Беспроводное электричество поразило своих создателей. Беспроводная передача электроэнергии. Принцип действия

Помощь 28.07.2019
Помощь

Основы беспроводной зарядки

Беспроводная передача электрической энергии (WPT) дает нам шанс избавиться от тирании кабелей питания. В настоящее время эта технология проникает во все виды устройств и систем. Давайте взглянем на нее!

Беспроводной путь

Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.

Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.

Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.

Тут кабель, там кабель... Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).


Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф , расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)
Технология Переносчик электрической энергии Что позволяет передавать электрическую энергию
Индуктивная связь Магнитные поля Витки провода
Резонансная индуктивная связь Магнитные поля Колебательные контуры
Емкостная связь Электрические поля Пары проводящих пластин
Магнитодинамическая связь Магнитные поля Вращение постоянных магнитов
СВЧ излучение Волны СВЧ Фазированные ряды параболических антенн
Оптическое излучение Видимый свет / инфракрасное излучение / ультрафиолетовое излучение Лазеры, фотоэлементы

Qi зарядка, открытый стандарт для беспроводной зарядки

В то время как некоторые из компаний, обещающих беспроводную передачу электрической энергии, всё еще работают над своими продуктами, уже существует стандарт Qi (произносится как «ци») зарядки, и уже доступны использующие его устройства. Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium, WPC), созданный в 2008 году, разработал стандарт Qi для зарядки аккумуляторов. Данный стандарт поддерживает и индуктивные, и резонансные технологии зарядки.

При индуктивной зарядке электрическая энергия передается между катушками индуктивности в передатчике и приемнике, расположенными на близком расстоянии. Индуктивные системы требуют, чтобы катушки индуктивности находились в непосредственной близости и были выровнены друг с другом; обычно устройства находятся в непосредственном контакте с зарядной панелью. Резонансная зарядка не требует тщательного выравнивания, а зарядные устройства могут обнаружить и зарядить устройство на расстоянии до 45 мм; таким образом, резонансные зарядные устройства могут быть встроены в мебель или установлены между полками.

Наличие логотипа Qi означает, что устройство зарегистрировано и сертифицировано Консорциумом беспроводной электромагнитной энергии WPC.

В начале Qi зарядка обладала небольшой мощностью, около 5 Вт. Первые смартфоны, использующие Qi зарядку, появились в 2011 году. В 2015 году мощность Qi зарядки увеличилась до 15 Вт, что позволяет осуществлять быструю зарядку устройств.

Следующий рисунок от Texas Instruments показывает, что охватывает стандарт Qi.

Совместимость с Qi гарантировано могут обеспечить только те устройства, которые перечислены в регистрационной базе данных Qi . В настоящее время там содержится более 700 продуктов. Важно понимать, что продукты с логотипом Qi были проверены и сертифицированы; и магнитные поля, используемые этими устройствами, не вызовут проблем для таких чувствительных устройств, как мобильные телефоны или электронные паспорта. Зарегистрированные устройства будут гарантировано работать с зарегистрированными зарядными устройствами.

Физика беспроводной передачи электрической энергии

Беспроводная передача электрической энергии для бытовых устройств является новой технологией, но принципы, лежащие в ее основе, известны давно. Там, где участвуют электричество и магнетизм, по-прежнему руководствуются уравнениями Максвелла, и передатчики посылают энергию на приемники так же, как и в других формах беспроводной связи. Однако, беспроводная передача электроэнергии отличается от них основной целью, которая заключается в передаче самой энергии, а не закодированной в ней информации.

Электромагнитные поля, участвующие в беспроводной передаче электрической энергии, могут быть достаточно сильными, и поэтому необходимо принимать во внимание безопасность человека. Воздействие электромагнитного излучения может вызвать проблемы, а также существует возможность того, что поля, создаваемые передатчиками электрической энергии, могут помешать работе носимых или имплантированных медицинских устройств.

Передатчики и приемники встраиваются в устройства беспроводной передачи электрической энергии так же, как и аккумуляторы, которые будут ими заряжаться. Реальные схемы преобразования будут зависеть от используемой технологии. Кроме самой передачи электроэнергии, WPT система должна обеспечить связь между передатчиком и приемником. Это гарантирует, что приемник сможет уведомить зарядное устройство о том, что аккумулятор полностью заряжен. Связь также позволяет передатчику обнаружить и идентифицировать приемник, чтобы подстроить значение мощности, передаваемой на нагрузку, а также контролировать, например, температуру аккумулятора.

