Что такое Ethernet. Реализации сети Ethernet

Для Symbian 01.04.2019
Для Symbian

EtherNet стандарт IEEE 802.3

Это самый распространенный на сегодняшний день стандарт технологии сети.

Особенности:

  • работает с коаксиальным кабелем, витой парой, оптическими кабелями;
  • топология – шина, звезда;
  • метод доступа – CSMA/CD.

Архитектура сетевой технологии Ethernet фактически объединяет целый набор стандартов, имеющих как общие черты, так и отличия.

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс издали брошюру под названием «Ethernet: Distributed Packet Switching For Local Computer Networks». Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных вычислительных сетей. Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года .

Дальнейшее развитие технологии EtherNet:

  • 1982-1993 разработка 10Мбит/с EtherNet;
  • 1995-1998 разработка Fast EtherNet;
  • 1998-2002 разработка GigaBit EtherNet;
  • 2003-2007 разработка 10GigaBit EtherNet;
  • 2007-2010 разработка 40 и 100GigaBit EtherNet;
  • 2010 по сей день разработка Terabit Ethernet.

На уровне MAC, который обеспечивает доступ к среде и передаче кадра, для идентификации сетевых интерфейсов узлов сети используются регламентированные стандартом уникальные 6-байтовые адреса, называемые MAC-адресами. Обычно MAC-адрес записывается в виде шести пар шестнадцатеричных цирф, разделенных тире или двоеточиями, например 00-29-5E-3C-5B-88. Каждый сетевой адаптер имеет MAC-адрес.

Структура MAC-адреса Ethernet:

  • первый бит MAC-адреса получателя называется битом I/G (individual/group или широковещательным). В адресе источника он называется индикатором маршрута от источника (Source Route Indicator);
  • второй бит определяет способ назначения адреса;
  • три старших байта адреса называются защитным адресом (Burned In Address, BIA) или уникальным идентификатором организации (Organizationally UniqueIdentifier, OUI);
  • за уникальность младших трех байт адреса отвечает сам производитель.

Некоторые сетевые программы, в частности wireshark, могут сразу отображать вместо кода производителя - название фирмы производителя данной сетевой карты.

Формат кадра технологии EtherNet

В сетях Ethernet существует 4 типа фреймов (кадров):

  • кадр 802.3/LLC (или кадр Novell802.2),
  • кадр Raw 802.3 (или кадр Novell 802.3),
  • кадр Ethernet DIX (или кадр Ethernet II),
  • кадр Ethernet SNAP.

На практике в оборудовании EtherNet используется только один формат кадра, а именно кадр EtherNet DIX, который иногда называют кадром по номеру последнего стандарта DIX.

  • Первые два поля заголовка отведены под адреса:
    • DA (Destination Address) – MAC-адрес узла назначения;
    • SA (Source Address) – MAC-адрес узла отправителя. Для доставки кадра достаточно одного адреса – адреса назначения, адрес источника помещается в кадр для того, чтобы узел, получивший кадр, знал, от кого пришел кадр и кому нужно на него ответить.
  • Поле T (Type) содержит условный код протокола верхнего уровня, данные которого находятся в поле данных кадра, например шестнадцатеричное значение 08-00 соответствует проколу IP. Это поле требуется для поддержки интерфейсных функций мультиплексирования и демультиплексирования кадров при взаимодействии с протоколами верхних уровней.
  • Поле данных. Если длина пользовательских данных меньше 46 байт, то это поле дополняется до минимального размера байтами заполнения.
  • Поле контрольной последовательности кадра (Frame Check Sequence, FCS) состоит из 4 байт контрольной суммы. Это значение вычисляется по алгоритму CRC-32.

Кадр EtherNet DIX (II) не отражает разделения канального уровня EtherNet на уровень MAC и уровень LLC: его поля поддерживают функции обоих уровней, например интерфейсные функции поля T относятся у функциям уровня LLC, в то время как все остальные поля поддерживают функции уровня MAC.

Рассмотрим формат кадра EtherNet II на примере перехваченного пакета с помощью сетевого анализатора Wireshark

Обратите внимание, что так как MAC адрес состоит из кода производителя и номера интерфейса, то сетевой анализатор сразу преобразует код производителя в название фирмы-изготовителя.

Таким образом в технологии EtherNet в качестве адреса назначения и адреса получателя выступают MAC адреса.

Стандарты технологии Ethernet

Физические спецификации технологии Ethernet включают следующие среды передачи данных.

  • l0Base-5 - коаксиальный кабель диаметром 0,5 дюйма (1дм=2,54см), называемый «толстым» коаксиальным кабелем, с волновым сопротивлением 50Ом.
  • l0Base-2 - коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиальным кабелем, с волновым сопротивлением 50Ом.
  • l0Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP), категории 3,4,5.
  • l0Base-F - волоконно-оптический кабель.

Число 10 обозначает номинальную битовую скорость передачи данных стандарта, то есть 10Мбит/с а слово «Base» - метод передачи на одной базовой частоте. Последний символ обозначает тип кабеля.

