определенном месте используют провода. Для воспламенения в таких приборах обычно нужно нажать на кнопку. Они достаточно эффективны, просты в использовании, прочны и требуют минимального ухода.
Пьезозажигалки, как правило, живут намного дольше зажигалок механических. Секрет их долголетия заключается в отсутствии трения элементов. Однако, если с пьезоэлементом что-то случилось, починить его вам не удастся. Никакая зачистка ему не поможет, «самодеятельность» убьет зажигалку окончательно. Заметим, однако, что выход из строя пьезоэлемента - явление очень редкое.
Кроме того, пьезозажигалкам не грозит утечка газа, что с кремневыми случается, к сожалению, нередко. Конечно, мы говорим здесь исключительно о качественных пьезозажигалках от надежных производителей, а не о продукции «черного» рынка.

В последние годы получило новое развитие направление пьезоэлектрического приборостроения, связанное с созданием пьезоэлектрических преобразователей для генерации электрической энергии за счет использования механической энергии деформации, перемещения конструкций и движения транспортных средств и человека.


Внедрение новой технологии изготовления пленочных пьезоэлектрических элементов с толщиной от 5 до 100 мкм и реализация технологии их автоматической сборки в многослойные конструкции позволяют изготовить пьезоэлектрические генераторы с оптимальными параметрами, обеспечивающими согласование их импеданса с импедансом нагрузки и выходными напряжениями от 2-10 до 240-300 В [ - ]. Конструкция пьезогенератора определяется конструкцией пьезоэлемента.

Пьезоэлементы, в которых направление поляризации совпадает с направлением механического усилия, используются при создании мощных пьезоэлектрических генераторов на напряжения 100-300 В. Пьезоэлементы изгибного типа (биморфы), в которых направление поляризации перпендикулярно направлению деформации при вибрации, используются при создании мини-пьезоэлектрических генераторов на напряжения 2-10 В.

Как правило, мощные пьезоэлектрические пьезогенераторы являются преобразователями механической энергии (с давлением не менее 1-2 кН) в электрическую при циклическом нагружении, при этом переменное напряжение преобразуется с помощью мостовых выпрямителей в постоянное. Поскольку пьезопреобразователь работает в течение продолжительного времени с относительно малой электрической энергией, производимой за один цикл, как правило, используется система накопления и хранения энергии (рис. 1). Для стабилизации выходного напряжения пьезогенератора на заданном уровне используется система с обратной связью, специальный контроллер. Контроллер также обеспечивает согласование импеданса пьезогенератора с выходным импедансом потребителя энергии.

Рис. 1. Блок-схема модуля питания

Принципиальная конструкция пьезоэлектрического микропреобразователя на основе пьезобиморфа показана на рис. 3.

Рис. 3. Принципиальная конструкция микропреобразователя на пьезобиморфе

Фирма Nissan Electric (Япония) разработала и выпускает модуль питания на основе пьезобиморфа, который вырабатывает энергию при ходьбе человека (мощность ≥20 мВт).

Фирма EnOcean сообщает о разработке безбатарейного радиовыключателя освещения .

В приведены результаты исследований мини-пьезогенератора для питания имплантируемого протеза TKR при давлении с мощностью до 225 мкВт (мощность потребления системы питания микроконтроллера протеза TKP PIC161E872 — 50 мкВт).

В [ - ] приведены результаты исследований пьезогенератора, имплантируемого в протез колена человека для стимуляции роста костной ткани (мощность до 250 мкВт).

В Англии фирма Facility Architects совместно со Scott Wilson Group реализует проект Pacesetters по преобразованию механической энергии движения пассажиров на вокзале Виктория (за 60 мин. проходит 34 тыс человек) в источник электрической энергии. Авторы проекта полагают, что система может получить от каждого проходящего человека 3-4 Вт. Аналогичной разработкой занимаются специалисты японской железнодорожной компании JR-East совместно с учеными университета Keio. Созданная ими система может использоваться для подсчета пассажиров и одновременно для генерации электричества от прохождения людей через турникет. Эксперимент показал, что на вокзале в Сибуя в течение 6 часов работы система вырабатывает 1 Вт/ч.

