Биологические мембраны и ионные каналы. Ионные каналы, их строение. Классификация ионных каналов. Натриевый и калиевый каналы

Для Windows 14.08.2019
Для Windows

Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.

Строение и функции клеточных мембран.

1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.

2. Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3. Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4. Высвобождение нейромедиаторов в синаптических окончаниях.

Современными методами электронной микроскопии была определена толщина клеточных мембран (6-12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.


Электрические характеристики мембран:

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающихщих на клеточных мембранах.

Проводимость (g) - величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.

Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны.

Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.

Строение и функции ионных каналов . Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал.

Все ионные каналы подразделяются на следующие группы:

  1. По избирательности:

a) Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов.

b) Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество.

  1. По характеру пропускаемых ионов:

a) калиевые

b) натриевые

c) кальцевые

d) хлорные

  1. По скорости инактивации, т.е. закрывания:

a) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

b) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

a) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны.

b) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов, гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1.Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП.(Рис).

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (м) и инактивационных (h) ворот:

1.Закрытом, когда активационные закрыты, а инактивационные открыты.

2.Активированном, и те и другие ворота открыты.

3.Инактивированном, активационные ворота открыты, а инактивационные закрыты

Функции ионных каналов:

1. Калиевый (в покое) – генерация потенциала покоя

2. Натриевый – генерация потенциала действия

3. Кальциевый - генерация медленных действий

4. Калиевый (задержанное выпрямление) – обеспечение реполяризации

5. Калиевый кальций-активируемый – ограничение деполяризации, обусловленной током Са+2

Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp». Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется.

Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp». Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.

Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие h-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов.

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы. Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца. Электрогенез кардиомиоцитов рассматривается в главе 7. Электрофизиологические характеристики клеточных мембран исследуют с помощью специальных методов.

