Беспроводная сеть wpa. Выбираем самый надёжный метод проверки подлинности Wi-Fi

Скачать Viber 18.08.2019
Скачать Viber

Пролог
Wi-Fi сейчас есть практически в каждой квартире. Невидимые нити беспроводных каналов опутали мегаполисы и села, дома и дачи, гаражи и офисы. Несмотря на кажущуюся защищенность (“как, я же задавала пароль?!”) ушлые работники темной стороны IT каким-то образом обходят все эти ваши защиты и нагло влезают в вашу частную беспроводную собственность, чувствуя себя там как дома. При этом для многих простых юзеров эта технология так и остается загадкой, передаваемой из одного поколения хакеров другому. На просторах сети можно найти десятки обрывочных статей и сотни инструкций о том как взломать вай-фай, страждущим предлагается просмотреть обучающее видео с подбором пароля “qwerty123”, но полноценного руководства что называется “от и до” по этой теме я пока не встречал. Что собственно и решил восполнить.
Глава 1. Ищи кому выгодно
Давайте разберемся, зачем же добропорядочные (и не очень) граждане пытаются взломать Wi-Fi соседа? Итак, тому может быть несколько причин:

  1. Халявный интернет. Да-да, тысячи школьников еще в эпоху фидо и модемных соединений лет пятнадцать назад безуспешно искали в поисковиках тот самый волшебный “крякер интернета”, скачивая себе на персоналки целые тонны троянов и прочей нечисти. Бесплатный доступ к Сети был пределом мечтаний целого поколения. Сейчас ситуация значительно изменилась, дешевые безлимитные тарифы доступны практически везде, но иметь в круглосуточном резерве запасной канальчик на случай, если вдруг твой провайдер временно склеит ласты, никому не помешает. Кроме того, нередки ситуации типа “смотри-ка, а у него канал пошире чем у меня будет”, что тоже как бы намекает на полезность происходящего.
  2. Путешественники (и моряки в частности). Когда Wi-Fi в отеле стоит 5 евро в час, а связь с Родиной нужна постоянно и желательно в номере и забесплатно, практическую ценность заломанного Wi-Fi ощущаешь как никогда остро. В излишних комментариях это я думаю не нуждается.
  3. Снифанье трафика жертвы и последующий взлом аккаунтов почты, социальных сетей, асек и прочее хулиганство. Имея на руках пароль от Wi-Fi мы имеем возможность расшифровать весь передаваемый “по воздуху” трафик, включая сессии аутентификации на разных сайтах, куки и много еще чего вкусного.
  4. Промышленый шпионаж. В настоящее время офисный Wi-Fi, по-быстрому настроенный криворуким админом, является для подкованного человека просто парадным входом в ЛВС организации, а там можно найти ох как много интересного, от элементарного снифанья почты и асек до секретных документов в расшаренных папках и файлопомойках.
  5. Пентестинг (от англ. penetration testing – тестирование на проникновение). Пентестеры – это по сути те же хакеры (а зачастую это они и есть), но действующие по заказу и с согласия владельца сети. В их задачи входит проверка безопасности сети и устойчивости к проникновению извне (или нарушению ее работы изнутри). Учитывая стоимость подобного рода услуг вряд ли ваш сосед наймет такого специалиста (если конечно он не олигарх), а вот среди владельцев крупного и среднего бизнеса, озадаченных безопасностью IT-структур своих предприятий, спрос на подобные услуги весьма высок.