Кабель используется как моноканал для всех станций, максимальная длина сегмента 500м. Станция подключаться к кабелю через приемопередатчик - трансивер. Трансивер соединяется с сетевым адаптером разъема DB-15 интерфейсным кабелем AUI. Требуется наличие терминаторов на каждом конце, для поглощения распространяющихся по кабелю сигналов.

Правила «5-4-3» для коаксиальных сетей:

Стандарт сетей на коаксиальном кабеле разрешает использование в сети не более 4 повторителей и, соответственно, не более 5 сегментов кабеля. При максимальной длине сегмента кабеля в 500 м это дает максимальную длину сети в 500*5=2500 м. Только 3 сегмента из 5 могут быть нагруженными, то есть такими, к которым подключаются конечные узлы. Между нагруженными сегментами должны быть ненагруженные сегменты.

l0Base-2

Кабель используется как моноканал для всех станций, максимальная длина сегмента 185 м. Для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор.

Также используется правило 5-4-3.

l0Base-T

Образует звездообразную топологию на основе концентратора, концентратор осуществляет функцию повторителя и образует единый моноканал, максимальная длина сегмента 100м. Конечные узлы соединяются с помощью двух витых пар. Одна пара для передачи данных от узла к концентратору - Tx, а другая для передачи данных от концентратора к узлу – Rx.
Правила «4-х хабов» для сетей на основе витой пары:
В стандарте сетей на витой паре определено максимально число концентраторов между любыми двумя станциями сети, а именно 4. Это правило носит название «правила 4-х хабов». Очевидно, что если между любыми двумя узлами сети не должно быть больше 4-х повторителей, то максимальный диаметр сети на основе витой пары составляет 5*100 = 500 м (максимальная длина сегмента 100м).

10Base-F

Функционально сеть Ethernet на оптическом кабеле состоит из тех же элементов, что и сеть стандарта 10Base-T

Стандарт FOIRL (Fiber Optic Inter-Repeater Link) первый стандарт комитета 802.3 для использования оптоволокна в сетях Ethernet. Мах длина сегмента 1000м, мах число хабов 4, при общей длине сети не более 2500 м.

Стандарт 10Base-FL незначительное улучшение стандарта FOIRL. Мах длина сегмента 2000 м. Максимальное число хабов 4,а максимальная длина сети - 2500 м.

Стандарт 10Base-FB предназначен только для соединения повторителей. Конечные узлы не могут использовать этот стандарт для присоединения к портам концентратора. Мах число хабов 5, мах длина одного сегмента 2000 м и максимальной длине сети 2740 м.

Таблица. Параметры спецификаций физического уровня для стандарта Ethernet

При рассмотрении правила «5-4-3» или «4-х хабов», в случае появления на пути распространения по кабелям воображаемого сигнала устройства типа «свич», расчет топологических ограничений начинается с нуля.

Пропускная способность сети Ethernet

Пропускная способность оценивается через количество кадров либо количество байт данных, передаваемых по сети за единицу времени. Если в сети не происходят коллизии, максимальная скорость передачи кадров минимального размера(64 байта) составляет 14881 кадров в секунду. При этом полезная пропускная способность для кадров Ethernet II – 5.48 Мбит/с.

Максимальная скорость передачи кадров максимального размера (1500 байт) составляет 813 кадров в секунду. Полезная пропускная способность при этом составит 9.76 Мбит/с.

сеть малоперспективной для решения технологических задач реального времени. Определенные проблемы иногда создает ограничение на максимальное поле данных, равное ~1500 байт .

Выбор длины поля данных диктовался уровнем ошибок (BER) для технологий, существовавших на момент разработки стандарта Ethernet .

Первоначально в качестве среды передачи данных использовался толстый коаксиальный кабель (Z = 50 Ом ), а подключение к нему выполнялось через специальные устройства (трансиверы). Позднее сети начали строиться на основе тонкого коаксиального кабеля. Но и такое решение было достаточно дорогим. Разработка дешевых широкополосных скрученных пар и соответствующих разъемов открыла перед Ethernet широкие перспективы. Те, кому приходилось работать с коаксиальными кабелями Ethernet , знают, что при подсоединении или отсоединении разъема можно получить болезненные удары тока. Для скрученных пар это исключено. Но и эта технология не вечна: скрученные пары мало-помалу уступают свои позиции оптоволоконным кабелям.

Для разного быстродействия Ethernet используются разные схемы кодирования, но алгоритм доступа и формат кадра остается неизменным, что гарантирует программную совместимость .

Однако наличие сотен миллионов интерфейсов Ethernet является серьезным препятствие замены стандарта на более совершенный.

16.1. Архитектура сетей Ethernet

Многие современные физические сетевые среды используют последовательный формат передачи информации. К этой разновидности относится и Ethernet . Фирма "Ксерокс" осуществила разработку протокола Ethernet в 1973 году, а в 1979 году объединение компаний Xerox, Intel и DEC (DIX) предоставило документ для стандартизации протокола в IEEE . Предложение с небольшими изменениями было принято комитетом 802.3 в 1983 году. Кадр Ethernet в современном стандарте имеет формат, показанный на рис. 16.1 .