  • 2 Принцип структурности. У каждого рефлекса есть свой морфологический субстрат, своя рефлекторная дуга.
  • 26. Рефлексы…
  • I. Безусловные рефлексы
  • II. Условные рефлексы
  • 29. Вегетативная нервная система…
  • Влияние отделов вегетативной нервной системы на органы
  • Вегетативные рефлексы
  • 32. Гуморальная регуляция функций…
  • Местная регуляция (1 уровень регуляции)
  • Региональная (органная) регуляция (2 уровень регуляции)
  • 1. Неспецифические метаболиты,
  • 2. Специфические метаболиты (тканевые гормоны). Система тканевых гормонов
  • 33. Гуморальная регуляция функций. Межсистемный уровень…
  • 1. Истинные гормоны.
  • 2. Парагормоны.
  • 1. Водорастворимые
  • Взаимодействие гормонов и парагормонов с клетками-мишенями
  • Различия нервной и гуморальной регуляции
  • 35. Гипоталамо-гипофизарная система…
  • 36. Передняя, задняя и промежуточная доли гипофиза…
  • 37. Щитовидная железа…
  • 38. Физиология надпочечников…
  • 1) Минералокортикоиды 2) глюкокортикоиды 3) половые гормоны
  • Гормоны мозгового вещества надпочечников
  • 39. Эндокринная функция поджелудочной железы…
  • Действие инсулина на белковый обмен
  • Влияние инсулина на жировой обмен
  • Регуляция инкреции инсулина
  • Эффекты глюкагона
  • Инсулиновый рецептор
  • 40. Женские половые железы…
  • 41. Мужские половые железы…
  • 42. Эндокринная функция эпифиза, тимуса, почек и сердца…
  • 43. Понятие о крови…
  • Состав плазмы крови
  • Электролитный состав плазмы/ммоль/л/
  • 44. Общая характеристика форменных элементов крови и их роль в организме. Гемопоэз, механизм и регуляция образования форменных элементов крови. Лейкоциты…
  • Клинико-физиологическая оценка содержания лейкоцитов
  • Анализ Лейкоцитарной формулы:
  • 45. Виды иммунитета…
  • Врожденный иммунитет Неспецифические механизмы защиты
  • 1. Вещества, обладающие антибактериальной и ан­тивирусной активностью (лизоцим, интерфероны).
  • 2. Система комплимента: система белков, разру­шающая целостность мембран клеток.
  • 3. Гранулоциты.
  • 1. Хемотаксис.
  • 2. Прикрепление чужеродного объекта к фагоциту.
  • 3. Поглощение.
  • 4. Лизис.
  • Главный комплекс гистосовместимости
  • 46. Эритроциты…
  • Эритрон
  • Эритрокинетика
  • Клинико-физиологическая оценка эритроцитов
  • Гемоглобин
  • Соединения гемоглобина:
  • Виды гемолиза
  • Осмотическая резистентность эритроцитов
  • Скорость оседания эритроцитов
  • 47. Понятие о системах групп крови…
  • 48. Понятие о гемостазе…
  • 1. Сосудистый компонент:
  • Тромбоциты
  • Функции тромбоцитов:
  • 49. Процесс свертывания крови… Гемокоагуляция (собственно свертывание крови)
  • 50. Противосвертывающие факторы…
  • Фибринолиз
  • 51. Физиологические свойства сердечной мышцы…
  • Особенности возбуждения сердечной мышцы
  • 52. Сердце, его гемодинамические функции...
  • Давление в полостях сердца в различные фазы сердечного цикла (мм рт. Ст.).
  • 53. Оценка нагнетательной (насосной) функции сердца… Сердечный цикл
  • 3. Фаза дополнительного наполнения желудочков - 0,1 сек.
  • 54. Механические проявления сердечной деятельности…
  • 55. Звуковые проявления сердечной деятельности…
  • 1. Тоны. 2. Шумы.
  • I тон соответствует зубцу r на экг.
  • 56. Электрические проявления сердечной деятельности…
  • Холтеровское /суточное/ мониторирование экг.
  • 57. Функциональная классификация кровеносных сосудов…
  • 2. Кровеносные сосуды
  • В системе кровообращения можно выделить три области
  • 2. Область транскапиллярного обмена
  • Общая характеристика движения крови по сосудам
  • 58. Сосудистый тонус…
  • 1. Сосудорасширяющие:
  • 1. Импульсы от рефлексогенных зон:
  • 2. Кортикальные влияния.
  • 59. Системная гемодинамика…
  • 60. Методы оценки основных показателей гемодинамики…
  • 1. Ультразвуковая допплерография (уздг) позво­ляет:
  • 2. Метод электромагнитной флоурометрии (расходометрия).
  • 3. Определение времени кругооборота крови.
  • 62. Регуляция системной гемодинамики…
  • 63. Микроциркуляция…
  • 64. Особенности гемодинамики в различных сосудистых ре­гионах. Легочное кровообращение…
  • 2. Важнейшие из гуморальных регуляторов
  • 65. Особенности гемодинамики в различных сосудистых ре­гионах. Почечный кровоток… Кровообращение в почках
  • Кровообращение скелетных мышц
  • Регуляция Гуморальная регуляция
  • Дистантная регуляция
  • Особенности кровообращения в нижних конечностях
  • 66. Лимфатическая система…
  • 67. Регуляция работы сердца…
  • 1.Основные рефлексогенные зоны сосудистого русла:
  • 2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечно­сосудистой системы:
  • 1. Ацетилхолин.
  • 2. Адреналин.
  • 68. Дыхание…
  • Взаимодействие грудной клетки и легких
  • При вдохе преодолевается ряд сил:
  • 69. Биомеханика спокойного вдоха и выдоха… Биомеханика спокойного вдоха
  • Биомеханика спокойного выдоха
  • Биомеханика форсированного вдоха
  • Биомеханика форсированного выдоха
  • 70. Клинико-физиологическая оценка внешнего дыхания. Ле­гочные объемы…
  • Легочные объёмы и ёмкости
  • Методы измерения легочных объемов
  • 3. Определение остаточного объема
  • 71. Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели...
  • 72. Газообмен в легких и тканях…
  • 73. Транспорт газов кровью…
  • 74. Регуляция дыхания…
  • 75. Механизмы перестройки внешнего дыхания…
  • 2.4. Раздражение рецепторов скелетных мышц.
  • 5.Участие коры головного мозга в регуляции дыхания.
  • 76. Пищеварение и его значение…
  • 77. Виды моторики пищеварительного тракта…
  • 1. Тонус гладкой мускулатуры пищеварительной трубки.
  • 2. Перистальтика гладкой мускулатуры пищеварительной трубки.
  • 3. Ритмическая сегментация гладкой мускулатуры пищева­рительной трубки.
  • 4. Маятникообразные движения гладкой мускулатуры пи­щеварительной трубки.
  • 5. Антиперистальтика гладкой мускулатуры пищевари­тельной трубки.
  • 6. Закрытие и открытие сфинктеров пищеварительной трубки.
  • 78. Пищеварение в полости рта…
  • Регуляция слюноотделения
  • 79. Пищеварении в желудке… Секреция в желудке
  • Моторная функция желудка
  • В моторике желудка выделяют в основном 4 вида:1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация. 4. Маятникообразные движения
  • Механизм перехода пищи из желудка в 12-перстную кишку
  • 80. Пищеварение в 12-перстной кишке…
  • Сок поджелудочной железы
  • Карбогидразы поджелудочного сока
  • Регуляция секреции поджелудочной железы
  • 81. Роль печени в пищеварении… Желчь
  • Моторная функция желчных путей
  • 82. Состав и свойства кишечного сока… Сок тонкой кишки
  • Сок толстой кишки
  • Регуляция секреции в тонком кишечнике
  • Моторная функция тонкой кишки
  • Пристеночное (мембранное) пищеварение
  • 83. Всасывание…
  • 84. Принципы регуляции деятельности пищеварительной сис­темы…
  • 85. Пластическая и энергетическая роль углеводов, жиров и белков…
  • 86. Энергообмен…
  • Основной обмен
  • Рабочий обмен
  • 1. Прямая калориметрия.
  • 87. Тепловой обмен…
  • Температура тела человека
  • Терморегуляция
  • 1) Центральные
  • 2) Эффекторные
  • 88. Гомеостатические функции почек…
  • 89. Выделительная функция почек. Механизмы образования первичной мочи…
  • 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
  • Клубочковая фильтрация.
  • 90. Выделительная функция почек. Образование конечной (вторичной) мочи…
  • 3. Некоторые соли выводятся в концентрациях близких или равных таковым в крови.
  • Клинико-физиологическая оценка деятельности почек
  • 2.Определение удельного веса мочи. Удельный вес (или плотность) мочи колеблется в пределах от 1,014 до 1, 025.
  • 4.Определение мочевины, мочевой кислоты, общего азота и креатинина.
  • 91. Регуляция функции почек…
  • 1. Нервная. 2. Гуморальная (наиболее выраженная).
  • 92. Водный баланс…
  • 1. Водный баланс - равенство объемов выделяющейся из организма и поступающей за сутки воды. 2. Электролитный баланс - (Na, к, Са и т.Д.)
  • Водный баланс
  • 100 Г жира - 100 мл н2о,100 г белка - 40 мл н2о,100 г углевод. - 55 мл н2о. Эндогенной н2о мало для нужд организма, особенно для выведения шлаков.
  • 1. Внутриклеточное пространство (2/3 общей воды)
  • 2. Внеклеточное пространство (1/3)
  • 3. Вода полостей тела (при патологии - в брюшной, плевральной)
  • 2.За счет оптимального распределения воды между водными пространствами и секторами организма.
  • 94. Ретикулярная формация…
  • Гипоталямус
  • Передний мозг
  • 95. Кора больших полушарий…
  • 2. Раздражение отдельных зон коры больших полушарий.
  • 3. Регистрация биопотенциалов отдельных нейронов и суммарной их активности.
  • Таламолобная система представлена 9, 10, 11, 12, 13, 14 полями. Основная роль сводится к инициации базовых механизмов формирования функциональных систем целенаправленных поведенческих актов. Она:
  • Обеспечивает взаимоувязку доминирующей мотивации с возбуждениями, поступившими в кору от сенсорных систем;
  • Обеспечивает прогнозирование ожидаемого результата действия;
  • Обеспечивает сравнение достигнутых конечных результатов действия с ожидаемым результатом (прогнозом).
  • 96. Межполушарные взаимоотношения…
  • Функциональная асимметрия Выделяют следующие виды межполушарной функциональной асимметрии мозга: 1) психическую, 2) сенсорную, 3) моторную. Проявляться это будет в следующем:
  • Парность в деятельности коры больших полушарий
  • 97. Анализаторы…
  • Общие свойства анализаторов
  • 4. Дифференцировка анализатора по вертикали и горизонтали:
  • 2. Проводниковый отдел.
  • 98. Зрительный анализатор…
  • 1) Ядрах верхних бугров четверохолмья,
  • 100. Биологическое значение боли…
  • Нейрохимические механизмы ноцицепции
  • Антиноцицептивная (обезболивающая) система мозга
  • Нейрохимические механизмы антиноцицептивной системы
  • Взаимоотношения ноцицептивной и антиноцицептивной систем
  • 101. Условные рефлексы…
  • Биологический смысл условного рефлекса
  • Периоды образования условного рефлекса
  • 102. Корковое торможение…
  • Условный тормоз
  • Сон и бодрствование
  • 103. I и II сигнальные системы…
  • 1. Художественный тип - мыслит образами – преобладает чувственное /образное/ восприятие мира.
  • 2.Мыслительный тип - характерно абстрактное мышление
  • 104. Потребности и мотивации…
  • Потребность сохранения вида
  • 105. Эмоции…
  • Теории формирования эмоций
  • Положительные эмоции
  • 106. Память…
  • Процессы памяти включают 4 стадии
  • 1.Восприятие, запечатление и запоминание.
  • Теории памяти
  • 12. Ионные каналы…

    Ионный канал состоит из нескольких субъединиц, их ко­личество в отдельном ионном канале составляет от 3 до 12 субъединиц. По своей организации субъединицы, входящие в канал, могут быть гомологичными (однотипными), ряд кана­лов сформирован разнотипными субъединицами.

    Каждая из субъединиц состоит из нескольких (три и бо­лее) трансмембранных сегментов (неполярные части, закру­ченные в α-спирали), из вне- и внутриклеточных петель и концевых участков доменов (представлены полярными облас­тями молекул, формирующих домен и выступающих за преде­лы билипидного слоя мембраны).

    Каждый из трансмембранных сегментов, вне- и внутрик­леточных петель и концевых участков доменов выполняет свою функцию.

    Так, трансмембранный сегмент 2, организованный в виде α-спирали, определяет селективность канала.

    Концевые участки домена выступают в качестве сенсоров к вне- и внутриклеточным лигандам, а один из трансмембран­ных сегментов играет роль потенциалзависимого сенсора.

    Третьи трансмембранные сегменты в субъединице от­ветственны за работу воротной системы каналов и т.д.

    Ионные каналы работают по механизму облегченной диффузии. Движение по ним ионов при активации каналов идет по градиенту концентрации. Скорость перемещения через мембрану составляет 10 ионов в секунду.

    Специфичность ионных каналов.

    Большая часть из них относятся к селективным, т.е. кана­лам, пропускающим только один вид ионов (натриевые кана­лы, калиевые каналы, кальциевые каналы, анионные каналы).

    Селективность канала.

    Селективность канала определяется наличием избира­тельного фильтра.