Окинув беглым взглядом весь список причин и взвесив все “за” и “против” можно смело приступать… нет, не к практической части и не к водным процедурам, а для начала к теоретической подготовке.
Глава 2. WEP, WPA, HMAC, PBKDF2 и много других страшных слов
На заре развития беспроводного доступа, в далеком 1997 году, британские ученые как-то не слишком заморачивались с вопросами безопасности, наивно полагая что 40-битного WEP-шифрования со статическим ключем будет более чем достаточно, LOL. Но злостные хакеры на пару с талантливыми математиками (среди них отметился также и наш соотечественник Андрей Пышкин, что приятно) быстро разобрались что к чему, и сети защищенные даже длинным WEP-ключом в целых 104 бита в скором времени стали почему-то приравниваться к открытым. Однако с развитием компьютерной грамотности среди простого населения найти WEP-сеть сейчас стало чуть ли не сложнее чем открытую, поэтому основное внимание мы уделим более часто (т.е. повсеместно) встречающемуся WPA/WPA2.
Основное заблуждение рабочего класса – “я использую WPA2, его не взломать”. В жизни все оказывается совсем иначе. Дело в том, что процедура аутентификации (это страшное слово означает проверку что клиент “свой”) клиента беспроводной сети и в WPA, и WPA2 делится на два больших подвида – упрощенная для персонального использования (WPA-PSK, PreShared Key, т.е. авторизация по паролю) и полноценная для беспроводных сетей предприятий (WPA-Enterprise, или WPA-EAP). Второй вариант подразумевает использование специального сервера авторизации (чаще всего это RADIUS) и, к чести разработчиков, не имеет явных проблем с безопасностью. Чего нельзя сказать об упрощенной “персональной” версии. Ведь пароль, задаваемый пользователем, как правило постоянен (вспомните когда в последний раз вы меняли пароль на своем Wi-Fi и передается, пусть и в искаженном виде, в эфире, а значит его может услышать не только тот, кому он предназначен. Конечно разработчики WPA учли горький опыт внедрения WEP и нашпиговали процедуру авторизации разными крутыми динамическими алгоритмами, препятствующими рядовому хакеру быстро прочитать пароль “по воздуху”. В частности, по эфиру от ноутбука (или что там у вас) к точке доступа передается конечно же не сам пароль, а некоторая цифровая каша (хакеры и им сочуствующие называют этот процесс “хендшейк”, от англ. handshake – “рукопожатие”), получаемая в результате пережевывания длинного случайного числа, пароля и названия сети (ESSID) с помощью пары вычислительно сложных итерационных алгоритмов PBKDF2 и HMAC (особенно отличился PBKDF2, заключающийся в последовательном проведении четырех тысяч хеш-преобразований над комбинацией пароль+ESSID). Очевидно, основной целью разработчиков WPA было как можно сильнее усложнить жизнь кулхацкерам и исключить возможность быстрого подбора пароля брутфорсом, ведь для этого придется проводить расчет PBKDF2/HMAC-свертки для каждого варианта пароля, что, учитывая вычислительную сложность этих алгоритмов и количество возможных комбинаций символов в пароле (а их, т.е. символов, в пароле WPA может быть от 8 до 63), продлится ровно до следующего большого взрыва, а то и подольше. Однако принимая во внимание любовь неискушенных пользователей к паролям вида “12345678” в случае с WPA-PSK (а значит и с WPA2-PSK, см.выше) вполне себе возможна так называемая атака по словарю, которая заключается в переборе заранее подготовленных наиболее часто встречающихся нескольких миллиардов паролей, и если вдруг PBKDF2/HMAC свертка с одним из них даст в точности такой же ответ как и в перехваченном хендшейке – бинго! пароль у нас.
Весь вышеперечисленный матан можно было бы и не читать, самое главное будет написано в следующем предложении. Для успешного взлома WPA/WPA2-PSK нужно поймать качественную запись процедуры обмена ключами между клиентом и точкой доступа (“хендшейк”), знать точное название сети (ESSID) и использовать атаку по словарю , если конечно мы не хотим состариться раньше чем досчитаем брутом хотя бы все комбинации паролей начинающихся на “а”. Об этих этапах и пойдет речь в последующих главах.
Глава 3. От теории – к практике.
Что же, поднакопив изрядный багаж теоретических знаний перейдем к практическим занятиям. Для этого сначала определим что нам нужно из “железа” и какой софт в это самое “железо” надо загрузить.
Для перехвата хендшейков сгодится даже самый дохлый нетбук. Все что от него требуется – свободный порт USB для подключения “правильного” адаптера Wi-Fi (можно конечно ловить и встроенным, но это только если атаковать соседа по общаге, т.к. хилый сигнал встроенного адаптера и его непонятная антенна вряд ли смогут пробить хотя бы одну нормальную бетонную стенку, не говоря уже о паре сотен метров до жертвы, которые очень желательно выдерживать чтобы не спалиться. Очень хорошим преимуществом нетбука может стать малый вес (если придется работать на выезде) и способность долго работать от батареи. Для решения задачи подбора пароля вычислительной мощности нетбука (да и полноценного ноутбука) уже будет недостаточно, но об этом мы поговорим чуть позже, сейчас необходимо сосредоточиться на хендшейке и методах его поимки.
Чуть выше я упомянул про “правильный” адаптер Wi-Fi. Чем же он так “правилен”? В первую очередь он должен иметь внешнюю антенну с коэффициентом усиления минимум 3 dBi, лучше 5-7 dBi, подключаемую через разъем (это позволит при необходимости подключить вместо штатного штырька внешнюю направленную антенну и тем самым значительно увеличить убойную дистанцию до жертвы), мощность выходного сигнала адаптера должна быть не менее 500 мВт (или 27 dBm что одно и то же). Сильно гнаться за мощностью адаптера тоже не стоит, так как успех перехвата хендшейка зависит не только от того, насколько громко мы кричим в эфир, но и от того насколько хорошо слышим ответ жертвы, а это как правило обычный ноутбук (или еще хуже – смартфон) со всеми недостатками его встроенного Wi-Fi.
Среди вардрайверов всех поколений наиболее “правильными” являются адаптеры тайваньской фирмы ALPHA Network, например AWUS036H или подобный. Помимо альфы вполне работоспособны изделия фирмы TP-LINK, например TL-WN7200ND, хотя стоит он вдвое дешевле по сравнению с альфой, да и тысячи моделей других производителей, похожих друг на друга как две капли воды, благо вайфайных чипсетов в природе существует не так уж и много.