Рис. 16.1.

Поле преамбула содержит 7 байт 0хАА и служит для стабилизации и синхронизации среды (чередующиеся сигналы CD1 и CD0 при завершающем CD0), далее следует поле SFD (Start Frame Delimiter = 0xAB), которое предназначено для выявления начала кадра. Поле EFD ( End Frame Delimiter) задает конец кадра. Поле контрольной суммы (CRC - Cyclic Redundancy Check ), так же как и преамбула, SFD и EFD, формируются и контролируются на аппаратном уровне. В некоторых модификациях протокола поле EFD не применяется. Пользователю доступны поля, начиная с адреса получателя и кончая полем информация , включительно. После CRC и EFD следует межпакетная пауза (IPG - InterPacket Gap – межпакетный интервал ) длиной 96 бит -тактов (9,6 мкс для 10-мегабитного Ethernet ) или более. Максимальный размер кадра равен 1518 байт (сюда не включены поля преамбулы, SFD и EFD). Интерфейс просматривает все пакеты, следующие по кабельному сегменту, к которому он подключен: ведь определить, корректен ли принятый пакет и кому он адресован, можно лишь приняв его целиком. Корректность пакета по CRC , по длине и кратности целому числу байт определяется после проверки адреса места назначения. Вероятность ошибки передачи при наличии CRC -контроля составляет ~2 -32 . При вычислении CRC используется образующий полином R(x) :

R(x) = x 32 + x 26 + x 23 + x 22 + x 16 + x 12 + x 11 + x 10 + x 8 + x 7 + x 5 + x 4 + x 2 + x + 1 .

Алгоритм вычисления CRC сводится к вычислению остатка от деления кода M(x) , характеризующего кадр , на образующий полином R(x) (Carrier Sense Multiple Access with Collision Detection Access Method and Physical Layer Specification. Published by IEEE 802.3-1985. Wiley-Interscience, John & Sons, Inc .). CRC представляет собой дополнение полученного остатка R(x) . CRC вычисляется сетевым интерфейсом и пересылается, начиная со старших разрядов.

Для пересылки данных в сети (быстродействием <1 Гбит/с) используется манчестерский код , который служит как для передачи данных, так и для синхронизации. Каждый бит -символ делится на две части, причем вторая часть всегда является инверсной по отношению к первой. В первой половине кодируемый сигнал представлен в логически дополнительном виде, а во второй – в обычном. Таким образом, сигнал логического 0 – CD0 характеризуется в первой половине уровнем HI (+0,85 В) , а во второй - LO (-0,85 В) . Соответственно сигнал CD1 характеризуется в первой половине бит -символа уровнем LO , а во второй – HI . Примеры форм сигналов при манчестерском кодировании представлены на рис. 16.2 . Верхний уровень сигнала соответствует +0,85 В , нижний - -0,85 В .


Рис. 16.2.

Минимальная длительность пакета в Ethernet определяется тем, что отправитель должен узнать о столкновении пакетов, если оно произошло, раньше, чем закончит передачу кадра. При этом длительность передаваемого пакета должна быть больше удвоенного максимального времени распространения кадра до самой удаленной точки сетевого сегмента.

Здесь подразумевается сегмент, образуемый кабелями и повторителями. Минимальная длительность кадра, равная 64 байтам, была определена для конфигураций 10 Мбит/c сети с четырьмя повторителями и 500-метровыми кабельными сегментами. Наибольший вклад в задержку вносят повторители (если они используются).

Если размер пакета меньше 64 байт , добавляются байты-заполнители, чтобы кадр в любом случае имел соответствующий размер. При приеме контролируется длина пакета, и если она превышает 1518 байт , пакет считается избыточным и обрабатываться не будет. Аналогичная судьба ждет кадры короче 64 байт . Любой пакет должен иметь длину, кратную 8 бит ( целое число байт ). Если в поле адресата содержатся все единицы, адрес считается широковещательным, то есть обращенным ко всем рабочим станциям локального сегмента сети.

При подключении ЭВМ к сети непосредственно с помощью переключателя ограничение на минимальную длину кадра теоретически снимается. Но работа с более короткими кадрами в этом случае станет возможной лишь при замене сетевого интерфейса на нестандартный (причем как у отправителя, так и получателя) !

Пакет Ethernet может нести от 46 до 1500 байт данных. Формат MAC -адреса получателя или отправителя показан на рис. 16.3 .


Рис. 16.3.