Английская компания Pavegen Systems разработала пьезогенератор Pavegen, который преобразует энергию от давления шагов человека в электрическую (при деформации на 5 мм получается 2,1 Вт). Плата-генератор изготовлена из нержавеющей стали, покрытой резиной. Внешний корпус изготовлен из литого алюминия. Получаемая энергия накапливается в литьевых полимерных аккумуляторных батареях и может быть использована для питания осветительных приборов. Пять таких генераторов, установленных на оживленном участке тротуара, могут снабдить энергией освещения автобусную остановку на всю ночь. По подсчетам экономистов, срок окупаемости этого устройства — около года, в то время как заявленный ресурс составляет пять лет или 20 млн шагов.

Гриценко Анатолий, Никифоров Виктор, Щёголева Татьяна


Литература (в источнике):

Электромеханический преобразователь, изготавливаемый из пьезоэлектрических материалов, определенной формы и ориентации относительно кристаллографических осей, с помощью которого механическая энергия преобразуется в электрическую (прямой пьезоэффект), а электрическая в механическую (обратный пьезоэффект).

Конструктивно пьезоэлемент представляет из себя пьезокерамику с нанесенными электродами. Пьезоэлементы могут быть разнообразной формы: в виде дисков, колец, трубок, пластин, сфер и др. Для вибраторов и генераторов пьезоэлементы объединяют в пьезостек, чтобы достичь лучших характеристик.

Сменить цвет

Диаметр: 10 мм
Толщина: 1 мм
Материал: ЦТС-26
Напряжение: 5В
Частота возбуждения: 1МГц
Масштаб колебаний: 30000:1

Посмотреть колебания


Остановить колебания



Рисунок - Колебание свободного пьезоэлемента под действием напряжения (обратный пьезоэффект)

Пьезоэлектрический эффект

Пьезоэлектрические вещества (пьезоэлектрики ), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина . Они заметили, что если оказывать механическое давление на кристалл в определенном направлении, на противоположных сторонах кристалла возникают электрические заряды пропорциональные давлению и противоположной полярности. Позже они открыли подобный эффект у кварца и других кристаллов. В 1880 году Пьеру Кюри был только 21 год .

Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект , а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.

Свойства пьезокерамики

Связь между приложенной силой и результирующим ответом пьезоэлемента зависит от: пьезоэлектрических свойств пьезокерамики, размера и форм образца, направления электрического и механического возбуждения.

По своей природе пьезоэлектрические материалы являются анизотропными кристаллами. показывает различные направления и оси ориентации пьезоэлектрического материала. Оси 1, 2 и 3 являются соответственными аналогами осей X, Y, Z классической ортогональной системы координат, в то время как оси 4, 5, и 6 определяют оси вращения. Направление оси 3 является направлением поляризации . Это направление устанавливается во время производства посредством высокого постоянного напряжения, которое создается между электродами.

Характеризуется следующими свойствами:

Относительная диэлектрическая постоянная является отношением диэлектрической проницаемости материала (в этом случае и ) к диэлектрической проницаемости вакуума ()

где = 8,85· 10 -12 , Ф/м

Верхний индекс показывает граничные условия действующие на материал в процессе определения значения относительной диэлектрической постоянной. В частности индекс T (в этом случае) говорит о том, что диэлектрическая постоянная измеряется на свободном (не зажатом) образце . А индекс S показывает, что измерения происходят при постоянной деформации пьезокерамики (в зажатом состоянии). Первый нижний индекс показывает направление диэлектрического смещения, а второй – электрического поля . Формула расчета относительной диэлектрической постоянной следующая:

Собственная частота пластины по толщине вычисляется по следующей формуле

где с – скорость звука в материале, м/с

Нажимайте сюда для просмотра колебаний пьезоэлемента!