    Его роль выполняет начальный участок канала, который имеет определенный заряд, конфигурацию и размер (диа­метр), что позволяет пройти в канал только определенному виду ионов.

    Некоторые из ионных каналов неселективные, например, каналы "утечки". Это такие каналы мембраны, по которым в состоянии покоя по градиенту концентрации из клетки выхо­дят ионы К + , однако по этим каналам в клетку в состоянии по­коя по градиенту концентрации входит и небольшое количество ионовNa + .

    Сенсор ионного канала.

    Сенсор ионного канала - чувствительная часть канала, ко­торая воспринимает сигналы, природа которых может быть различна.

    На этой основе выделяют:

      потенциалзависимые ионные каналы;

      рецепторуправляемые ионные каналы;

      лигандуправляемые (лигандзависимые);

      механоуправляемые (механозависимые).

    Каналы, имеющие сенсор, называются управляемыми. У некоторых каналов сенсор отсутствует. Такие каналы называ­ют неуправляемыми.

    Воротная система ионного канала.

    У канала есть ворота, которые закрыты в состоянии покоя и открываются при воздействии сигнала. У некоторых каналов выделяют два вида ворот: активационные (m-ворота) и инактивационные (h-ворота).

    Выделяют три состояния ионных каналов:

      состояние покоя, когда ворота закрыты и канал недо­ступен для ионов;

      состояние активации, когда воротная система открыта и ионы перемещается через мембрану по каналу;

      состояние инактивации, когда канал закрыт и не отве­чает на стимулы.

    Скорость проведения (проводимость).

    Бывают быстрые и медленные каналы. Каналы “ утечки ” - медленные, натриевые каналы в нейронах - быстрые.

    В мембране любой клетки имеется большой набор разно­образных (по скорости) ионных каналов, от активации кото­рых зависит функциональное состояние клеток.

    Потенциалуправляемые каналы.

    Потенциалуправляемый канал состоит из:

      поры, заполненной водой;

    • селективного фильтра;

      активационных и инактивационных ворот;

      сенсора напряжения.

    Диаметр канала значительно больше диаметра иона, в зоне селективного фильтра он сужается до атомарных размеров, это и обеспечивает выполнение данным участком канала функции селективного фильтра.

    Открытие и закрытие воротного механизма возникает при изменении мембранного потенциала, причем открываются во­рота при одном значении мембранного потенциала, а закрыва­ются при другом уровне потенциала мембраны.

    Считается, что изменение электрического поля мембраны воспринимается специальным участком стенки канала, кото­рый получил название сенсор напряжения.

    Изменение его состояния, обусловленное изменением уровня мембранного потенциала, вызывает конформацию бел­ковых молекул, формирующих канал, и, как следствие, ведет к открытию или закрытию ворот ионного канала.

    Каналы (натриевые, кальциевые, калиевые) имеет четыре гомологичных домена - субъединицы (I,II,III,IV). Домен (на примере натриевых каналов) состоит из шести трансмембран­ных сегментов, организованных в виде а-спиралей, каждый из которых играет свою роль.

    Так, трансмембранный сегмент 5 играет роль поры, транс­мембранный сегмент 4 сенсора, реагирующего на изменение потенциала мембраны, другие трансмембранные сегменты от­ветственны за активацию и инактивацию воротной системы канала. До конца роль отдельных трансмембранных сегментов и субъединиц не изучена.

    Натриевые каналы (внутренний диаметр 0,55 нм) имеют­ся в клетках возбудимых тканей. Плотность на 1 мкм 2 в раз­личных тканях не одинакова.

    Так, в немиелиновых нервных волокнах она составляет 50-200 каналов, а в миелиновых нервных волокнах (перехваты Ранвье) - 13000 на 1 мкм 2 площади мембраны. В состоянии по­коя они закрыты. Мембранный потенциал составляет 70-80 мВ.

    Воздействие раздражителя изменяет мембранный потен­циал и активирует потенциалзависимый натриевый канал.

    Он активируется при смещении потенциала мембраны от уровня потенциала покоя в направлении критического уровня деполяризации.

    Сильный натриевый ток обеспечивает смещение потенци­ала мембраны до критического уровня деполяризации (КУД).

    Изменение мембранного потенциала до -50-40 мВ, т.е. до уровня критического уровня деполяризации, вызывает откры­тие других потенциалзависимых № + -каналов, через которые осуществляется входящий натриевый ток, формирующий "пик" потенциала действия.

    Ионы натрия по градиенту концентрации и химическому градиенту по каналу перемещаются в клетку, формируя так называемый входящий натриевый ток, что приводит к даль­нейшему быстрому развитию процесса деполяризации.

    Мембранный потенциал изменяет знак на противополож­ный +10-20 мв. Положительный мембранный потенциал вы­зывает закрытие натриевых каналов, их инактивацию.

    Потенциалзависимые № + -каналы играют ведущую роль в формировании потенциала действия, т.е. процесса возбужде­ния в клетке.

    Ионы кальция затрудняют открытие потенциалзависимых натриевых каналов, изменяя параметры реагирования.

    К + -каналы

    Калиевые каналы (внутренний диаметр 0,30 нм) имеются в цитоплазматических мембранах, обнаружено значительное количество каналов "утечки" калия из клетки.

    В состоянии покоя они открыты. Через них в состоянии покоя происходит "утечка" калия из клетки по градиенту кон­центрации и электрохимическому градиенту.

    Этот процесс обозначается как выходящий калиевый ток, который приводит к формированию потенциала покоя мемб­раны (-70-80 мВ). Эти калиевые каналы можно лишь условно отнести к потенциалзависимым.

    При изменении мембранного потенциала в процессе депо­ляризации происходит инактивация калиевого тока.

    При реполяризации через потенциалзависимые каналы формируется входящий К + ток, который получил название К + ток задержанного выпрямления.

    Еще один тип потенциалзависимых К + -каналов. По ним возникает быстрый выходящий калиевый ток в подпороговой области мембранного потенциала (положительный следовой потенциал). Инактивация канала происходит за счет следовой гиперполяризации.

    Другой тип потенциалзависимых калиевых каналов акти­вируется только после предварительной гиперполяризации, он формирует быстрый транзиторный калиевый ток, который быстро инактивируется.

    Ионы кальция облегчают открытие потенциалзависимых калиевых каналов, изменяя параметры реагирования.

    Са + -каналы.

    Потенциалуправляемые каналы вносят существенный вклад как в регуляцию входа кальция в цитоплазму, так и в электрогенез.

    Белки, образующие кальциевые каналы, состоят из пяти субъединиц (al,a2,b,g,d).

    Главная субъединица alформирует собственно канал и содержит места связывания для различных модуляторов каль­циевых каналов.

    Было обнаружено несколько структурно различных alсубъединиц кальциевых каналов в нервных клетках млекопи­тающих (обозначенных как А, В, С,Dи Е).

    Функционально кальциевые каналы различных типов от­личаются друг от друга активацией, кинетикой, проводимос­тью одиночного канала и фармакологией.

    В клетках описано до шести типов потенциалуправляемых кальциевых каналов (Т - ,L - ,N - ,P - ,Q - ,R - каналы).

    Активность потенциалуправляемых каналов плазмалеммы регулируется различными внутриклеточными вторич­ными посредниками и мембранно-связанными G-белками.

    Кальциевые потенциалзависимые каналы обнаружены в большом количестве в цитоплазматических мембранах нейро­нов, миоцитах гладких, поперечно-полосатых и сердечных мышц и в мембранах эндоплазматического ретикулума.

    Са 2+ -каналы СПР являются олигомерными протеинами, встроенными в мембрану СПР.

    Са 2+ -управляемые Са 2+ -каналы СПР.

    Эти кальциевые каналы были впервые выделены из ске­летных и сердечных мышц.