В верхней части рисунка указана длина полей адреса, в нижней – нумерация разрядов. Субполе I/G представляет собой флаг индивидуального или группового адреса. I/G=0 – указывает на то, что адрес является индивидуальным адресом сетевого объекта. I/G=1 характеризует адрес как мультикастинговый, в этом случае дальнейшее разбиение адреса на субполя теряет смысл. Мультикастинговые адреса позволяют обращаться сразу к нескольким станциям в пределах субсети. Субполе U/L является флагом универсального или местного управления (определяет механизм присвоения адреса сетевому интерфейсу). U/L=1 указывает на локальную адресацию ( адрес задан не производителем и ответственность за уникальность лежит на администраторе LAN или на пользователе). U/L=I/G=0 характерно для стандартных уникальных адресов, присваиваемых интерфейсу его изготовителем. Субполе OUI (Organizationally Unique Identifier ) позволяет определить производителя сетевого интерфейса. Каждому производителю присваивается один или несколько OUI . Размер субполя позволяет идентифицировать около 4 миллионов различных производителей. За корректность присвоения уникального адреса интерфейса (OUA – Organizationally Unique Address) несет ответственность производитель. Двух интерфейсов одного и того же производителя с идентичными номерами не должно существовать. Размер поля позволяет произвести примерно 16 миллионов интерфейсов. Комбинация OUI и OUA составляют UAA (Universally Administrated Address = IEEE - адрес ).

Если в поле кадра протокол/тип записан код менее 1500, то это поле характеризует длину кадра. В противном случае – это код протокола, пакет которого инкапсулирован в поле данных кадра.

Доступ к каналу Ethernet базируется на алгоритме CSMA/CD ( Carrier Sense Multiple Access with Collision Detection ). В Ethernet любая станция, подключенная к сети, может попытаться начать передачу пакета (кадра), если кабельный сегмент, к которому она подключена, свободен. Свободен ли сегмент, интерфейс определяет по отсутствию "несущей" в течение 96 бит -тактов. Так как первый бит пакета достигает остальных станций сети не одновременно, может случиться, что попытку передачи совершат две или более станций, тем более что задержки в повторителях и кабелях могут достигать достаточно больших величин. Такие совпадения попыток называются столкновениями . Столкновение ( коллизия ) распознается по наличию в канале сигнала, уровень которого соответствует работе двух или более трансиверов одновременно. При обнаружении столкновения станция прерывает передачу. Возобновление попытки может быть произведено после выдержки (кратной 51,2 мксек, но не превосходящей 52 мс), значение которой является псевдослучайной величиной и вычисляется каждой станцией независимо (T= RAND(0,2 min(N,10) ), где N – содержимое счетчика попыток, а число 10 - backoffLimit).

Обычно после столкновения время разбивается на ряд дискретных доменов с длиной, равной удвоенному времени распространения пакета в сегменте ( RTT ). Для максимально возможного RTT это время равно 512 бит -тактам. После первого столкновения каждая станция ждет 0 или 2 временного домена, прежде чем совершить еще одну попытку. После второго столкновения каждая из станций может выждать 0, 1, 2 или 3 временного домена и т.д. После n-го столкновения случайное число лежит в пределах 0 – (2 n – 1) . После 10 столкновений максимальное значение случайной выдержки перестает расти и остается на уровне 1023 .

Теперь рассмотрим поведение сети при наличии k станций, готовых к передаче. Если некоторая станция осуществляет передачу во время домена доступа с вероятностью p , вероятность того, что станция захватит канал, равна:

Достигает максимума при . при . Среднее число доменов на один доступ равно 1/А . Так как каждый домен имеет протяженность RTT , то средняя длительность времени доступа составит RTT/A . Если среднее время передачи кадра составляет P секунд, то при большом числе станций, готовых к передаче, эффективность канала составит P/(P+RTT/A) .

Таким образом, чем длиннее кабельный сегмент, тем больше среднее время доступа .

После выдержки при столкновении станция увеличивает на единицу счетчик попыток и начинает очередную передачу. Предельное число попыток по умолчанию равно 16; если число попыток исчерпано, связь прерывается и выдается соответствующее сообщение (о недоступности). При этом передаваемый кадр будет безвозвратно потерян.

Длинный кадр способствует "синхронизации" начала передачи пакетов несколькими станциями. Ведь за время передачи с заметной вероятностью может возникнуть необходимость передачи у двух и более станций. В момент, когда они обнаружат завершение пакета, будут включены таймеры IPG . К счастью, информация о завершении передачи пакета доходит до станций сегмента не одновременно. Но задержки, с которыми это связано, являются также причиной того, что факт начала передачи нового пакета одной из станций не становится известным немедленно. При вовлечении в столкновение нескольких станций они могут уведомить остальные станции об этом, послав сигнал "затора" ( JAM - не менее 32 бит ). Содержимое этих 32 бит не регламентируется. Такая схема делает менее вероятным повторное столкновение . Источником большого числа столкновений (помимо информационной перегрузки) может служить запредельная суммарная длина логического кабельного сегмента, слишком большое число повторителей, обрыв кабеля или неисправность одного из интерфейсов. Но сами

Слово Ethernet произошло от двух слов «ether» или эфир и «net» — сеть. То есть в переводе получится эфирная сеть.

Надо понимать, что Ethernet и Интернет – это совершенно разные вещи. Так, Ethernet – это технология, с помощью которой информация передается между компьютерами, связанными в локальную сеть. В тоже время Интернет – это глобальная система взаимодействующих друг с другом компьютерных сетей во всем мире. По сути, это всемирное информационное пространство, которое создано на базе протокола IP.