Частота возбуждения f=25кГц
Масштаб колебаний 200000:1

Частота возбуждения f=73,6кГц
Масштаб колебаний 10000:1

Частота возбуждения f=280кГц
Масштаб колебаний 10000:1

Рисунок 4 - Амлитудно-частотная характеристика пьезоэлемента. Виды колебаний на разных частотах

Коэффициенты электромеханической связи k p , k 33 , k 15 , k t и k 31 описывают способность пьезоэлемента превращать энергию из электрической в механическую и наоборот. Квадрат коэффициента электромеханической связи определяется как отношение накопленной преобразованной энергии одного вида (механической или электрической) к входной энергии второго вида (электрической или механической). Индекс показывает относительные направления электрических и механических величин и вид колебаний. Они могут быть связанны с модой колебаний простого преобразователя определенной формы. k p означает взаимосвязь электрической и механической энергии в тонком круглом диске, поляризованном по толщине и колеблющемся в радиальном направлении – планарная мода (). k 31 относится к длинному тонкому бруску с электродами на длинной поверхности. Вид колебаний – растяжение сжатие по длине (). k t связан с тонким диском или пластиной и определяет растяжения сжатия по толщине (). k 33 соответствует длинному тонкому бруску с электродами на его концах и поляризованному по длине. Вид колебаний – растяжения сжатия по длине (). k 15 описывает энергию преобразованную в сдвиговые колебания по толщине () .

Этот коэффициент может быть вычислен через резонансную и антирезонансную частоту по формуле.

, (4)

Чтобы измерить эти частоты обычно используется , с помощью которого можно получить зависимость сопротивления от частоты пьезокерамики ().

По своей природе, резонансная частота возникает, когда система имеет очень маленькое сопротивление, в то время как антирезонанс происходит, когда система имеет очень большое сопротивление. На частота которая имеет минимальное сопротивление считается резонансной (), а частота с максимальным сопротивлением – антирезонансной ().

Рисунок 5 – Виды колебаний образцов пьезокерамики разной формы

Упругие свойства пьезоэлектрических материалов характеризуются упругими податливостями () или упругими жесткостями (). Упругая податливость определяет величину деформации возникающей под воздействием приложенного механического напряжения. Ввиду того, что под воздействием механического напряжения керамика порождает электрический ответ, который противодействует результирующей деформации, эффективный модуль Юнга при коротком замыкании электродов меньше чем при холостом ходе. В дополнение, жесткость различна в разных направлениях, поэтому для точного определения величины указывается электрические и механические условия. Верхний индекс E говорит о том, что замеры происходят при постоянном электрическом поле (короткое замыкание). В то время как, индекс D указывает на граничное условие – постоянное электрическое смещение (индукция), т.е. замеры происходят при холостом ходе. Первая нижняя цифра показывает направление деформации, вторая направление механического напряжения .

Пьезоэлектрический модуль d – отношение механической деформации к приложенному электрическому полю (Кл/Н)

Полезно помнить, что большие значения d ij приводят к большим механическим смещениям, что обычно добивается при проектировании ультразвуковых преобразователей . d 33 применяют, когда сила направлена в направлении оси поляризации (). d 31 используют, когда сила прикладывается под прямым углом к оси поляризации, при этом заряд возникает на электродах, так же как и в предыдущем случае (). d 15 показывает, что заряд накапливается на электродах, которые находятся под прямым углом к изначальным поляризующим электродам и что получаемые механические колебания являются сдвиговыми ().

Пьезоэлектрическая константа давления g ij – отношение полученного напряжения к приложенному давлению.

, (6)

Индекс “33” показывает, что электрическое поле и механическое напряжение направлены по оси поляризации. Индекс “31” означает, что давление прикладывается под прямым углом к оси поляризации, при этом напряжение снимается с тех же самых электродов, что и в случае “33”. Индекс “15” подразумевает, что приложенное напряжение является сдвиговым и результирующее электрическое поле перпендикулярно к оси поляризации. Высокое значение g ij ведет к большим выходным напряжениям, что является желательным для сенсоров.