    Оказалось, что Са 2+ -каналы СПР в этих мышечных тканях имеют молекулярные различия и кодируются различными ге­нами.

    Са 2+ -каналы СПР в сердечных мышцах непосредственно связаны с высокопороговыми Са 2+ -каналами плазмалеммы (L-тип) через кальцийсвязывающие белки, образуя, таким обра­зом, функционально активную структуру - "триаду".

    В скелетных мышцах деполяризация плазмалеммы прямо активирует освобождение Са 2+ из эндоплазматического ретикулума благодаря тому, что Са 2+ -каналы плазмалеммы служат потенциалчувствительными передатчиками активирующего сигнала непосредственно Са 2+ -каналам СПР через связываю­щие белки.

    Таким образом, Са 2+ -депо скелетных мышц обладают ме­ханизмом освобождения Са 2+ , вызываемым деполяризацией (RyRl-тип).

    В отличие от скелетных мышц, эндоплазматические Са 2+ -каналы кардиомиоцитов не связаны с плазмалеммой, и для стимуляции освобождения Са 2+ из депо требуется увели­чение концентрации цитозольного кальция (RyR2-тип).

    Кроме этих двух типов Са 2+ -активируемых Са 2ч -каналов, недавно был идентифицирован третий тип Са 2+ -каналов СПР (RyR3-тип), который еще изучен не достаточно.

    Для всех кальциевых каналов характерна медленная акти­вация и медленная инактивация по сравнению с натриевыми каналами.

    При деполяризации мышечной клетки (выпячивания цитоплазматических мембран - Т-трубочки подходят к мембра­нам эндоплазматического ретикулума) происходит потенциалзависимое открытие кальциевых каналов мембран саркоплазматического ретикулума.

    Так как, с одной стороны, концентрация кальция в СПР велика (депо кальция), а концентрация кальция в цитоплазме низка, а с другой - площадь мембраны СПР и плотность каль­циевых каналов в ней велики, то уровень кальция в цитоплаз­ме увеличивается в 100 раз.

    Такое увеличение концентрации кальция инициирует процесс сокращения миофибрилл.

    Кальциевые каналы в кардиомиоцитах находятся в цитоплазматической мембране и относятся к кальциевым каналам L-типа.

    Активируются при потенциале мембраны +20-40 мВ, фор­мируют входящий кальциевый ток. Длительно находятся в ак­тивированном состоянии, формируют "плато" потенциала действия кардиомиоцита.

    Анионные каналы.

    Наибольшее количество в мембране клетки каналов для хлора. В клетке меньше ионов хлора по сравнению с межкле­точным окружением. Поэтому при открытии каналов хлор входит в клетку по градиенту концентрации и электрохими­ческому градиенту.

    Количество каналов для НСО 3 не столь велико, объем транспорта этого аниона через каналы существенно меньше.

    Ионные обменники.

    В мембране имеются ионные обменники (белки-перенос­чики), которые осуществляют облегченную диффузию ионов, т.е. ускоренное сопряженное перемещение ионов через биомембрану по градиенту концентрации, такие процессы явля­ются АТФ-независимыми.

    Наиболее известны Na + -H + ,K + -H + ,Ca 2+ -H + обменники, а также обменники, обеспечивающие обмен катионов на ани­оныNa + -HCO- 3 , 2CI-Са 2+ и обменники, обеспечивающие обмен катиона на катион (Na + -Са 2+) или аниона на анион (Сl- НСOз).

    Рецепторуправляемые ионные каналы.

    Лигандуправляемые (лигандзависимые) ионные каналы.

    Лигандуправляемые ионные каналы являются подвидом рецепторуправляемых каналов и всегда совмещены с рецепто­ром к биологически активному веществу (БАВ).

    Рецепторы рассматриваемых каналов относятся к ионотропному типу мембранных рецепторов, при взаимодействии которых с БАВ (лиганды) возникают быстропротекающие ре­акции.

    Лигандуправляемый ионный канал состоит из:

      поры, заполненной водой;

      селективного фильтра;

      активационных ворот;

      центра связывания лиганда (рецептор). Высокоэнергетически активное БАВ обладает высоким

    сродством (аффинитетом) к определенному виду рецепторов. При активации ионных каналов происходит перемещение оп­ределенных ионов по градиенту концентрации и электрохими­ческому градиенту.

      В рецепторе мембраны центр связывания лиганда может быть доступен для лиганда с наружной поверхности мембраны.

    В этом случае в качестве лиганда выступают гормоны и парагормоны, ионы.

    Так, при активации N-холинорецепторов активируются натриевые каналы.

    Кальциевую проницаемость инициируют нейрональные ацетилхолинуправляемые, глютаматуправляемые (NMDAи АМРА / каинаттипы) рецепторы и пурино-рецепторы.

    ГАМК А -рецепторы сопряжены с ионными хлорными каналами, с хлорными каналами сопряжены и глицино­вые рецепторы.

      В рецепторе мембраны центр связывания лиганда может быть доступен для лигандов с внутренней поверхности мембраны.

    В этом случае в качестве лиганда выступают протеинкиназы, активированные вторыми посредниками, или сами вторые посредники.

    Так, протеинкиназы А, С, G, фосфорилируя белки катионных каналов, изменяют их проницаемость.

    Механоуправляемые ионные каналы.

    Механоуправляемые ионные каналы изменяют свою про­водимость для ионов либо за счет изменения натяжения билипидного слоя, либо через цитоскелет клетки. Множество механоуправляемых каналов сопряжено с механорецепторами, они существуют в слуховых клетках, мышечных верете­нах, сосудистом эндотелии.

    Все механоуправляемые каналы делятся на две группы:

      активирующиеся при растяжении клеток (SAC);

      инактивирующиеся при растяжении клеток (SIC).

    У механоуправляемых каналов имеются все основные ка­нальные признаки:

      пора, заполненная водой;

      воротный механизм;

      сенсор, реагирующий на растяжение.

    При активации канала по нему происходит перемещение ионов по градиенту концентрации.

    Натрий, калиевая АТФаза.

    Натрий, калиевая АТФаза (натрий-калиевый насос, на­трий-калиевая помпа).

    Состоит из четырех трансмембранных доменов: из двух α-субъединиц и двух β-субъединиц. α-субъединица является большим доменом, а β-субъединица - малым. В ходе транс­порта ионов фосфорилируются большие субъединицы и через них перемещаются ионы.

    Натрий, калиевая АТФаза играет важнейшую роль в под­держании гомеостаза натрия и калия во внутри- и внеклеточ­ной среде:

      поддерживает высокий уровень К + и низкий уровеньNa + в клетке;

      участвует в формировании мембранного потенциала покоя, в генерации потенциала действия;

      обеспечивает Na + сопряженный транспорт большинства органических веществ через мембрану (вторично-активный транспорт);

      существенно влияет на гомеостаз Н 2 О.

    Натрий, каливая АТФаза вносит наиболее важный вклад в формирование ионной асимметрии во вне- и внутриклеточных пространствах.

    Поэтапная работа натрий, калиевого насоса обеспечивает неэквивалентный обмен калия и натрия через мембрану.

    Са + -АТФаза (насос).

    Существуют два семейства Са 2+ -насосов, ответственных за устранение ионов Са 2+ из цитоплазмы: Са 2+ -насосы плазмалеммы и Са 2+ -насосы эндоплазматического ретикулума.

    Хотя они относятся к одному семейству белков (так назы­ваемому Р-классу АТФаз), эти насосы обнаруживают некото­рые различия в строении, функциональной активности и фармакологии.

    Находится в большом количестве в цитоплазматической мембраны. В цитоплазме клетки в покое концентрация каль­ция составляет 10-7 моль/л, а вне клетки значительно больше -10-3 моль/л.