Ethernet технология используется в промышленности, офисах, сотовой связи, везде, где реализован обмен данными между машинами. Технология является своего рода заменителем радиовещания.

Используются специально разработанные стандарты для трансляции . Их называют протоколами. Это Fast и Gigabit Ethernet, и самый максимальный 10G Ethernet. Последний только развивается. При передаче информации по технологии 10 гигабитного интернета будет использоваться оптоволокно, в отличие от обычного гигабитного, где используется медный провод.

Немного истории

Эта технология появилась в 1973 году. Но сам стандарт был утвержден и разработан только в 1980. А в 1981 году был выпущен первый трансивер или приемопередатчик. В 1983 появился стандарт IEEE 802,3 технологии Ethernet.

Сетевой адаптер появился немногим позже, в 1982. В 1985 году был запущен Ethernet II, а уже через пять лет появилась всем знакомая технология 10 BaseT – витая пара. И последним витком истории технологии является 1995 год, когда был введен Fast Ethernet или современный 100 BaseT.

Как это работает

Работает технология Gigabit Ethernet в отличие от своих предшественников используя четырех-парный кабель. Этот провод является самым надежным и защищенным от всякого рода коллизий.

Передача данных кодируется не двумя уровнями, а четырьмя (00, 01, 10, 11). Получается, что в один кадр входит сразу два бита.

Кадром называется пакет из восьми заголовков, которые содержат в себе адреса получателя и отправителя, задачи для адаптеров для синхронной приемо-передачи информации, полей контрольных сумм и самой информации. Сейчас повсеместно используется кадр формата 802,3 технологии Изернет. Он и определяет все эти восемь заголовков.

Передача информации происходит следующим образом – информация в одном компьютере формируется в кадр, кодируется и через сетевой адаптер поступает к адаптеру другого устройства, где тот расшифровывает ее и посылает на экран пользователя в виде необходимых ему данных.

На рисунке показан двухуровневый сигнал , который использовался раньше и четырехуровневый – более современный.

Такая схема называется амплитудно-импульсным кодированием . Она создана для того, чтобы снизить частоту напряжения до 125 Мегагерц. А адаптер уже выбирает сам из общего канала свой переданный сигнал для получения сигнала от другого компьютера.

Ethernet – коллизии

Езернет коллизии – это ошибки, которые могут происходить во время передачи данных между персональными устройствами. Это слово происходит от английского collision – столкновение.

Чаще всего такие ошибки возникают потому, что одна станция начинает отправлять информацию раньше другой . То есть, пока другой компьютер отправляет данные и информация находится в середине пути, второе устройство начинает свою передачу. В результате пакеты информации сталкиваются не достигнув цели, устройства прослушав протоколы и обнаружив такие ошибки, прерывают передачу. Такие коллизии часто происходили, когда подключение происходило по коаксиальному Ethernet кабелю или по витой паре, состоящей из двух пар.

Сейчас при полном дуплексном режиме такое случается редко.

Как происходит подключение

Ранее подключение между компьютерами происходило с помощью коаксиальных кабелей, специальных переходников и трансиверов, если приходилось соединять толстые и тонкие кабеля. В случае повреждения хотя бы одного кабеля, вся сеть переставала работать.

Для передачи сигналов на данный момент используется кабель витая пара и коннекторы RJ45, которые подключаются к компьютерам и другим периферийным устройствам, или роутеру. Сейчас все более получает распространение оптоволоконный кабель. Здесь скорость разумеется в разы больше. Преимущество оптоволокна в его надежности и защите от всякого рода коллизий.

При подключении к сети на каждом компьютере устанавливается Ethernet контроллер или, как его еще называют, сетевая карта, которая выполняет своего рода шифрование и дешифрование полученной и отправляемой им информации. А портом Ethernet называется интерфейс входа на сетевой карте, который обычно называют lan порт.

Разновидности Ethernet

Существует несколько разновидностей сетевой технологии Ethernet, каждый из которых зависит от скорости и передающей среды. Ранние разновидности были следующими:

  • Xerox Ethernet со скорость 3 мегабита в секунду.
  • 1base5 со скоростью 1 Мб/с , но использовал витую пару.

Десяти мегабитный Езернет имел такие модификации:

  • 10base5 со скоростью 10 мегабит с использованием толстого коаксиального кабеля.
  • 10base2. Использовался тонкий кабель, но нужны были терминаторы или переходники на каждом конце.
  • 10baseT – использовалась витая пара, но максимальная длина провода могла составлять только 100 метров от маршрутизатора.

Быстрый (Fast) подразделяется на:

  • 100 baseT – скорость 100 Мб/с , использование витой пары. Длина – 100 метров от маршрутизатора.
  • 100base fx – скорость 100 Мб/с . Длина от 400 метров до 2 километров в полном дуплексе.

Гигабитный:

  • 1000 base lx – использование оптического волокна для передачи данных. Для одномодового – длина равняется 5 километрам, а для многомодового – 550 метров.
  • 1000 base sx – также используется оптическое волокно, а длина передачи данных составляет всего 550 метров.
  • 1000base T – для передачи информации используется витая пара стандарта 5е.