Коэффициент Пуассона – это отношение относительного поперечного сжатия к соответствующему относительному продольному удлинению

, (7)

Температурный коэффициент показывает изменение различных свойств материала (резонансная частота, емкость, размеры) при изменение температуры

, (8)

, (9)

, (10)

Скорость старения это показатель изменения резонансной частоты и емкости со временем. Чтобы вычислить эту скорость, после поляризации электроды преобразователя соединяются вместе, и образец нагревается определенный период времени. Производятся замеры резонансной частоты и емкости каждые 2 n (1,2,4 и 8) дня. Скорость старения вычисляется по следующей формуле :

, (11)

Добротность – количественная характеристика резонансных свойств колебательных систем, указывающая во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду вынужденных колебаний на частоте много ниже резонансной при одинаковой амплитуде возбуждающей силы . Добротность равна отношению собственной частоты резонансной системы к ширине частотной полосы, на границах которой энергия системы при вынужденных колебаниях вдвое меньше энергии на резонансной частоте



Рисунок 7 – Порошок для изготовления пьезоэлемента

Процесс изготовления пьезокерамики разделяется на несколько этапов. При осуществлении синтеза заданного сегнетоэлектрического соединения исходное сырье (окислы или соли, например, двуокись титана и окись бария) измельчается и смешивается в количествах, соответствующих стехиометрическому составу соединения, а затем подвергается термической обработке при температурах 900 – 1300 °С, в процессе которой происходит химический синтез. Используется также так называемый метод осаждения из водных растворов, при котором температура синтеза благодаря идеальному перемешиванию компонентов снижается до 750 – 1000 °С. Из порошкообразного синтезированного материала прессованием (а также литьём под давлением) получаются заготовки необходимой конфигурации и размеров для будущих пьезоэлементов, которые затем подвергаются обжигу по строго определенному температурному режиму, в большой степени определяющему свойства пьезокерамики. Механическая обработка детали после обжига обеспечивает ей точно заданную форму и размеры. На деталь наносятся электроды из серебра, никеля, платины и др., причем наибольшее распространение получил метод вжигания серебра. Для поляризации керамики к электродам подводится электрическое напряжение (напряжённость поля Е составляет от 0,5 до 3 кВ/мм в зависимости от химического состава и метода поляризации). С целью уменьшения напряженности поля Е при поляризации образец нагревают до температур, близких к точке Кюри (т. к. при этом домены обладают большей подвижностью), а затем медленно охлаждают в присутствии поля. Пьезокерамике свойственно т. н. старение, т. е. изменение её параметров (диэлектрической проницаемости, пьезомодулей) со временем, особенно заметное в первые несколько суток после изготовления и поляризации образцов, которое обусловлено изменением как механических напряжений на границах между зёрнами, так и величины остаточной поляризации .

Применение пьезокерамики

Пьезоэлектрические материалы нашли применение в широком ряде областей, таких как медицинские инструменты, контроль промышленных процессов, системах производства полупроводников, бытовых электрических приборах, системах контроля связи, различных измерительных приборах и в других областях. Коммерческие системы, которые используют пьезоэлектрические материалы – помпы, швейные машины, датчики (давления, обледенения, угловых скоростей и т.д.), оптические инструменты, лазерные принтеры, моторы для автофокусировки камер и многие другие. При этом область применения данных материалов постоянно растет. Применение пьезоэлемента обычно сводится к четырем категориям: сенсоры, генераторы, силовые приводы, и преобразователи.

В генераторах , пьезоэлектрические материалы могут генерировать напряжение, которого достаточно для возникновения искры между электродами, и таким образом могут быть использованы как электроды для воспламенения топлива, для газовых плит и для сварочного оборудования. Альтернативно, электрическая энергия, генерируемая пьезоэлектрическими элементами, может накапливаться. Такие генераторы являются превосходными твердыми аккумуляторными батареями для электронных схем.