Итак с “железом” разобрались, ноутбук заряжен и готов к подвигам, а в ближайшей компьютерной лавке закуплен нужный адаптер. Теперь пару слов о софте.
Исторически сложилось, что самой распространенной операционной системой на наших ноутбуках была и остается Windows. В этом и состоит главная беда вардрайвера. Дело в том, что к большинству кошерных адаптеров (а точнее их чипсетов) отсутствуют нормальные виндовые драйвера с поддержкой жизненно-необходимых функций – режима мониторинга и инжекции пакетов, что превращает ноутбук разве что в потенциальную жертву, но ни как не в охотника за хендшейками. Справедливости ради стоит отметить, что некоторые чипы таки поддерживаются весьма популярной в узких кругах виндовой прогой CommView, но список их настолько убог по сравнению со стоимостью самой программы (или угрызениями совести скачавшего кракнутую версию), что сразу напрочь отбивает желание заниматься “этим” под Windows. В то же время выход давно придуман, и без ущерба для здоровья вашего ноутбука – это специальный дистрибутив BackTrack Linux, в который майнтейнеры заботливо упаковали не только все необходимые нам драйвера вайфайных чипсетов со всякими хитрыми функциями, но и полный набор утилит пакета aircrack-ng, (который скоро ох как нам пригодится), да и много еще чего полезного.
Итак, качаем текущую версию BackTrack 5R1 (далее BT5 или вообще просто BT, т.к. к этому названию нам придется возвращаться еще не раз): http://www.backtrack-linux.org/downloads/
Регистрироваться совсем не обязательно, выбираем оконный менеджер по вкусу (WM Flavor – Gnome или KDE), архитектуру нашего ноутбука (скороее всего 32-битная), Image – ISO (не надо нам никаких виртуалок), и метод загрузки – напрямую (Direct) или через торрент-трекер (Torrent). Дистрибутив является образом Live-DVD, т.е. загрузочного диска, поэтому можно его просто нарезать на болванку и загрузиться, или затратить еще немного времени и калорий и сделать загрузочную флешку с помощью вот этой утилиты: Universal USB Installer (качать здесь: www.pendrivelinux.com). Очевидная прелесть второго решения в том, что на флешке можно создать изменяемый (Persistent) раздел с возможностью сохранения файлов, что в будущем окажется весьма кстати. Не буду подробно останавливаться на самом процессе создания загрузочной флешки, скажу только что желательно чтобы ее объем был не менее 4 Гб.
Вставляем флешку (диск, или что там у вас получилось) в ноут и загружаемся с нее. Вуаля, перед нами страшный и ужасный (а на самом деле жутко красивый) рабочий стол BT5! (Когда попросит имя пользователя и пароль введите root и toor соответствено. Если рабочий стол не появился дайте команду startx. Если опять не появился – значит не судьба вам работать в линукс, курите мануалы).