В беспроводной передаче электрической энергии имеет значение выбор концепции либо ближнего, либо дальнего поля. Технологии передачи, количество энергии, которое может быть передано, и требования к расстоянию влияют на то, будет ли система использовать излучение ближнего поля или излучение дальнего поля.

Точки, для которых расстояние от антенны значительно меньше одной длины волны, находятся в ближней зоне. Энергия в ближней зоне неизлучающая, и колебания магнитного и электрического полей не зависят друг от друга. Емкостная (электрическая) и индуктивная (магнитная) связи могут использоваться для передачи энергии к приемнику, расположенному в ближнем поле передатчика.

Точки, для которых расстояние от антенны больше примерно двух длин волны, находятся в дальней зоне (между ближней и дальней зонами существует переходная область). Энергия в дальней зоне передается в виде обычного электромагнитного излучения. Перенос энергии в дальней зоне также называют лучом энергии. Примерами передачи в дальней зоне являются системы, которые используют для передачи энергии на большие расстояния мощные лазеры или СВЧ излучение.

Где работает беспроводная передача электрической энергии (WPT)

Все технологии WPT в настоящее время находятся на стадии активных исследований, большая часть сосредоточена на максимизации эффективности передачи энергии и иследованию технологий для магнитной резонансной связи . Кроме того, самыми амбициозными являются идеи оснащения WPT системой помещений, в которых человек будет находиться, а носимые им устройства будут заряжаться автоматически.

В глобальном плане, электрические автобусы становятся нормой; планируется ввести беспроводную зарядку для культовых двухэтажных автобусов в Лондоне так же, как и у автобусных систем в Южной Корее , в штате Юта США и в Германии .

Уже была продемонстрирована экспериментальная система для беспроводного питания дронов. И, как уже упоминалось ранее, текущие исследования и разработки сосредоточены на перспективе удовлетворении некоторых энергетических потребностей Земли путем использования беспроводной передачи энергии и солнечных панелей, расположенных в космосе.

WPT работает везде!

Заключение

В то время как мечта Теслы о беспроводной передаче энергии любому потребителю еще далека от реализации, множество устройств и систем используют ту или иную форму беспроводной передачи электроэнергии прямо сейчас. От зубных щеток до мобильных телефонов, от личных автомобилей до общественного транспорта, существует множество применений беспроводной передачи электрической энергии.

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.


Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология


Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.


Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

По сути, в 1970-е им были технически реализованы мечты НАТО и США о постоянном воздушном патрулировании Ирака (Ливии, Сирии и т.д.) дронами с камерами, охотящиеся (или фиксирующие) "террористов" в режиме on-line 24 часа.

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.

Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий. За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли - порядка 70%÷75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/м², в центре приемной – 230 Вт/м².

Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый Magnetron Directional Amplifier - MDA).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.

Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», - рассказывал Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе.

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали (от Power Over WiFi).

На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер во время своей работы по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли, когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии.

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего, уже по технологии или от самолёта носителя):


Идея выглядит достаточно заманчиво. Вместо сегодняшних 20-30 минут полётного времени:



→ Intel управляла шоу беспилотников во время выступления Леди Гаги в перерыве Суперкубка США-
получить 40-80 минут благодаря подзарядке дронов посредством беспроводных технологий.

Поясню:
-обмен м/у дронами всё равно необходим (алгоритм роя);
-обмен м/у дронами и ЛА (маткой) также необходим (ЦУ, коррекция БЗ, перенацеливание, команда на ликвидацию, предотвращающая "дружественный огонь", передача развединформации и команд на применение ).

Кто следующий на очереди?

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².

Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV - Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 ).

В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).

В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).

Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах. Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам. Принятые и в США, и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь, базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.

Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько? А как будет с беспроводной передачей электроэнергии СВЧ технологиями?

Тут мощности не ватты и мили ватты, а уже кВт...