    Такая значительная разница концентраций поддерживает­ся за счет работы цитоплазматической Са ++ -АТФазы.

    Активность Са 2+ -насоса плазмалеммы контролируется не­посредственно Са 2+ : увеличение концентрации свободного кальция в цитозоле активирует Са 2+ -насос.

    В покое диффузия через кальциевые ионные каналы поч­ти не происходит.

    Са-АТФаза транспортирует Са из клетки во внеклеточную среду против его концентрационного градиента. По градиенту Са + поступает в клетку благодаря диффузии через ионные каналы.

    В мембране эндоплазматического ретикулума также со­держится большое количество Са ++ -АТФазы.

    Кальциевый насос эндоплазматического ретикулума (SERCA) обеспечивает удаление кальция из цитозоля в эндоплазматический ретикулум - "депо" кальция за счет первично активного транспорта.

    В депо кальций связывается с кальцийсвязывающими белками (кальсеквестрином, кальретикулином и др.).

    В настоящее время описано по крайней мере три различ­ных изоформы SERCA-насосов.

    SERCA1-подтип сосредоточен исключительно в быстрых скелетных мышцах,SERCA2-насосы широко распространены в других тканях. ЗначимостьSERCA3 -насосов менее ясна.

    Белки SERCA2-нacocoв разделяются на две различные изоформы:SERCA2a, характерные для кардиомиоцитов и гладких мышц, иSERCA2b, характерные для тканей мозга.

    Увеличение Са 2+ в цитозоле активирует захват ионов кальция в эндоплазматический ретикулум, в то время как уве­личение свободного кальция внутри эндоплазматического ретикулума ингибирует насосыSERCA.

    Н+ К+ -АТФаза (насос).

    При помощи этого насоса (в результате гидролиза одной молекулы АТФ) в обкладочных (париетальных) клетках слизистой желудка происходит транспорт двух ионов калия из внеклеточного пространства в клетку и двух ионов Н+ из цитозоля во внеклеточное пространство при гидролизе одной молекулы. Этот механизм лежит в основе образования соляной кислоты в желудке.

    Ионный насос класс F .

    Митохондриальная АТФаза. Катализирует конечный этап синтеза АТФ. Крипты митохондрий содержат АТФ-синтазу, сопрягающую окисление в цикле Кребса и фосфорилирование АДФ до АТФ.

    Ионный насос класса V .

    Лизосомальные Н + -АТФазы (лизосомальные протонные насосы) - протонные насосы, обеспечивающие транспорт Н + из цитозоля в ряд органелл-лизосомы, аппарат Гольджи, сек­реторные везикулы. В результате понижается значение рН, на­пример, в лизосомах до 5,0 что оптимизирует деятельность этих структур.

    Особенности ионного транспорта

    1. Значительный и асимметричный трансмембранный! градиент для Na + и К + в покое.

    Натрия вне клетки (145 ммоль/л) в 10 раз больше, чем в клетке (14 ммоль/л).

    Калия в клетке (140 ммоль/л) примерно в 30 раз больше, чем вне клетки (4 ммоль/л).

    Эта особенность распределения ионов натрия и калия:

      гомеостатируется работой Na + /K + -нacoca;

      формирует в покое выходящий калиевый ток (канал утечки);

      формирует потенциал покоя;

      работа любых калиевых каналов (потенциалзависимых, кальцийзависимых, лигандзависимых) направлена на формирование выходящего калиевого тока.

    Это либо возвращает состояние мембраны к исходному уровню (активация потенциалзависимых каналов в фазу реполяризации), либо гиперполяризует мембрану (кальцийзависимые, лигандзависимые каналы, в том числе и активируемые системами вторых посредников).

    Следует иметь в виду, что:

      перемещение калия через мембрану осуществляется путем пассивного транспорта;

      формирование возбуждения (потенциала действия) всегда обусловлено входящим натриевым током;

      активация любых натриевых каналов всегда вызывает входящий натриевый ток;

      перемещение натрия через мембрану осуществляется почти всегда путем пассивного транспорта;

      в эпителиальных клетках, образующих в тканях стенку разных трубок, полостей (тонкий кишечник, канальца нефрона и др.), во внешней мембране всегда имеется большое количество натриевых каналов, обеспечиваю­щих при активации входящий натриевый ток, а в базальной мембране - большое число натрий, калиевых насосов, выкачивающих натрий из клетки. Такое асим­метричное распределение этих транспортных систем для натрия обеспечивает его трансклеточный перенос, т.е. из просвета кишечника, почечных канальцев во внутреннюю среду организма;

      пассивный транспорт натрия в клетку по электрохими­ческому градиенту ведет к накоплению энергии, кото­рая используется для вторично активного транспорта многих веществ.

    2. Низкий уровень кальция в цитозоле клетки.

    В клетке в покое содержание кальция (50 нмоль/л) в 5000 раз ниже, чем вне клетки (2,5 ммоль/л).

    Такой низкий уровень кальция в цитозоле не случаен, так как кальций в концентрациях в 10-100 раз больше исходной выступает в качестве второго внутриклеточного посредника в реализации сигнала.

    В таких условиях возможно быстрое увеличение кальция в цитозоле за счет активации кальциевых каналов (облегчен­ная диффузия), которые в большом количестве имеются в цитоплазматической мембране и в мембране эндоплазматического ретикулума (эндоплазматический ретикулум - "депо" кальция в клетке).

    Формирование потоков кальция, происходящее за счет открытия каналов, обеспечивает физиологически значимое повышение концентрации кальция в цитозоле.

    Низкий уровень кальция в цитозоле клетки поддержива­ется Са 2+ -АТФазой,Nа + /Са 2+ -обменниками, кальцийсвязывающими белками цитозоля.

    Кроме быстрого связывания цитозольного Са 2+ внутрик­леточными Са 2+ -связывающими белками, ионы кальция, по­падающие в цитозоль, могут аккумулироваться аппаратом Гольджи или клеточным ядром, захватываться митохондриальными Са 2+ -депо.

    3. Низкий уровень хлора в клетке.

    В клетке в покое содержание хлора (8 ммоль/л) более чем в 10 раз ниже, чем вне клетки (110 ммоль/л).

    Такое состояние поддерживается работой К + /Сl- -транспортер.

    Изменение функционального состояния клетки связано (или обусловлено) с изменением проницаемости мембраны для хлора. При активации протенциал- и лигандуправляемых хлорных каналов ион через канал путем пассивного транспор­та входит в цитозоль.

    Кроме того, вход хлора в цитозоль формируется за счет № + /К + /2СГ-котранспортера и СГ-НСО 3 -обменник.

    Вход хлора в клетку увеличивает полярность мембраны вплоть до гиперполяризации.

    Особенности ионного транспорта играют основополагаю­щую роль в формировании биоэлектрических явлений в орга­нах и тканях, которые кодируют информацию, определяют функциональное состояние этих структур, их переход из одно­го функционального состояния в другое.

    — трансмембранные белки, образующие поры через цитоплазматическую и другие биологические мембраны, которые помогают устанавливать и управлять электрическим напряжением через мембраны всех живых клеток (так называемым мембранным потенциалом), позволяя движение определенных ионов вниз по электрохимическим градиентом.

    Основные черты

    Ионные каналы регулируют поток ионов через мембрану во всех клетках. Они представляют собой белковую молекулу или комплекс нескольких молекул, которые пронизывают липидный слой клеточной мембраны насквозь. Внутри белка находится сквозное отверстие, или пора, по которой могут двигаться ионы. Пора открывается и закрывается с помощью движений белковой молекулы самого канала или вспомогательных белков — так называемый «Воротные механизм». При открывании времени через канал движутся ионы, которых заставляет перемещаться электрохимический градиент по обе стороны клеточной мембраны. Таким образом, каналы являются проводниками пассивного транспорта.