10 гигабитный:

  • 10gbase t — применяется витая пара категории 6е.
  • 10gbase lx4 – используется оптоволокно. Одномодовое – 10 километров. Многомодовое – 300 метров.
  • 10 gbase cx4 – нужен кабель из меди cx4 и коннекторы InfiniBand.

MAC-адрес

Мак адрес или адрес персонального устройства, который дается ему при изготовлении, является идентификатором, дающим определение той или иной компьютерной единице в сети.

Он позволяет идентифицировать хост и поставлять ему те или иные данные, информацию. Благодаря этому можно избежать тех или иных коллизий, которые могут возникнуть при передаче информации. Таким образом данные всегда строго поступят тому компьютеру, которому они назначались.

Найти его можно открыв свойства вашего сетевого адаптера. Он состоит из шестнадцатеричного набора цифр и букв. Он присваивается не только ПК, но и принтерам, маршрутизаторам, роутерам и другим устройствам, которые работают в локальной или всемирной сети.

Реалии современного мира таковы, что компьютер, еще совсем недавно абсолютно нормально воспринимавшийся отдельно от интернета и локальных сетей в качестве самостоятельного инструмента для работы и средства развлечения, сейчас кажется неполноценным. Еще бы, ведь развитие инструментов коллективной работы (повсеместное внедрение различных корпоративных информационных систем, таких как 1C:Предприятие, ПАРУС-Предприятие 8, SAP R/3 и множества других), и развлекательных средств (появление и развитие таких явлений, как форумы, блоги, социальные сети и многого другого) привело к тому, что компьютер, не включенный в сеть, не может полностью удовлетворить потребностей пользователя.

Более того, развитие современной IP-телефонии и средств бизнес-коммуникации (в первую очередь, это электронная почта), а также IM (таких как ICQ, Агент Mail.ru, Я.Онлайн, Google Talk, Jabber и многих других) превратили современные компьютеры из изолированных систем обработки информации в средство связи.

Однако для того, чтобы все эти сложные приложения могли успешно работать, необходимо построение компьютерных сетей. И в настоящее время основной технологией для этого является Ethernet (эзернет, от лат. aether – эфир).

Стандарт технологии Ethernet описывает проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде. В модели OSI (более крупного стандарта комплексного многоуровневого взаимодействия сетей передачи данных) Ethernet охватывает канальный уровень.

Таким образом, Ethernet определяет, как именно должна быть построена локальная сеть , какое необходимо использовать оборудование и как именно должна быть организована передача данных на уровне. Иногда можно встретить и другое название технологии Ethernet – IEEE 802.3. Этот принятый IEEE (Institute of Electrical and Electronics Engineers – Институт инженеров по электротехнике и радиоэлектронике, международная некоммерческая ассоциация специалистов в области техники) стандарт, который закрепляет на бумаге реализацию технологии Ethernet.

История появления технологии Ethernet

Технология Ethernet была разработана в корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда один из инженеров, Роберт Меткалф (Robert Metcalfe), составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks», которая подробно описывала новую технологию.

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com (в настоящее время – один из мировых лидеров производства телекоммуникационного оборудования). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, – которые вскоре были похоронены под накатывающимися волнами продукции Ethernet.

Развитие сетей Ethernet

Коаксиальный кабель

Однако было бы странно, если бы технология, придуманная в далеком 1979 г., дошла до нас без серьезных изменений. Оригинальные сети Ethernet использовали коаксиальный кабель для передачи данных и предусматривали передачу данных на скорости 3Мбит/с.

Следующим этапом в развитие сетей Ethernet стало увеличение скорости передачи данных. В раннем стандарте IEEE 802.3 (еще эта технология называется 10BASE5, или «Толстый Ethernet») описана технология передачи данных с помощью коаксиального кабеля с волновым сопротивлением 50 Ом (RG-8) , с максимальной длиной сегмента 500 метров.

В тоже время появляется стандарт IEEE 802.3a (другими названиями этих сетей Ethernet стали 10BASE2, или «Тонкий Ethernet»). В качестве среды для передачи данных использовался кабель RG-58, с максимальной длиной сегмента 200 метров. Компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте был нужен T-коннектор, а на кабеле должен был быть BNC-коннектор. Кроме того, требовалось наличие терминаторов на каждом конце кабеля. Именно эта технология получила большое коммерческое распространение и нашла себе широкое применение в сетях того времени.

Витая пара

Однако применение коаксиального кабеля имело массу недостатков. Поэтому было решено использовать в качестве среды передачи данных витую пару – кабель, представляющий собой одну или несколько пар изолированных проводников, скрученных между собой и покрытых общей пластиковой оболочкой.

Основными причинами перехода на витую пару были:

  • возможность работы в дуплексном режиме;
  • низкая стоимость витой пары;
  • более высокая надёжность сетей при неисправности в кабеле;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока, поэтому это свойство витой пары было особенно востребовано.

Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet. Поэтому, все сети на витой паре используют топологию «звезда», в то время как, сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

Таким образом, появился стандарт StarLAN 10, который в дальнейшем эволюционировал в стандарт IEEE 802.3i (также известен, как 10BASE-T). Для передачи данных в этом стандарте используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров. Этот стандарт так же получил коммерческое распространение, однако вскоре был заменен более быстрым потомком.

Fast Ethernet

Этот потомок получил общепринятое название Fast Ethernet, а технология – IEEE 802.3u (100BASE-TX). В этом стандарте задействована витая пара категории 5 и фактически используются только две неэкранированные пары проводников. Поддерживается дуплексная передача данных, расстояние между устройствами до 100 м. Именно этот стандарт получил в настоящее время максимальное распространение. Более того, упоминая сети Ethernet, чаще всего имеется в виду именно эта реализация этой технологии.

Gigabit Ethernet

Однако дальнейшее развитие сетей Ethernet не закончилось, и следующим его этапом стало появление стандарта, получившего название Gigabit Ethernet. Основное достижение – это увеличение скорости передачи данных до 1 Гбит/с.

Для этого была разработана технология IEEE 802.3ab (1000BASE-T), использующая витую пару категорий 5e. В передаче данных участвуют все 4 пары. Скорость передачи данных – 250 Мбит/с по одной паре.

Несмотря на то, что большинство существующих сетей используют Fast Ethernet, этот стандарт постепенно вытесняет более современный Gigabit Ethernet.

10 Gigabit Ethernet

Несмотря на то, что стандарт Gigabit Ethernet еще только начал свое внедрение, прогресс не стоит на месте, и уже разработан стандарт, который придет ему на смену. Как вы уже догадались, это 10 Gigabit Ethernet, со скоростью передачи данных до 10 Гбит/с.

Недавно принятая технология, IEEE 802.3an-2006 (10GBASE-T), использует экранированную витую пару и предназначена для передачи данных на расстояниях до 100 метров.

100 Gigabit Ethernet

Хотя 10 Gigabit Ethernet еще не получи широкого распространения, уже ведутся разработки следующего стандарта.

Оптоволокно

Помимо витой пары, стандарт Ethernet предусматривает также передачу данных через оптоволокно. Этот способ передачи данных позволяет строить существенно более длинные линии и используется для организации магистральных высокоскоростных каналов связи.

Немного о скорости передачи данных в сетях

Следует напомнить немного о скорости передачи данных в сетях. Первое, о чем нельзя забывать, – это разница между битами и байтами. Как известно, в одном бите содержится 8 байт, а это означает, что максимальная скорость передачи данных в стандарте Gigabit Ethernet составляет 1000/8=125 Мб/c.

Вторая особенность, это то, что когда мы говорим о скорости передачи данных, то мы часто имеем в виду скорость передачи полезной информации (например, скорость копирования файлов). Однако в контексте канального уровня OSI (о нем была речь в начале) всегда упоминается общая скорость передачи данных, которая не учитывает разбиения на полезную и служебную информацию. Трудно точно сказать заранее, какое может быть соотношение полезной и служебной информации (а от этого зависит скорость передачи полезной информации). Однако вряд ли служебной информации будет больше, чем полезной и поэтому для определения средней скорости передачи полезной информации можно просто поделить общую скорость в байтах в два раза. Таким образом, для Gigabit Ethernet это будет 62.5 Мб/c.

Кроме того, не стоит забывать о том, что максимальна общая скорость передачи информации зависит от возможностей всех участвующих в передаче устройств. Так, подобно тому, как скорость эскадры определяется скоростью самого медленного корабля, медленное устройство может сильно уменьшить скорость передачи данных. Поэтому для достижения наилучших результатов убедитесь, что все устройства-участники передачи данных способны работать на выбранных скоростях.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ

(технический университет)»

Дагестанский филиал

Кафедра Вычислительной техники

Курсовая работа

по дисциплине «Сети ЭВМ»

на тему:

"Локальная сеть Ethernet "

Выполнила: студентка 4го курса

специальности ВМКСиС

Исаева П. М.

Проверил: Фейламазова С. А.

Махачкала 2011г.

1. Введение…………………………………………….……………2

2. История Ethernet…………………………………………………3

3. Сети Ethernet…………………………………………………..…6

4. Серверы……………………………………………………….....11

5. Оборудование для локальных сетей…………………………..15

6. Топология сети……………………………………………….....16

7. Общие характеристики локальных вычислительных сетей....22

8. Ethernеt безопасность локальной сети………………………...26

9. Мосты и коммутации……………………………………...........29

10. Многообразия Ethernet…………………………………...32

11. Стандартизации…………………………………………...33

12. Заключение………………………………………………..34

13. Список используемой литературы………………………35

ВВЕДЕНИЕ

Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети мо­гут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Конец 90-х гг. прошлого века выявил явного лидера среди технологий локальных сетей - семейство Ethernet, в которое вошли классическая технология Ethernet 10 Мбит/с, а также Fast Ethernet 100 Мбит/с и Gigabit Ethernet 1000 Мбит/с. Простые алго­ритмы работы предопределили низкую стоимость оборудования Ethernet. Широкий диапазон иерархии скоростей позволяет рационально строить локальную сеть, применяя ту технологию семейства, которая в наибольшей степени отвеча­ет задачам предприятия и потребностям пользователей. Важно также, что все технологии Ethernet очень близки друг к другу по принципам работы, что упрощает обслуживание и интеграцию этих сетей.