В сенсорах , пьезоэлектрические материалы преобразуют физические параметры, такие как ускорение, давление и вибрации в электрический сигнал.

В силовых приводах , пьезоэлектрические материалы преобразуют электрический сигнал в точно контролируемое физическое смещение, четко устанавливая точность механических инструментов, линз и зеркал.

В преобразователях , пьезоэлектрические преобразователи могут, как генерировать ультразвуковой сигнал из электрической энергии, так и конвертировать приходящие механические колебания в электрические. Пьезоэлектрические приборы проектируются для измерения расстояний, скорости потока, и уровня жидкости. Преобразователи так же используются, чтобы генерировать ультразвуковые вибрации для очистки, сверления, сварки, размельчения керамики и для медицинской диагностики .

Тонкая пьезоэлектрическая пленка на оконном стекле, поглощающая шум улицы и преобразующая его в энергию для зарядки телефона. Пешеходы на тротуарах, эскалаторах метро, которые заряжают через пьезо преобразователи аккумуляторы автономного освещения. Плотные потоки автомобилей на оживленных трассах, вырабатывающие мегаватты электроэнергии, которой хватает для целых городов и поселков.

Фантастика? К сожалению, пока да, и таковой может остаться. Есть большая вероятность, что скоро закончится ажиотаж вокруг сенсационных сообщений о чудесных перспективах генераторов энергии на пьезоэлементах . А мы будем опять мечтать о безопасной, возобновляемой и, что греха таить, дешевой электрической энергии, полученной с привлечением других явлений. Ведь список физических эффектов замечательно велик.

Явление пьезоэлектричества было открыто братьями Джексоном и Пьером Кюри в 1880 году и с тех пор получило широкое распространение в радиотехнике и измерительной технике. Заключается оно в том, что усилие, приложенное к образцу пьезоэлектрического материала, приводит к появлению на электродах разности потенциалов. Эффект обратим, т.е. наблюдается и обратное явление: прикладывая к электродам напряжение, образец деформируется.

В зависимости от направления преобразования энергии пьезоэлектрики делятся на генераторы (прямое преобразование) и двигатели (обратное) . Термин “пьезогенераторы” характеризует не эффективность превращения, а только направление преобразования энергии.

Именно первым явлением, связанным с генерацией электричества при механическом воздействии , заинтересовались в последние годы инженера и изобретатели. Как из рога изобилия, посыпались сообщения о возможностях получения электрической энергии, утилизируя уличный шум, движение волн и ветра, нагрузки от перемещения людей и машин.

Сегодня известно несколько примеров практического использования подобной энергии. На станции метро «Марунучи» в Токио установлены пьезогенераторы в зале для приобретения билетов. Скопления пассажиров хватает для управления турникетами.

В Лондоне, в элитной дискотеке, пьезогенераторы питают несколько ламп, которые стимулируют танцующих и...продажу прохладительных напитков. Стали обыденными пьезоэлектрические зажигалки. Сейчас любой курильщик носит в кармане собственную «электростанцию».

Сравнительно недавно взорвало мировую общественность сообщение об испытаниях систем получения энергии от движущегося автотранспорта. Израильские ученые из небольшой фирмы Innowattech подсчитали, что 1 километр автобана может генерировать электрическую мощность до 5 МВт. Они не только выполнили расчеты, но и вскрыли несколько десятков метров полотна автострады и смонтировали под ним свои пьезогенераторы. Казалось, что наконец наступил прорыв в области альтернативной энергетики. Но в этом возникают серьезные сомнения.

Рассмотрим подробней физику процессов, происходящих в пьезоэлектрике. Для знакомства с принципами генерации энергии пьезоэлектрическими материалами достаточно понимания нескольких базовых механизмов. При механическом воздействии на пьезоэлемент происходит смещение атомов в несимметричной кристаллической решетке материала. Это смещение приводит к возникновению электрического поля, которое индуцирует (наводит) заряды на электродах пьезоэлемента.