Ссылки, использованные документы, фото и видео:
«(ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ!» N 12, 2007 (ЭЛЕКТРОЭНЕРГИЯ ИЗ КОСМОСА- СОЛНЕЧНЫЕ КОСМИЧЕСКИЕ ЭЛЕКТРОСТАНЦИИ, В. А. Банке)
«СВЧ-электроника -перспективы в космической энергетике» В.Банке, д.ф.-м.н.
www.nasa.gov
www. whdi.org
www.defense.gov
www.witricity.com
www.ru .pinterest .com
www. raytheon.com
www. ausairpower.net
www. wikipedia.org
www.slideshare.net
www.homes.cs.washington.edu
www.dailywireless.org
www.digimedia.ru
www. powercoup.by
www.researchgate.net
www. proelectro.info
www.youtube.com

Питающиеся неосязаемым способом бытовые приборы, освобождённые от электрических проводов, не первый раз будоражат умы изобретателей. Но именно теперь специалисты подошли к тому, чтобы научить серийные пылесосы, торшеры, телевизоры, автомобили, имплантаты, мобильные роботы и лэптопы эффективно и безопасно получать ток из беспроводного источника.

Недавно команда учёных из Массачусетского технологического института (MIT), возглавляемая Марином Солячичем (Marin Soljačic), совершила очередной шаг на пути превращения технологии беспроводного электричества из лабораторного «фокуса» в пригодную для тиражирования технологию. Совершенно неожиданно они обнаружили эффект, позволяющий поднять КПД передачи. Но прежде чем рассказать о новом эксперименте, стоит сделать отступление.

В качестве переносчика энергии в данном случае используется ближнее магнитное поле, осциллирующее с высокой частотой в несколько мегагерц. Для переброски необходимы две магнитные катушки, настроенные на одинаковую частоту резонанса. Перекачку энергии между ними учёные сравнивают с разрушением резонирующего стеклянного бокала, когда он «слышит» звук строго определённой частоты.

Идеализированные (на данном рисунке) магнитные катушки (жёлтый цвет), окружённые своими полями (красный и синий), передают друг другу энергию на расстоянии D, многократно большем, чем размер самих катушек. Это учёные и называют резонансной магнитной связью (или сцеплением) – Resonant Magnetic Coupling (иллюстрация WiTricity).

В результате взаимодействия катушек и получается то, что было названо «Беспроводным электричеством» (WiTricity). Кстати, слово это — торговая марка, которая принадлежит одноимённой корпорации , основанной Солячичем и рядом его коллег из MIT. Корпорация указывает, что данный термин применим только к её технологии и к продуктам, созданным на её основе. Большая просьба – не использовать «уайтрисити» как синоним беспроводной передачи энергии вообще.

Изобретатели также просят не путать WiTricity с передачей энергии посредством электромагнитных волн: мол, новый метод — «неизлучающий».

И ещё несколько важных «не», указанных создателями. WiTricity — не аналог трансформатора с разведёнными на несколько метров обмотками (последний в таком случае перестаёт работать). Это не улучшенная электрическая зубная щётка: она хоть и умеет заряжаться без электрического контакта, но всё равно требует помещения в «док-станцию» для сближения передающей и приёмной индуктивных катушек до расстояния в миллиметр. «Уайтрисити» – не микроволновка, способная поджарить живой объект, поскольку пульсирующее магнитное поле, работающее в системе WiTricity, на человека не влияет. Наконец, «Беспроводное электричество» – даже не «таинственная и ужасная» башня Теслы (Wardenclyffe Tower), при помощи которой великий изобретатель намеревался продемонстрировать передачу энергии на большое расстояние.

Первый опыт по беспроводной передаче энергии методом WiTricity на 60-ваттную лампочку, удалённую на два с лишним метра от источника, Марин и его коллеги провёли в 2007 году . КПД был невелик – порядка 40%, зато уже тогда изобретатели указывали на ощутимый плюс новинки — безопасность.

Применяемое в системе поле в 10 тысяч раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа. Так что ни живые организмы, ни медицинские имплантаты, ни кардиостимуляторы и прочая чувствительная техника такого рода, ни бытовая электроника почувствовать на себе действие этого поля не могут.


Главные авторы WiTricity: Марин Солячич (слева), Аристеидис Каралис (Aristeidis Karalis) и Джон Иоаннополус (John Joannopoulos). Справа: принципиальная схема WiTricity. Передающая катушка (левая) включена в розетку. Приёмная – соединена с потребителем. Линии магнитного поля первой катушки (голубой цвет) способны огибать относительно небольшие проводящие препятствия (а дерево, ткань, стекло, бетон или человека они и вовсе не замечают), успешно переправляя энергию (жёлтые линии) к приёмному кольцу (фото MIT/Donna Coveney, иллюстрация WiTricity).