Актуальность данной работы обусловлена важностью изучения локальных компьютерных систем для студентов технических специальностей как одного из краеугольных понятий предмета «Сети ЭВМ».

Целью работы является изучение характеристик и особенностей локальной сети Ethernet.

В соответствии с целью работы, были поставлены следующие задачи: определение понятия «локальная вычислительная сеть», характеристика основных способов построения сетей (топология сетей), краткая характеристика основных протоколов сети, которые обеспечивают согласованное взаимодействие пользователей в сети, изучение таких технологий локальных сетей как Ethernet, Token Ring, FDDI, Fast и Gigabit Ethernet.

История ETHERNET

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe ) составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks».

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров. Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, - которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель.

Причинами перехода на витую пару были:

Возможность работы в дуплексном режиме;

Низкая стоимость кабеля «витой пары»;

Более высокая надёжность сетей при неисправности в кабеле;

Большая помехозащищенность при использовании дифференциального сигнала;

Возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);

Отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на коаксиальном кабеле) - множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Ethernet является развивающейся технологии. Эволюция включили более высокой пропускной способности, улучшения доступа к среде методов, и изменения в физической среде. Ethernet превратилась в комплекс сетевых технологий, что сегодня лежит в основе большинства локальных сетей. Коаксиальный кабель был заменен с "точка-точка" связаны Ethernet ретрансляторов или переключателей, чтобы уменьшить затраты на установку, повысить надежность, и позволить "точка-точка управления и устранения неполадок. Есть много вариантов Ethernet в общем пользовании.

Ethernet станций общаются, посылая друг другу пакеты данных, блоки данных, которые индивидуально отправлено и доставлено. Как и в других IEEE 802 LAN, Ethernet каждой станции дается 48-битный MAC-адрес. MAC-адреса используются для определения и назначения и источника каждого пакета данных. Карты сетевого интерфейса (NIC) или фишки обычно не принимают пакеты, адресованные в другие места Ethernet. Адаптеры приходят запрограммированы глобально уникальный адрес. Несмотря на значительные изменения в Ethernet от толщины коаксиальный кабель шины работает в 10 Мбит / с для точка-точка " работает на 1 Гбит / с и за ее пределами, всех поколений Ethernet (за исключением ранней экспериментальной версии) использовать тот же формат кадра (и, следовательно, тот же интерфейс для высших слоев), и могут быть легко между собой через мост.

В связи с повсеместность Ethernet, постоянно сокращается стоимость оборудования, необходимого для ее поддержки, и ограниченном пространстве панели необходимой витая пара Ethernet , большинство производителей теперь строить функциональные Ethernet карту непосредственно в компьютер плат, исключая необходимость установка отдельной сетевой плате.

Сети Ethernet

При создании локальных сетей чаще всего используется аппаратная архитектура, называемая Ethernet В простейшем виде сеть Ethernet состоит из одного кабеля, к которому при помощи разъемов, коннекторов и трансиверов подключаются все сетевые узлы. Простая сеть Ethernet обходится относительно недорого, что в сочетании со скоростью передачи в 10, 100 и даже 1000 Мбит/с в значительной степени способствует ее популярности.

Существует три разновидности Ethernet, условно называемые толстый, тонкий и витая пара. При использовании тонкого и толстого Ethernet данные передаются через коаксиальные кабели, отличающиеся по диаметру и способу подключения к компьютеру. Для подключения компьютера к тонкому кабелю Ethernet используется специальный коннектор Т-образной формы (Т-коннектор), который вставляется в разрыв кабеля и подключается к разъему на задней стенке компьютера. Чтобы подключить компьютер к толстому кабелю Ethernet, необходимо просверлить в кабеле небольшое отверстие и при помощи специального прокалывающего приспособления (vampire tap) подсоединить к нему вспомогательный трансиверный кабель. К трансиверному кабелю можно подсоединить один или несколько сетевых узлов. Тонкий кабель Ethernet может достигать 200 метров в длину, а толстый - 500 метров. Эти разновидности Ethernet называют 10base-2 и 10base-5 соответственно. Связка base происходит от термина «baseband modulations», означающего, что данные передаются непосредственно в кабель, минуя модем. Число в начале определяет скорость в Мбит/с, а число на конце - максимальную длину кабеля в сотнях метров. При использовании витой пары используется кабель, состоящий из двух пар медных проводов. Обычно при этом требуется установить дополнительное устройство, называемое активным концентратором (active hub). Витую пару обозначают термином 10base-T (Т - twisted pair, то есть «витая пара»). Для витых пар со скоростью передачи 100 Мбит/с используется обозначение 100base-T.



Рекомендуем почитать

Наверх