В отличие от обычного конденсатора, обкладки которого могут сохранять заряды достаточно долго, индуцированные заряды пьезоэлемента сохраняются только до тех пор, пока действует механическая нагрузка. Именно в это время можно получить от элемента энергию. После снятия нагрузки индуцированные заряды исчезают. По сути, пьезоэлемент является источником тока ничтожной величины, с очень высоким внутренним сопротивлением.

Из обилия технических характеристик пьезоматериалов нам понадобятся всего несколько. Это значение пьезоэлектрического модуля, которое для распространенных (а иных пока промышленность не выпускает) пьезоэлектриков составляет от 200 до 500 пикокулон (10 в минус 12 степени) на ньютон, и характеризует эффективность генерации заряда под воздействием силы.

Эта характеристика не зависит от размеров пьезоэлемента, а полностью определяется свойствами материала. Поэтому пытаться делать более мощные преобразователи за счет увеличения геометрических размеров бессмысленно. Емкость обкладок пьезоэлемента зажигалок известна и составляет около 40 пикофарад.

Рычажная система передачи усилия на пьезоэлемент создает нагрузку приблизительно 1000 ньютонов. Зазор, в котором проскакивает искра - 5 мм. Диэлектрическую прочность воздуха принимаем 1 кВ/мм. При таких исходных данных зажигалка генерирует искры мощностью от 0,9 до 2,2 мегаватта!

Но не стоит пугаться. Длительность разряда составляет всего 0,08 наносекунды, отсюда такие огромные значения мощности. Подсчет же суммарной энергии, генерируемой зажигалкой, дает значение всего 600 микроджоулей. При этом КПД зажигалки, с учетом того, что механическое усилие через рычажную систему полностью передается пьезоэлектрику, составляет всего... 0,12%.

Предлагаемые в разных проектах схемы извлечения энергии близки к режимам работы зажигалок. Отдельные пьезоэлементы генерируют высокое напряжение, которое пробивает разрядный промежуток, и ток поступает на выпрямитель, а затем в накопительное устройство, например, ионистор. Дальнейшее преобразование энергии стандартно и интереса не представляет.

От зажигалок перейдем к задаче получения энергии в промышленных масштабах. Пусть будут использованы наиболее эффективные элементы, генерирующие 10 милливатт на элемент. Собранные в кластеры (группы) по 100-200 элементов, они помещаются под полотно дороги. Тогда для получения заявленной величины мощности порядка 1 МВт на километр дороги потребуется всего... 100 миллионов отдельных элементов с индивидуальными схемами съема энергии. Остается еще задача ее суммирования, преобразования и передачи потребителю. При этом токи элементов, учитывая изменяющуюся нагрузку на дорожное полотно, будут лежать в диапазоне нано или даже пикоампер.

Знакомясь с подобными проектами получения энергии от пьезоэффекта, невольно напрашивается аналогия с гидроэлектростанцией, в которой турбины работают от влаги утренней росы, бережно собранной с окрестных полей.

А как же с экспериментом израильской компании? Отчет о результатах «вредительства» на полотне автострады так и не появился. А ведь впереди выполнение контракта на получении энергии с автострады Венеция - Триест, который заключила фирма Innowattech.

По этому поводу есть одна версия: это компания типа «стартап», т.е. с высоким риском инвестиционного капитала. Получив более чем скромные предварительные результаты исследователей, ее основатели решили оправдать затраченные деньги инвесторов и провернули великолепный маркетинговый ход - провели эффектное испытание с участием прессы. И весь мир заговорил о маленькой компании. И в этом шуме потерялся основной вопрос: где же мегаватты дешевой энергии?

Подводя итоги, можно сделать только один вывод: пьезоэлементы никогда не станут в промышленных масштабах. Круг их применений ограничится маломощными (микромощными) источниками питания и датчиками. А жаль, такая красивая была идея!



Рекомендуем почитать

Наверх