    Движение ионов через канал приводит к изменению мембранного потенциала клетки или вхождения новых ионов в клетку (в первую очередь ионов кальция и хлора). Это в дальнейшем приводит к изменению функции клетки. Трансмембранный градиент поддерживается для немногих малых ионов: катионов (Na +, Ca 2+, K +, H +) и анионов (Cl -, OH -). Тем не менее, существует несколько сотен генов, кодирующих различные ионные каналы живых организмов. Это многообразие связано в частности с многообразием воротных механизмов. Белковая молекула канала воспринимает определенный вид энергии и в ответ меняет свою конформацию так, чтобы время канала открылась или закрылась. Распространены потенциалзависимые каналы, то есть те, которые открываются в ответ на определенную разность потенциалов на мембране, и хемозалежни каналы, то есть те, которые изменяют конформацию после связывания со специфической молекулой. Есть также каналы, которые меняют свою способность пропускать ионный ток в ответ на изменение температуры, pH, давление на мембрану, свет и т.

    Молекулярное строение

    Эти комплексы обычно имеют вид цилиндрической структуры, составленной из одной или нескольких идентичных, гомологичных или различных белковых молекул, плотно упакованных вокруг заполненной водой поры, проходит через липидный бислой мембраны. Если эти белковые молекулы или субъединицы канала являются продуктами одного гена, то канал является гомомером, если же разных — то гетерометром. По количеству субъединиц различают мономеры, димеры, триммеры, тетрамеры, пентамер, октамер т. Например, калиевые каналы часто является гомотетрамерамы — то есть образованные четырьмя одинаковыми субъединицами. По обычной номенклатурой, субъединицы, формирующие время, называются α-субъединицами, тогда как вспомогательные субъединицы — β, γ и так далее. Каждая α-субъединица состоит из нескольких (2-7) трансмембранных сегментов (что чаще всего является α-спиралями), Р-петли, которая выстилает время, цитоплазматических концов и внеклеточного петель.

    Свойства ионных каналов

    • Селективность — это способность канала избирательно пропускать определенный тип ионов. Избирательность является относительной: даже высокоселективные каналы при определенных условиях (ионный состав среды, липидный состав мембран, температура и т.д.) могут пропускать и другие ионы помимо основного. Но при физиологическом состоянии за селективностью каналы делятся на селективные (например, натриевые или калиевые), или неселективные (катионный канал глутаматных рецептора). Селективность обычно достигается специфическим строением поры. Пора содержит в себе селективный фильтр, который может иметь ширину около диаметра одного атома, разрешающий прохождение только определенного типа ионов, например натрия или калия, или в нем находятся места связывания, имеющих сродство только к определенным ионов (например, кальция) .
    • Проницаемость — это способность определенного иона проходить сквозь время канала. Проницаемость прямо следует из селективности. Чем выше селективность канала, тем ниже проводимости для неосновных ионов.
    • Проводимость — это величина, показывающая количество ионов, которые способны пройти через время канала в единицу времени. Единица проводимости — сименс.

    Биологическая роль

    Открытие и закрытие ионных каналов лежат в основе передачи нервных импульсов, а проводимость каналов является основой работы электрических синапсов. Поэтому ионные каналы крайне важными компонентами нервной системы. Действительно, большинство наступательных и защитных токсинов, которые организмы развили для прекращения работы нервные системы хищников и добычи (например, яды, выделяемые пауками, скорпионами, змеями, рыбами, пчелами, морскими моллюсками и другими организмами) работают из-за блокирования ионных Калалы. Ионные каналы вовлечены в поддержание напряжения в митохондриях эукариот и на плазматических мембранах прокариот, которая используется для получения энергии в виде АТФ — основного «топлива» клеток. Кроме того, многочисленные ионные каналы отвечают за широкий спектр биологических процессов, которые привлекают быстрые изменения состояния клетки, например сердечной деятельности, сокращения скелетных и гладких мышц, транспорт питательных веществ через эпителий, работе T-лимфоцитов, секреции гормонов. При разработке новых лекарств ионные каналы — очень частые мишени.

    Многообразие ионных каналов

    Единой классификации ионных каналов на сегодняшний день не существует. Каналы систематизируют по селективностью к ионам (анионные, катионные, натриевые, калиевые, хлорные и т.д.), по механизму активации (потенциалзависимые, лигандкеровани, депокеровани, механорецепторы, температурозалежни и т.п.), по чувствительности к химическим веществам (например, АТФ-зависимые, TTX- нечувствительны), по генетической гомологией. В украинской научной литературе предложена следующая классификация:

    • Лигандкеровани ионные каналы
      • Cys-петельные — гомо- или гетеропентамерни
        • Неселективные катионные: никотиновый ацетилхолиновых рецепторов, серотониновый рецептор
        • Селективные хлорные: глицинового рецептор, ГАМК А рецептор, ГАМК С рецептор
      • Глутаматных рецепторов — гомо- или гетеротетрамеры
        • AMPA-рецепторы, каинатни рецепторы, NMDA-рецепторы
      • Пуриновые рецепторы — гомо- или гетеротетрамеры
        • P2X рецепторы
    • Потенциалзависимые ионные каналы
      • Натриевые каналы
        • тетродоксин-чувствительные
        • тетродоксин-нечувствительны
      • Кальциевые каналы
        • L-типа
        • N-типа
        • P / Q-типа
        • R-типа
        • T-типа — низькопорогови кальциевые каналы
    • Калиевые каналы
      • Потенциалзависимые
        • Shaker- Shab- Shal- Shaw-родственные
        • KvLQT1-родственные
        • eag-родственные
        • erg-родственные
        • elc-родственные
      • кальций-активированные
        • большой проводимости BK
        • малой проводимости SK
        • Na-, Cl-активированные
        • OH-активированные
      • Входного выпрямления
        • G-белок регулируемые GIRK
        • АТФ-зависимые калиевые каналы K-ATP
      • фоновые
        • двопородоменни (2P)
    • Каналы, управляемые циклическими нуклеотидами
    • Депокеровани и арахидонатрегульовани каналы
    • Каналы "транзиентной рецепторного потенциала" (ТРТ)
        • TRPC, "классические"
        • TRPV, "ванилоидни" TRPV1
        • TRPM, "меластатинови" TRPM8
        • TRPA, "анкирином"
        • TRPP, "полицистинови"
        • TRPML, "муколипины"
    • Натриевые потенциалзависимые дегенеринподибни
      • эпителиальные ENaC
      • протончутливи ASIC
    • Анионные ионные каналы
      • Хлорные каналы ClC

    Заболевания, связанные с ионными каналами

    Нарушение работы ионных каналов часто приводят к заболеваниям — каналопатиям. Основная причина таких нарушений — наследственные мутации, влияющие на структуру канала, но и возможны и другие повреждения (метаболические, радиационные и т.п.). Примеры каналопатиям:

    • муковисцидоз
    • сердечные аритмии
    • синдром Бругада
    • синдром Тимоти
    • генерализованная эпилепсия

    Как изучают ионные каналы

    Мембранная теория

    Долгое время цитологи спорили, как устроена клетка. Между собой конкурировали две теории: мембранная и фазовая. Мембранная теория предполагала наличие полупроницаемого барьера, который бы отделял цитоплазму от межклеточного пространства, создавая градиенты веществ. Фазовая теория исключала наличие такого барьера, а гомеостаз в клетке поддерживают белки-акцепторы различных веществ — акцепторы калия, натрия, кислорода, глюкозы и др. Открытие электронной микроскопии показало победу мембранной теории. Поэтому следующим шагом стало изучение свойств мембраны. Ходжкин и Бернард Кац обнаружили способность гигантского аксона кальмара пропускать различные ионы при различных мембранных потенциалах. Так появилась гипотеза о наличии селективных ионных каналов. В дальнейшем она блестяще подтвердилась.