BackTrack: Finish him!
Итак, все прекрасно загрузилось, начинаем изучать что у нас где. Для начала давайте нащупаем наш Wi-Fi адаптер, для этого открываем окно командной строки (Terminal или Konsole в зависимости от типа оконного менеджера) и даем команду
Код:

root@bt:~# iwconfig wlan0 IEEE 802.11abgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=14 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off wlan1 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off

Отлично, наш адаптер виден как wlan1 (wlan0 это встроенный адаптер ноутбука, его можно вообще отключить чтобы не мешался). Переводим wlan1 из режима Managed в режим Monitor:
Код:

root@bt:~# airmon-ng start wlan1

и смотрим что получилось:
Код:

root@bt:~# iwconfig wlan0 IEEE 802.11abgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=14 dBm Retry long limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off wlan1 IEEE 802.11bgn Mode:Monitor Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off

Просто замечательно, но почему параметр TX-Power (мощность передачи) только 20 dBm? У нас же адаптер на 27 dBm? Попробуем добавить мощности (тут главное не переборщить):
Код:

root@bt:~# iwconfig wlan1 txpower 27 Error for wireless request “Set Tx Power” (8B26) : SET failed on device wlan1 ; Invalid argument.

И тут нас постигает первое разочарование – установить мощность больше 20 dBm нельзя! Это запрещено законодательством многих стран, но только не Боливии! Казалось бы причем здесь Боливия, но:
Код:

root@bt:~# iw reg set BO root@bt:~# iwconfig wlan1 txpower 27

… и все проходит гладко, Боливия нам очень помогла, спасибо ей за это.
Что мы имеем на данном этапе? Наш мощный Wi-Fi адаптер настроен на максимальную мощность в режиме monitor mode и ожидает приказаний на интерфейсе mon0. Самое время осмотреться и прослушать эфир. Это очень просто:
Код:

root@bt:~# airodump-ng mon0

Теперь все внимание на экран!


Красным обведена сеть с WEP – большая редкость по нынешним временам
В левом верхнем углу видно как сканируются каналы (если необходимо зафиксировать канал, нужно вызывать airodump-ng с ключом –channel <номера каналов через запятую>), далее идет таблица найденных сетей с указанием (слева направо): BSSID (MAC-адрес сети), уровень приема сигнала в dBm (зависит от чувствительности приемника, на хороших адаптерах -80 dBm это вполне нормальный уровень), количество принятых Beacon frames (это широковещательные пакеты, несущие информацию о сети), число принятых пакетов данных и скорость приема (пакетов в секунду), канал на котором вещает точка доступа, скорость точки доступа в мегабитах, тип аутентификации (OPN – открытая сеть, WEP, WPA, WPA2), тип шифрования, волшебные буковки PSK в случае с WPA/WPA2 (подробности описаны выше в гл.2) и, наконец, название сети, то есть её ESSID.
Чуть ниже основной таблицы приведена таблица текущих ассоциаций клиентов к точкам. Забегая вперед отмечу, что она тоже важна, так как по ней можно определить активность и MAC-адреса клиентов для последующей их деассоциации.
Из картинки выше следует что нам есть чего ловить – есть и точки доступа, и клиенты с хорошим сигналом. Осталось выбрать жертву (чтобы файл сильно не разбухал можно записывать пакеты только от одной точки доступа дав ключ –bssid или ограничив каналы как указано чуть выше) и дать команду записывать пакеты в файл добавив к вызову ключ -w <префикс названия файла>. Важно: если вы загрузились с DVD запись файла с пакетами необходимо вести на внешнюю флешку или жесткий диск, предварительно примонтировав их командой mount:
Код:

root@bt:~# mkdir /mnt root@bt:~# mount /dev/sda1 /mnt root@bt:~# cd /mnt

где /dev/sda1 – файл устройства внешней флешки (найти куда подцепилась флешка в вашем случае можно покопавшись в результатах вывода команды dmesg).
Для примера запустим airodump-ng на запись пакетов только одной сети из списка в файл testcap.cap:
Код:

root@bt:~# airodump-ng –bssid a0:21:b7:a0:71:3c -w testcap mon0

Теперь можно налить чашку кофе и пожевать бутерброд ожидая пока очередной клиент не пожелает прицепиться к точке доступа и подарить нам вожделенный хендшейк. Кстати, после получения хендшейка в правом верхнем углу появится предупреждающая надпись: WPA handshake: A0:21:B7:A0:71:3C. Все, дело сделано, и можно переходить к следующей главе.
Когда все бутерброды подъедены, кофе больше не лезет а хендшейка все нет и нет, в голову приходит светлая мысль что неплохо бы поторопить клиента с хендшейком. Для этого в состав пакета aircrack-ng входит специальная утилита, позволяющая отправлять клиентам запросы на деассоциацию (отсоединение) от точки доступа, после чего клиент снова захочет соединиться, а именно этого мы и ждем. Утилита эта называется aireplay-ng и запускать ее нужно в отдельном окне параллельно с запуском airodump-ng чтобы можно было одновременно записать результаты работы. Запускаем деассоциацию:
Код:

root@bt:~# aireplay-ng –deauth 5 -a a0:21:b7:a0:71:3c -c 00:24:2b:6d:3f:d5 wlan1

где очевидно, что мы проводим 5 сеансов деассоциации клиента 00:24:2b:6d:3f:d5 от точки доступа с BSSID a0:21:b7:a0:71:3c (адрес клиента мы взяли из нижней таблицы ассоциаций airodump-ng, его можно вообще не указывать, тогда деассоциация будет проводиться широковещательным запросом что не так эффективно как хотелось бы).
После проведения подобной процедуры (а ничто не мешает нам повторить ее еще разок на всякий случай) вероятность словить хендшейк значительно возрастает.
Теперь самое главное. Все, что было описано выше, было описано только в образовательных целях. А все потому что в комплект aircrack-ng входит такая замечательная утилита как besside-ng, которая в автоматическом режиме делает все вышеуказанные операции, сама взламывает WEP и сохраняет хендшейки WPA в отдельный файлик. Запуск этой утилиты прост до безобразия:
Код:

root@bt:~# besside-ng mon0

И это все! Дав эту волшебную команду теперь можно просто сидеть и наблюдать за результатами её бурной деятельности, радуясь за все прибывающие и прибывающие хендшейки (они сохраняются в текущую папку в файл wpa.cap, а лог записывается в файл besside.log). Пароли от WEP-сетей, взломанные besside-ng, можно найти так же в её логе.
Что же, результате гигантской проделанной работы у нас накопились *.cap-файлы содержащие хендшейки и можно смело переходить к главе четвертой. Но давайте все же посмотрим что мы наловили и оценим качество хендшейков.
Быстро оценить, есть ли в файле хендшейки, можно с помощью самого простого вызова aircrack-ng:
Код:

aircrack-ng <имя файла>

Если хендшейк есть aircrack-ng покажет BSSID, ESSID и количество хендшейков для каждой сети:


aircrack-ng видит хендшейк linksys, бро
Однако выше я упомянул, что с помощью aircrack-ng можно только оценить наличие хендшейка, и это неспроста. Дело в том, что aircrack-ng не отличается хорошим EAPOL-парсером и легко может показать наличие хендшейка там, где его нет (или точнее говоря он есть, но нерабочий). Давайте заберемся поглубже в дебри EAPOL-пакетов с помощью Wireshark (ленивым и не слишком любопытным читателям можно не тратить свое драгоценное время и сразу переходить к главе 4).
Открываем в Wireshark наш *.cap-файл и задаем выражение
Код:

(eapol || wlan.fc.type_subtype == 0×08) && not malformed

в качестве фильтра чтобы увидеть среди груды мусора только интересующие нас пакеты.