Теперь же Солячич и его соратники открыли, что на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей. Парадоксально, на первый взгляд, однако два приёмных прибора, размещённые на расстоянии от 1,6 до 2,7 метра по обе стороны от передающей «антенны», показали на 10% лучший КПД, чем в случае если связь осуществлялась только между одним источником и потребителем, как было в предыдущих опытах.

Причём улучшение прослеживалось независимо от того, каков был КПД для пар передатчик-приёмник по отдельности. Учёные предположили, что при дальнейшем добавлении новых потребителей КПД будет ещё повышаться, хотя пока не вполне ясно — насколько. (Детали эксперимента раскрывает в Applied Physics Letters.)

Передающая катушка в новом эксперименте насчитывала площадь в 1 квадратный метр, а приёмные — всего по 0,07 м 2 каждая. И это тоже интересно: громоздкость «приёмников» в прежних опытах ставила под сомнение желание производителей техники снабжать такими системами свою аппаратуру — едва ли вам понравился бы самозаряжающийся ноутбук, блок WiTricity которого по размеру сопоставим с самим компьютером.


Слева: 1 – специальная схема переводит обычный переменный ток в высокочастотный, он питает передающую катушку, создающую осциллирующее магнитное поле. 2 – приёмная катушка в устройстве-потребителе должна быть настроена на ту же частоту. 3 – резонансная связь между катушками превращает магнитное поле обратно в электрический ток, который питает лампочку.
Справа: по мнению авторов системы, одна катушка на потолке может снабжать энергией все приборы и устройства в комнате – от нескольких светильников и телевизора до ноутбука и DVD-проигрывателя (иллюстрация WiTricity).

Но главное – эффект улучшения общего КПД при одновременной работе с несколькими потребителями означает зелёную улицу для голубой мечты Солячича — дома, заполненного разнообразной техникой, получающей питание из невидимых «неизлучающих излучателей», спрятанных в потолках или стенах комнат.

А может быть, и не только в комнатах, но и в гараже? Конечно, зарядить электромобиль можно и обычным способом. Но прелесть WiTricity в том, что ничего никуда не нужно подключать и даже помнить об этом — теоретически машину можно научить самой по прибытию в гараж (или на автостоянку компании) посылать «запрос» системе и подпитывать аккумулятор от магнитной катушки, уложенной в полу.

Кстати, в некоторых экспериментах специалисты WiTricity довели мощность передачи до трёх киловатт (а начинали, напомним, с 60-ваттной лампочки). КПД же варьируется в зависимости от целого набора параметров, однако, как утверждает корпорация, при достаточно близких катушках он может превышать 95%.

Нетрудно догадаться, что перспективный метод передачи электроэнергии на несколько метров без проводов и необходимости в прицеливании каких-нибудь «силовых лучей» должен заинтересовать широкий спектр компаний. Некоторые уже работают в этом направлении самостоятельно.

Например, отталкиваясь от принципов, обоснованных и испытанных Солячичем и его коллегами, Intel ныне развивает свою модификацию резонансной передачи электроэнергии — Wireless Resonant Energy Link (WREL). Ещё в 2008 году компания достигла на данном поприще блестящего результата, продемонстрировав «магнитную» передачу тока с КПД 75% .

Одна из опытных установок Intel WREL, без проводов передающая электропитание (наряду с аудиосигналом) с MP3-плеера на небольшую колонку (фото с сайта gizmodo.com).

Собственные опыты, воспроизводящие эксперименты физиков из Массачусетского технологического, ставит сейчас и Sony .

Однако Солячич уверен, что его инновация не затеряется среди продукции коллег-конкурентов. Ведь именно первооткрыватели технологии больше всех набили с ней шишек и готовы к углублённому её изучению и совершенствованию. Скажем, настройка даже пары катушек не так проста, как кажется на поверхностный взгляд. Учёный несколько лет подряд ставил опыты в лаборатории, прежде чем построил систему, которая работает действительно надёжно.

Демонстрационный образец ЖК-экрана, получающего электрическое питание через первый прототип бытового набора WiTricity. Передающая катушка лежит на полу, приёмная – на столе (фото WiTricity).