    Методы исследования

    Первые исследования ионных каналов были осуществлены с помощью микроэлектродов на гигантских возбуждающих клетках. Развитие микроэлектродной техники привело к созданию метода фиксации потенциала на участке мембраны. Сначала исследования проводились только на функциональном уровне, дальше гены каналов был клонирован и их стали также изучать генетически и структурно. Также ионные каналы теперь искусственно вводят в клетки, почти не имеют собственных каналов (яйцеклетки, иммортализовани клеточные линии и т.п.), где изучают их функции. Используют ряд молекулярно-биологических и оптических методов (ПЦР, количественную ПЦР, ПЦР для одной клетки, иммунохимических методы, флуоресцентную микроскопию). Некоторые канальные белки удалось закристализуваты и провести рентгеноструктурный анализ. Другие структуры предусмотрены пока теоретически.

    Вклад украинских ученых в исследования ионных каналов

    В Институте физиологии имени А.А. Богомольца НАН Украины еще с 1950-х начались исследования электрических свойств клеток. У истоков этой работы стояли Даниил Воронцов, Платон Костюк, Михаил Шуба. Впервые в мире Костюк и Хрусталь доказали наличие отдельных кальциевых каналов в клеточной мембране нервных клеток. В дальнейшем под руководством Платона Костюка группой Николая Веселовского было впервые описано токи через кальциевые каналы Т-типа, а группой Олега Крышталя — через пуриновые и протончутливи каналы.

    В 2005 году выходец из Украины Юрий Киричек (ученик Олега Крышталя) впервые описал токи через ионные каналы сперматозоида, в частности удалось открыть лужночутливий кальциевый канал CatSper.

    В медицинских новостях то и дело появляется информация о том, что учёные нашли очередной способ воздействия на ионные каналы — то они пытаются их активировать, то, наоборот, спешат блокировать. Например, совсем недавно были опубликовано сообщение об исследованиях профессора Тель-Авивского университета (Tel Aviv University) Майкла Гуревитца (Michael Gurevitz), который разрабатывает новое болеутоляющее на основе компонентов яда израильского жёлтого скорпиона — одного из самых опасных скорпионов в мире. Предполагается, что этот препарат будет воздействовать на натриевые каналы, которые отвечают за восприятие боли, и станет эффективным обезболевающим нового поколения. Об ионных каналах вспоминают, и когда речь заходит об онкологических заболеваниях , сердечно-сосудистых отклонениях и даже вредных пристрастиях. Так что же это за каналы и почему их работа так важна?

    Клетка в дырку

    Живая клетка — это не статичное образование, в ней постоянно происходит обмен веществ, ведь взаимодействие клеток друг с другом и внешней средой — необходимое условие для поддержания жизни организма. Обмен этот происходит через мембрану (оболочку) клеток, через которую при необходимости должны проникать многие элементы: ионы, аминокислоты, нуклеотиды.

    Чтобы мембрана при необходимости могла быть проницаема для этих элементов, в ней есть специальные транспортные белки, которые образуют поры, своеобразные «дыры» в мембране. Эти поры представляют собой закупоренные молекулами воды каналы диаметром менее 1 нм, и эти мембранные каналы обладают относительной избирательностью по отношению к типу молекул, которые могут через них проходить. Есть, к примеру, кальциевые, натриевые, калиевые каналы — и они не пропускают другие ионы, кроме специфических. Такая избирательность канала обусловлена его зарядом и структурой.

    Для проведения потока ионов через свою пору ионные каналы используют разность потенциалов. Так как возникающий при движении ионов ток можно измерить — причём даже для одиночного канала, за поведением мембранных ионных каналов легко наблюдать. Каналы спонтанно и часто открываются и закрываются. И эти переходы из одной формы в другую можно изучать методами рентгеновской дифракции , мёссбауэровской спектроскопии и ядерно-магнитного резонанса . Благодаря этим исследованиям стало ясно, что эти каналы — высокоорганизованные струтуры, не просто трубка с водой, а лабиринт быстро двигающихся электрически нейтральных и заряженных молекулярных групп.

    Существуют десятки разновидностей ионных каналов. Самую большую группу составляют калиевые каналы, в которую входит около сорока видов. И каждая разновидность уникальна по своим структурным характеристикам и выполняемым функциям. Например, калиевые каналы большой проводимости (через них проходит бóльшее количество ионов калия, чем по другим каналам) состоят из круных фрагментов белка, субъединиц, свернутых в α-спираль. Их дополняют относительно короткие фрагменты, которые кроме первичной спиральной обладают также вторичной β-структурой. Они, в свою очередь, подразделяются на β-1, β-2, β-3 или β-4, каждая из которых придаёт каналу уникальные свойства. Например, β-4 делает канал устойчивым к блокатору ибериотоксину. Если же блокада канала осуществлена удачно, ток через канал проходить не будет.

    Зачем вообще нужны эти высокоорганизованные «дыры» в клетках? Ионные каналы — это основа жизни. Они обеспечивают возбудимость нервной системы, передачу нервных импульсов с нерва на мышцу, секрецию гормонов. Активирование ионных каналов запускает каскады физиологических реакций, обусловливает наше мышление, работу сердечной мышцы и дыхательной диафрагмы, даже наши привязанности (например, к алкоголю) и те современные учёные склоны объяснять особенностями работы ионных каналов.

    Блокирование этих важных каналов приводит к серьёзнейшим изменениям в организме. И нет ничего удивительного в том, что ионные каналы стали основной мишенью для разработки новых ядов и химического оружия. Так, один из мощнейших нервнопаралитических ядов, известных человечеству, тетродотоксин, блокирует натриевые каналы. Благодаря большим размерам молекулы тетродотоксин буквально закупоривает пору натриевого канала, так что прохождение ионов натрия через неё становится невозможным, и нервный импульс не передаётся от клетки к клетке. Мышцы замирают — ведь они подчиняются сигналам нервной системы. Токсины сходного действия, например конотоксин, находятся в арсенале змей и морских моллюсков и помогают им парализовать жертву.

    Ионные каналы в медицине

    В медицине сегодняшнего дня целый ряд заболеваний объясняют нарушением в работе ионных каналов. Хотя они имеют совершенно разные пути лечения, общность их причин позволило выделить их в отдельную группу. Они включают как приобретенные, так и наследственные недуги.

    В 2003 году Нобелевская премия по химии была присуждена американскому учёному Родерику Маккиннону (Roderick McKinnon) за открытие структуры ионного канала. В 1998 году ему удалось кристаллографическими методами получить трёхмерную молекулярную структуру калиевого канала бактерии Streptomyces lividans. Изображение белка появилось на обложке журнала «Science», редакция которого посчитала открытие Маккиннона одним из десяти самых выдающихся научных достижений года. Этот белок состоит из 4 субъединиц, имеющих α-спиральное строение. Через полость в центре и переносится катион калия. Иллюстрация: BNL/DoE, Rockefeller University/Roderick MacKinnon

    Например, с нарушением функции целой группы ионных каналов, включая натриевые и калиевые, связывают развитие синдрома хронической усталости . Из наследственных заболеваний, вызванных нарушением функционирования ионных каналов, можно упомянуть эпилепсию, которая вызвана сбоями в работе калиевых каналов большой проводимости. Под руководством профессора Ричарда Алдрича (Richard Aldrich) из Техасского университета в Сан-Антонио (University of Texas at San Antonio) удалось доказать, ставя опыты на трансгенных мышах , у которых был заблокирован ген KCNMB4, что при недостаточном количестве бета4 субъединиц калиевый канал неадекватно отвечает на нервное возбуждение, что приводит к конвульсиям.