Вот они, хендшейки
Итак, что мы видим? Самый певый пакет в списке это Beacon frame, несущий информацию о беспроводной сети. Он есть и указывает на то, что сеть называется ‘dlink’. Бывает что Beacon frame отсутствует в файле, тогда для осуществления атаки мы должны доподлинно знать ESSID сети, причем с учетом того что он регистрозависим (да-да, ‘dlink’, ‘Dlink’ и ‘DLINK’ – это три разных ESSID!) и, например, может содержать пробелы в самых неожиданных местах, например в конце. Задав в таком случае неверный ESSID для атаки мы обречены на провал – пароль не будет найден даже если он есть в словаре! Так что наличие Beacon frame в файле с хендшейком это очевидный плюс.
Далее в файле идут ключевые EAPOL-пакеты, из которых и состоит собственно сам хендшейк. Вообще полноценный EAPOL-хендшейк должен содержать четыре последовательных пакета, от msg (1/4) до msg (4/4), но в данном случае нам не слишком повезло, удалось перехватить только две первых пары, состоящих из msg (1/4) и msg (2/4). Вся прелесть в том, что именно в них передается вся информация о хеше пароля WPA-PSK и именно они нужны для проведения атаки.
Давайте внимательно посмотрим на первую пару msg (1/4) и msg(2/4) (обведена красным прямоугольником). В них точка доступа (Station) 02:22:B0:02:22:B0 передает случайное число ANonce клиенту (Client) 00:18:DE:00:18:DE в первом пакете EAPOL-хендшейка и принимает обратно SNonce и MIC, рассчитанные клиентом на основе полученного ANonce. Но обратите внимание на временной промежуток между msg (1/4) и msg (2/4) – он составляет почти целую секунду. Это очень много, и вполне возможно что пакеты msg (1/4) и msg (2/4) относятся к разным хендшейкам (что однозначно приведет к невозможности подобрать пароль даже имея его в словаре), а не имея в перехвате контрольных пакетов msg (3/4) и msg (4/4) проверить это невозможно. Поэтому первый хендшейк имеет весьма сомнительное качество, хотя и выглядит вполне валидным.
К счастью, в данном случае у нас имеется еще одна пара пакетов msg (1/4) и msg (2/4) с временным промежутком между ними всего лишь 50 миллисекунд. Это с большой долей вероятности указывает на их принадлежность к одному и тому же хендшейку, поэтому именно их мы и выберем для атаки. Пометим Beacon frame и эти пакеты нажав правую кнопку мыши и выбрав Mark packet (toggle) и сохраним их в новый файл, выбрав пункт меню ‘Save As…’ и не забыв поставить галочку на Marked packets:

Сохраним нажитое непосильным трудом!
В заключение главы хочу отметить, что для атаки все же рекомендуется использовать “полноценные” хендшейки, имеющие Beacon frame и всю последовательность EAPOL-пакетов от первого до четвертого. Для этого ваше Wi-Fi-оборудование должно очень хорошо “слышать” и точку доступа, и клиента. К сожалению, в реальной жизни это не всегда возможно, поэтому приходится идти на компромиссы и пытаться “оживлять” полумертвые хендшейки вручную как и было продемонстрировано выше.
Глава 4. От хендшейка – к паролю.
Внимательный читатель уже давно понял, что взлом WPA даже при наличии хендшейка и прямых рук атакующего сродни лотерее, устроителем которой является хозяин точки доступа, назначающий пароль. Теперь, имея на руках более-менее качественный хендшейк наша следующая задача – угадать этот самый пароль, т.е. по сути выиграть в лотерею. Ежу понятно, что благоприятного исхода никто гарантировать не может, но неумолимая статистика показывает, что как минимум 20% WPA-сетей успешно подвергаются взлому, так что отчаиваться не стоит, за дело, друзья!В первую очередь надо подготовить словарь. WPA-словарь – это обычный текстовый файл, содержащий в каждой строчке один возможный вариант пароля. Учитывая требования к паролям стандарта WPA, возможные пароли должны иметь не менее 8 и не более 63 символов и могут состоять только из цифр, латинских букв верхнего и нижнего регистра и специальных знаков наподобие!@#$% и т.д. (кстати такой алфавит считается достаточно обширным). И если с нижней границей длины пароля все понятно (не менее 8 символов и точка) то с верхней все не так и просто. Взламывать пароль из 63 символов по словарю – совершенно бестолковое занятие, поэтому вполне разумно ограничиться максимальной длиной пароля в словаре 14-16 символов. Качественный словарь (для которого и дана оценка успешности исхода в 20%) весит более 2Гб и содержит порядка 250 млн возможных паролей с длиной в указанном диапазоне 8-16 символов. Что должно входить в эти комбинции возможных паролей? Во-первых, однозначно, весь восьмизначный цифровой диапазон, на который по статистике приходится почти половина всех раскрываемых паролей. Ведь в 8 цифр прекрасно укладываются различные даты, например 05121988. Полный цифровой восьмизнак имеет 10^8 = 100 млн комбинаций что уже само по себе немало. Кроме того, в боевой словарь вардрайвера должны в обязательном порядке входить слова, наиболее часто используемые в качестве паролей, например internet, password, qwertyuiop, имена и др., а так же их мутации с популярными суффиксами-удлинителями паролей (единоличным лидером в этой области является конечно же суффикс 123). Т.е. если пароль diana слишком короток для соответствия стандарту WPA, находчивый юзер в большинстве случаев дополнит его до diana123, заодно увеличивая таким образом (на его опытный взгляд) секретность пароля. Таких популярных суффиксов также известно несколько десятков.Если самостоятельно собирать словарь влом можно погуглить по ключевым словам wpa wordlist и скачать готовый словарь (не забывайте о таргетировании, ведь довольно наивно будет надеяться на успех гоняя китайский хендшейк по русскому словарю и наоборот) или поискать подходящий вот в этой темке.