«Беспроводное электричество», по словам его авторов, изначально задумывалось как OEM-продукт . Потому в будущем можно ожидать появления данной технологии в товарах других компаний.

И пробный шар в сторону потенциальных потребителей уже запущен. В январе в Лас-Вегасе на выставке CES 2010 китайская компания Haier показала первый в мире полностью беспроводной HDTV-телевизор. На его экран по воздуху передавался не только видеосигнал с проигрывателя (для чего применялся официально родившийся буквально месяцем раньше стандарт Wireless Home Digital Interface), но и электропитание. Последнее обеспечивала именно технология WiTricity.

А ещё компания Солячича ведёт переговоры с производителями мебели об установке катушек в столы и стены шкафов. Первое объявление о серийном продукте партнёра WiTricity ожидается к концу 2010 года.

Вообще же специалисты предсказывают появление на рынке настоящих бестселлеров — новых продуктов со встроенным приёмником WiTricity. Причём никто ещё не может уверенно сказать — что это будут за вещи.

Компания Haier является одним из крупнейших в мире производителей бытовой электроники. Неудивительно, что её инженеры заинтересовались возможностью соединить новейшие технологии беспроводной передачи HDTV-сигнала и беспроводного электропитания и даже ухитрились первыми показать такой прибор в действии (фотографии engadget.com, gizmodo.com).

Любопытно, что история WiTricity началась несколько лет назад с ряда досадных пробуждений Марина. Несколько раз в течение месяца его будил сигнал разряженного телефона, просящего «поесть». Забывавший вовремя подключить мобильник к розетке учёный удивлялся: разве не смешно, что телефон находится в нескольких метрах от электрической сети, но не в состоянии получить эту энергию. После очередного пробуждения в три часа ночи Солячич подумал: было бы здорово, если б телефон смог позаботиться о своей зарядке сам.

Заметим, речь сразу пошла не о новом варианте "ковриков" для зарядки карманных приборов. Такие системы работают, только если устройство положить непосредственно на «коврик», а это ведь для забывчивых людей ничуть не лучше, чем необходимость просто втыкать проводок в розетку. Нет, телефон должен был получать электроэнергию в любом месте комнаты, а то и квартиры, и не важно, бросили ли вы его на столе, диване или подоконнике.

Тут обычная электромагнитная индукция, направленные микроволновые лучи и "осторожные" инфракрасные лазеры — не годились. Марин взялся за поиск других вариантов. Едва ли он тогда мог подумать, что через некоторое время пищащий и «голодный» телефон приведёт его к созданию собственной компании и появлению технологии, способной «делать заголовки» и, что куда важнее, заинтересовать промышленных партнёров.

Добавим, что о принципах, истории и будущем WiTricity некогда довольно подробно рассказал исполнительный директор корпорации Эрик Гилер (Eric Giler).

Открыл закон (после названный в честь открывателя законом Ампера), показывающий, что электрический ток производит магнитное поле.