    С недостаточной функцией β-1 субъединицы канала связывают развитие гипертонии. Если по какой-то причине аминокислотный состав белка β-1 субъединицы не соответствует норме, то канал с такой субъединицей не в состоянии поддерживать расширение стенкок сосудов , из-за чего возникает напряжение артерий и развивается гипертония. Об этом свидетельствуют, например, исследования Ральфа Кёлера (Ralf Köhler) из Университета Южной Дании (Syddansk Universitet).

    Ещё одно широко распространённое сердечно-сосудистое заболевание — синдром удлинённого QT связывают с мутациями в генах, кодирующих калиевые каналы сердечной мышцы, которое приводит к усилению активности калиевых каналов и меняет нормальный поток калия в сердечной мышце.

    Нарушения функций кальциевых каналов приводят к атаксиям — состояниям, при которых невозможна координация движений.

    Наконец, муковисцидоз (или фиброзно-кистозная дегенерация) — тяжелейшее заболевание дыхательной системы и желудочно-кишечного тракта наряду с другими причинами связывают с мутациями в CFTR гене, кодирующем хлорный канал.

    Так что нормальное функционирование ионных каналов любого типа исключительно важно для здоровья человека.

    Взять каналы на прицел!

    Сегодня фармацевты активно работают над созданием препаратов, воздействующих на них. Пожалуй, одни из самых популярных из существующих подобных препаратов, — антиаритмические средства, которые нормализуют нарушенный ритм сердечных сокращений. К ним относятся так называемые «антагонисты кальция» (например, верапамил), которые препятствуют проникновению ионов кальция из межклеточного пространства в мышечные клетки сердца и сосудов через медленные кальциевые каналы L-типа. Снижая концентрацию ионов кальция в клетках сердечной мыщцы и стенках сосудов, антагонисты кальция расширяют коронарные и периферические артерии.

    Активаторы калиевых каналов (икорандил, миноксидил, диазоксид, пинацидил) тоже вызывают расширение коронарных сосудов и сосудов в периферических органах. Воздействовать на калиевые каналы пытаются и для остановки инсультов, вызванных спазмом сосудов головного мозга.

    Популярные в хирургической практике местные анестетики — лидокаин и новокаин блокируют ощущение боли путём закупорки натриевых каналов. Правда, побочный эффект этих препаратов состоит в том, что они приводят к потере не только болевой, но и тактильной чувствительности.

    Однако удалось установить, что на помощь в такой ситуации могут прийти другие ионные каналы — так называемые TRP (Transient receptor potential). Это семейство каналов насчитывает множество видов, которые характеризуются слабой селективностью и пропускают большинство положительно заряженных ионов, включая натрий, кальций и магний.

    Особая группа TRP каналов, которая расположена в нервных клетках, реагирующих на боль, чувствительна к присутствию активного компонента перца чили — капсаицину. Если активировать TRP каналы капсаицином, то последующее введение лидокаина будет избирательно блокировать только эти TRP каналы, то есть каналы, расположеные исключительно в болевых нейронах. Таким образом, можно будет избавиться от побочного действия обезболевающего.

    Относительная простота тестирования работы ионных каналов и многообещающие результаты делают их привлекательной мишенью для фармацевтической индустрии. К тому же, многие ныне существующие препараты со временем теряют свою эффективность: организм привыкает к ним и реагирует не так, как задумывали создатели. Учёным приходится постоянно искать пути устранения различных сбоев, а ионные каналы — это, можно сказать, основа жизни. И сегодня манипуляции ими, с одной стороны, привлекают многомиллиардные инвестиции, а с другой — дают определённую надежду страдающим самыми разными недугами.

    Новости партнёров

    Ионные каналы

    Ионные каналы представлены интегральными белками мембраны. Эти белки способны, при определенных воздействиях, изменять свою конформацию (форму и свойства) таким образом, что пора, через которую может пройти какой-либо ион открывается или закрывается. Известны натриевые, калиевые, кальциевые, хлорные каналы, иногда канал может пропускать два иона, например известны натрий – кальциевые каналы. Через ионные каналы осуществляется только пассивный транспорт ионов. Это значит, что для перемещения иона необходим не только открытый канал, но и градиент концентрации для этого иона. В этом случае, будет движение иона по градиенту концентрации – из области с большей концентрацией в область с меньшей концентрацией. Необходимо помнить, что мы говорим об ионах – заряженных частицах, транспорт которых обусловлен еще и зарядом. Возможны ситуации, когда движение по градиенту концентрации может быть направлено в одну сторону, а существующие заряды противодействуют этому переносу.

    Ионные каналы обладают двумя важнейшими свойствами: 1) избирательностью (селективностью) по отношению к определенным ионам и 2) способностью открываться (активироваться) и закрываться . При активации канал открывается и пропускает ионы (рис. 8). Таким образом, в комплекс интегральных белков, формирующих канал, должны обязательно входить два элемента: структуры, распознающие «свой» ион и способные его пропустить, и структуры, которые позволяют узнать – когда пропускать этот ион. Селективность канала определяется теми белками, которые его образуют, «свой» ион распознается по размерам и заряду.

    Активация каналов возможна несколькими путями. Во-первых, каналы могут открываться и закрываться при изменении потенциала мембраны. Изменение заряда приводит к изменению конформации белковых молекул, и канал становится проницаемым для иона. Для изменения свойств канала достаточно ничтожного колебания потенциала мембраны. Такие каналы называются потенциал-зависимые (или электроуправляемые). Во-вторых, каналы могут быть частью сложного белкового комплекса, который называется мембранный рецептор. В этом случае изменение свойств канала обусловлено конформационнй перестройкой белков, которая происходит в результате взаимодействия рецептора с биологически активным веществом (гормоном, медиатором). Такие каналы называются хемозависимые (или рецептор-управляемые) . Кроме того, каналы могут открываться при механическом воздействии – давлении, растяжении (рис.9). Механизм, который обеспечивает активацию, называется воротами канала. По скорости, с которой открываются и закрываются каналы их можно разделить на быстрые и медленные.

    Большинство каналов (калиевые, кальциевые, хлорные) могут находиться в двух состояниях: открытом и закрытом. В работе натриевых каналов есть некоторые особенности. Этим каналам, как и калиевым, кальциевым, хлорным свойственно находиться или в открытом, или в закрытом состоянии, однако, натриевый канал может быть и инактивирован, этот состояние, в котором канал закрыт и не может быть открыт никаким воздействием (рис.10).

    Рисунок 8. Состояния ионных каналов


    Рисунок 9. Пример работы рецептор-управляемого канала. АЦХ – ацетилхолин. Взаимодействие молекулы АЦХ с мембранным рецептором изменяет конформацию воротного белка таким образом, что канал начинает пропускать ионы .


    Рисунок 10 Пример потенциал-зависимого канала

    В потенциал-зависимом натриевом канале имеются активационные и инактивационные ворота (заслонки). Активационные и инактивационные заслонки меняют конформацию при различном мембранном потенциале.

    При рассмотрении механизмов возбуждения нас будет интересовать в основном работа натриевых и калиевых каналов, однако, остановимся коротко на особенностях кальциевых каналов, они нам понадобятся в дальнейшем. Натриевые и кальциевые каналы отличаются по своим свойствам. Натриевые каналы бывают быстрые и медленные, а кальциевые – только медленные. Активация натриевых каналов приводит только к деполяризации и возникновению или ЛО, или ПД, активация кальциевых может дополнительно вызвать метаболические изменения в клетке. Эти изменения обусловлены тем, что кальций связывается со специальными, чувствительными к этому иону белками. Связанный с кальцием белок изменяет свойства таким образом, что становится способен изменить свойства других белков, например, активировать ферменты, запустить сокращение мышцы, выделение медиаторов.



    Рекомендуем почитать

    Наверх