а вот так можно использовать crunch чтобы создавать различные комбинации из базовых слов
Подготовив какой-никакой словарь (обзовем его для наглядности wordlist.txt) переходим непосредственно к подбору пароля. Запускаем aircrack-ng со следующими параметрами:
Код:

root@bt:~# aircrack-ng -e -b -w wordlist.txt testcap.cap


Ура! Пароль dictionary нашелся за 3 секунды! (если бы все было так просто…)
На скрине выше aircrack-ng нашел пароль (а это было слово dictionary) всего лишь за 3 секунды. Для этого он перебрал 3740 возможных паролей со скоростью 1039 паролей в секунду. Все бы ничего, но здесь внимательный читатель должен изрядно напрячься, ведь ранее мы говорили о словаре в 250 млн возможных паролей! Быстрый подсчет 250*10^6 делим на 1039 и получаем… порядка 240 тыс секунд, а это 66 часов, а это почти трое суток! Именно столько времени потребуется вашему ноутбуку для обсчета базового 2Гб словаря (если конечно вам не повезет и пароль не найдется где-то посередине процесса). Такие гигантские временные промежутки диктуются низкой скоростью выполнения расчетов, обусловленной высокой вычислительной сложностью заложенных в процедуру аутентификации WPA алгоритмов. Что уже говорить о больших словарях, например полный цифровой девятизнак содержит уже 900 млн комбинаций и потребует пару недель вычислений чтобы убедиться что (как минимум) пароль не найден
Такая лузерская ситуация не могла не беспокоить пытливые умы хакеров и вскоре выход был найден. Для потоковых вычислений были задействованы GPU. GPU (Graphic Processing Unit) – сердце вашего 3D-ускорителя, чип с сотнями (и даже тысячами) потоковых процессоров, позволяющий распределить многочисленные но элементарные операции хеширования паролей и тем самым на порядки ускорить процесс перебора. Чтобы не быть голословным скажу, что разогнаный ATI RADEON HD 5870 способен достичь скорости в 100.000 паролей в секунду, а это про сравнению с aircrack-ng уже ощутимый (на два порядка) скачок вперед.