  • В 1831 году Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • В 1864 году Джеймс Максвелл систематизировал результаты наблюдений и экспериментов, изучил уравнения по электричеству, магнетизму и оптике, создал теорию и составил строгое математическое описание поведения электромагнитного поля (см. уравнения Максвелла).
  • В 1888 году Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца представлял собой искровой передатчик «радиоволн» и создавал волны в диапазонах частот СВЧ или УВЧ .
  • В 1891 году Никола Тесла улучшил и запатентовал (патент номер 454,622; «Система электрического освещения») передатчик волн Герца для радиочастотного энергоснабжения.
  • В 1893 году Никола Тесла на всемирной выставке , проходившей в 1893 году в Чикаго , продемонстрировал беспроводное освещение люминесцентными лампами .
  • В 1894 году Никола Тесла зажёг без проводов фосфорную лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хаустон-стрит в Нью-Йорке с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • В 1894 году Джагдиш Чандра Боше дистанционно воспламенил порох , что привело к удару по колоколу, с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов .
  • 25 апреля (7 мая) года Александр Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества .
  • В 1895 году Боше передал сигнал на расстояние около одной мили .
  • 2 июня 1896 года Гульельмо Маркони подал заявку на изобретение радио.
  • В 1896 году Тесла передал сигнал на расстояние около 48 километров .
  • В 1897 году Гульельмо Маркони передал текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • В 1897 году зарегистрирован первый из патентов Тесла по применению беспроводной передачи.
  • В 1899 году в Колорадо-Спрингс Тесла писал: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха » .
  • В 1900 году Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • В 1901 году Маркони передал сигнал через Атлантический океан , используя аппарат Тесла.
  • В 1902 году Тесла и Реджинальд Фессенден конфликтовали из-за американского патента номер 21,701 («Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом») .
  • В 1904 году на Всемирной выставке, проходившей в Сент-Луисе , предложена премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт ) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м ) .
  • В 1917 году разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • В 1926 году Синтаро Уда и Хидэцугу Яги опубликовали первую статью «о регулируемом направленном канале связи с высоким усилением » , хорошо известном как «антенна Яги-Уда» или антенна «волновой канал ».
  • В 1945 году Семён Тетельбаум опубликовал статью «О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн», в которой впервые рассматривал эффективность микроволновой линии для беспроводной передачи электроэнергии .
  • В 1961 году Уильям Браун опубликовал статью по исследованию возможности передачи энергии посредством микроволн .
  • В 1964 году Уильям Браун и Уолтер Кроникт в эфире телеканала CBS News продемонстрировали модель вертолёта, получающего всю необходимую ему энергию от микроволнового луча.
  • В 1968 году Питер Глейзер предложил использовать беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч» . Это считается первым описанием орбитальной энергетической системы .
  • В 1973 году в Лос-Аламосской Национальной лаборатории продемонстрирована первая в мире пассивная система RFID .
  • В 1975 году на комплексе дальней космической связи обсерватории Голдстоун проведены эксперименты по передаче мощности в десятки киловатт .
    • В 2007 году исследовательская группа под руководством профессора Марина Солячича из передала беспроводным способом на расстояние 2 м энергию мощностю, достаточной для свечения лампочки мощностью 60 ватт , с КПД , равным 40 % , с помощью двух катушек диаметром 60 см .
    • В 2008 году фирма «Bombardier» предложила систему для беспроводной передачи энергии, названную «primove» и предназначенную для применения в трамваях и двигателях малотоннажной железной дороги .
    • В 2008 году сотрудники фирмы Intel воспроизвели опыты Никола Тесла 1894 года и опыты группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с КПД , равным 75 % .
    • В 2009 году консорциум заинтересованных компаний, названный «Wireless Power Consortium», разработал стандарт беспроводного питания для малых токов, названный « » . Qi стал применяться в портативной технике.
    • В 2009 году норвежская компания «Wireless Power & Communication» представила разработанный ею промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом.
    • В 2009 году фирма «Haier Group» представила первый в мире полностью беспроводной LCD-телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI) .
    • В 2011 году «Wireless Power Consortium» приступил к расширению спецификаций стандарта Qi для средних токов.
    • В 2012 году начал работу частный петербургский музей «Гранд Макет Россия », в котором миниатюрные модели автомобилей получали электропитание беспроводным способом через модель дорожного полотна.
    • В 2015 году учёные из Вашингтонского университета выяснили, что электричество можно передавать посредством технологии Wi-Fi .

    Технологии

    Ультразвуковой способ

    Ультразвуковой способ передачи энергии изобретён студентами университета Пенсильвании и впервые широкой публике представлен на выставке «The All Things Digital» (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, использовался приёмник и передатчик. Передатчик излучал ультразвук; приёмник, в свою очередь, преобразовывал слышимое в электричество. На момент презентации расстояние передачи достигало 7-10 метров , и была необходима прямая видимость приёмника и передатчика. Передаваемое напряжение достигало 8 вольт ; получаемая сила тока не сообщается. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии ультразвуковых частот на животных.

    Метод электромагнитной индукции

    При беспроводной передаче энергии методом электромагнитной индукции используется ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создаёт переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, всё большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

    Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция . Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щёток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приёмник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

    Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приёмник настроены на одну частоту. Производительность может быть улучшена ещё больше путём изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приёмная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

    Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких, как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приёмника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi .

    Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких, как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющемуся беспроводным передатчиком электрической энергии.

    Электростатическая индукция

    Лазерный метод

    В том случае, если длина волны электромагнитного излучения приближается к видимой области спектра (от 10 мкм до 10 нм ), энергию можно передать путём её преобразования в луч лазера , который затем может быть направлен на фотоэлемент приёмника.

    Лазерная передача энергии по сравнению с другими методами беспроводной передачи обладает рядом преимуществ:

    • передача энергии на большие расстояния (за счёт малой величины угла расходимости между узкими пучками монохроматической световой волны);
    • удобство применения для небольших изделий (благодаря небольшим размерам твердотельного лазера - фотоэлектрического полупроводникового диода);
    • отсутствие радиочастотных помех для существующих средств связи, таких, как Wi-Fi и сотовые телефоны (лазер не создаёт таких помех);
    • возможность контроля доступа (получить электроэнергию могут только приёмники, освещённые лазерным лучом).

    У данного метода есть и ряд недостатков:

    • преобразование низкочастотного электромагнитного излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 % , хотя эффективность преобразования монохроматического света значительно выше, чем эффективность солнечных панелей;
    • потери в атмосфере;
    • необходимость прямой видимости между передатчиком и приёмником (как и при микроволновой передаче).

    Технология передачи мощности с помощью лазера ранее, в основном, исследовалась при разработке новых систем вооружений и в аэрокосмической промышленности, а в настоящее время разрабатывается для коммерческой и потребительской электроники в маломощных устройствах. Системы беспроводной передачи энергии с применением в потребительских целях должны удовлетворять требованиям лазерной безопасности стандарта IEC 60825. Для лучшего понимания лазерных систем следует принимать во внимание то, что распространение лазерного луча гораздо в меньшей степени зависит от дифракционных ограничений, как пространственное и спектральное согласование характеристик лазеров позволяют увеличить рабочую мощность и дистанцию, как длина волны влияет на фокусировку.

    Драйденский лётно-исследовательский центр НАСА продемонстрировал полёт лёгкого беспилотного самолёта-модели, питаемого лазерным лучом. Это доказало возможность периодической подзарядки посредством лазерной системы без необходимости приземления летательного аппарата.

    Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст . Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях (3,2-4,8 километрах ) над уровнем моря и благодаря потоку ионов, то есть электрической проводимости через ионизированную область, расположенную на высоте выше 5 км . Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через неё и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря ёмкостному плазменному разряду в ионизированной атмосфере .

    Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывалась как коммерческий проект по трансатлантической беспроводной телефонии и стала реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования .

    Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4,5 миль (7,2 км ) .

    Глобальная система передачи электроэнергии без проводов, так называемая „Всемирная беспроводная система“, основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате „короткого замыкания“ между заряженной атмосферой и землей .

    Всемирная беспроводная система

    Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

    В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успеха можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приёмниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения её полной исключительности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учётом физических свойств нашей планеты».

    Одним из условий создания всемирной беспроводной системы является строительство резонансных приёмников. Заземлённый винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приёмной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732 от 18 января 1902 года, «Аппарат для передачи электрической энергии»). Тесла предложил установить более тридцати приёмо-передающих станций по всему миру. В этой системе приёмная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приёмной.

    Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействовало бы объединению электрических генераторов в глобальном масштабе.

    См. также

    • WiTricity

    Примечания

    1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
    2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
    3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
    4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
    5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
    6. Jagadish Chandra Bose (англ.)
    7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
    8. June 5, 1899, Nikola Tesla Colorado Spring Notes  1899-1900, Nolit, 1978 (англ.)
    9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
    10. The Electrician (London), 1904 (англ.)
    11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
    12. Тетельбаум С. И. О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн // Электричество. - 1945. - № 5 . - С. 43-46 .
    13. Костенко А. А. Квазиоптика: исторические предпосылки и современные тенденции развития // Радиофизика и радиоастрономия. - 2000. - Т. 5 , № 3 . - С. 231 .
    14. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
    15. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
    16. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
    17. Solar Power Satellite patent (англ.)
    18. History of RFID (англ.)
    19. Space Solar Energy Initiative (англ.)
    20. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
    21. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
    22. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года. ,
      Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года.
    23. Bombardier PRIMOVE Technology
    24. Intel imagines wireless power for your laptop (англ.)
    25. wireless electricity specification nearing completion
    26. Global Qi Standard Powers Up Wireless Charging - HONG KONG, Sept. 2 /PRNewswire/
    27. TX40 and CX40, Ex approved Torch and Charger (англ.)
    28. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
      Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Проверено 6 сентября 2010.


    Рекомендуем почитать

    Наверх