Монстр ATI RADEON 6990 – 3000 шейдеров, 165.000 WPA паролей в секунду. Кто больше?
Конечно, подобные цифры свойственны только топовым адаптерам ATI RADEON (NVIDIA со своей технологией CUDA пока откровенно сливает ATI в плане скорости перебора WPA ввиду явных архитектурных преимуществ последних). Но за все приходится платить, хороший адаптер стоит хороших денег, да и энергии кушает немало. К тому же надо очень внимательно следить за разгоном и охлаждением GPU, не поддаваясь на провокации тру геймеров, гонящих свои адаптеры вплоть до появления артефактов на экране. Ведь для них артефакты (а по сути аппаратные ошибки вычислителей GPU из-за работы на экстремальных частотах) являются только мимолетным мусором на экране, а для нас череваты пропущенным паролем.
В рамках статьи для новичков я не буду, пожалуй, углубляться в дебри настройки ATI SDK и pyrit под линукс (отмечу только, что это секас еще тот ), т.к. это вполне потянет на отдельную статью (коих есть немало в интернетах), да и целевая аудитория, а именно счастливые обладатели топовых радеонов, не так уж и велика, и вполне могут самостоятельно найти необходимый материал.
Как ни парадоксально, для подбора WPA-пароля с помощью GPU лучше всего подходит Windows. Дело в том, что немалую роль в этом процессе играют драйвера видеоадаптеров, Windows-версиям которых разработчики уделяют куда больше внимания, чем драйверам под Linux и других ОС, и это не случайно, ведь ориентируются они в основном на потребности геймеров. Подбор WPA-пароля под Windows умеют делать две программы – коммерческая Elcomsoft Wireless Security Auditor (или просто EWSA) и консольная утилита hashcat-plus из пакета hashcat by Atom (к всеобщей радости виндовз-юзеров к ней есть и GUI, а попросту говоря отдельный оконный интерфейс). Использование именно этих программ мы и рассмотрим далее, а заодно и сравним их качественные характеристики, а конкретно это будет скорость перебора, которую будет развивать каждая из них в равных условиях, а именно на одном и том же компьютере с одними и теми же драйверами и одним и тем же словарем.
Начать нужно с поиска и установки последней версии драйверов для вашей видеокарты (ну или как минимум убедиться что у вас уже установлена свежая версия). Приверженцы зеленых видеоадаптеров должны посетить www.nvidia.com, красные же идут по старинке на www.ati.com, где выбрав из списка свою модель GPU вы можете скачать драйверы для своей версии Windows. Не буду уделять много внимания процедуре установки драйверов, наверное вы это уже делали ранее, и не один раз.
EWSA можно найти (и купить) на сайте разработчиков – www.elcomsoft.com, только учтите что пробная бесплатная версия по слухам не показывает найденный пароль (нормальную “пробную” версию можно найти здесь, только не забудьте удалить ее со своего компьютера после опробования). Установка и настройка EWSA не должны доставить особых хлопот, можно сразу в меню выбрать русский язык, в настройках GPU убедитесь что ваши GPU видны программе и выбраны галочками (если GPU в списке не видны – у вас явно проблема с драйверами), а так же укажите программе ваши словари в настройках словарей.

Запрягаем всех лошадок…
Жмем “Импорт данных -> Импортировать файл TCPDUMP” и выбираем *.cap-файл с хендшейком (программа их проверит и предложит отметить те, которые мы хотим атаковать), после чего можно смело жать “Запустить атаку -> Атака по словарю”:


EWSA отакуэ (ну что за скорость… )
В данном тесте EWSA показала скорость всего лишь 135.000 паролей в секунду, хотя исходя из конфигурации железа я ожидал увидеть цифру не менее 350 тысяч.
Сравним работу EWSA с ее по-настоящему бесплатным конкурентом – hashcat-plus. Качаем полный набор hashcat-gui (куда уже входит консольная hashcat-plus) с сайта автора и распаковываем архив в удобное место (установка не требуется). Запускаем hashcat-gui32.exe или hashcat-gui64.exe в зависимости от разрядности Windows и отвечаем на первый же вопрос какой GPU будем использовать – NVidia (CUDA) или ATI RADEON (вариант CPU only нас, очевидно, не устроит).
Когда появится основное окно программы переходим на вкладку oclHashcat-plus (или cudaHashcat-plus в случае с NVidia). Здесь есть одна тонкость – hashcat не умеет парсить EAPOL-хендшейки (вообще никак), и требует от вас выложить ему “на блюдечке” WPA-хеши в его собственном формате *.hccap. Преобразовать обычный *.cap в *.hccap можно с помощью патченой утилиты aircrack-ng, но не загружать же BT опять ради такой мелочи! К нашей всеобщей радости разработчик hashcat сделал удобный онлайн-конвертер, просто загрузите туда ваш *.cap-файл с хендшейком и укажите ESSID, в случае если хендшейк в файле есть вам вернется уже готовый к атаке *.hccap.
Двигаемся далее – указываем программе наш *.hccap-файл в качестве Hash file для атаки, в окошко Word lists добавляем файлы словарей (стрелками можно выставить желаемый порядок их прохождения), выбираем WPA/WPA2 в качестве Hash type и жмем на Start.

Должно появиться консольное окно с запуском выбранной весии hashcat-plus с кучей параметров, и если все в порядке утилита приступит к работе. В процессе расчета можно выводить на экран текущий статус по нажатию клавиши ‘s’, приостанавливать процесс по нажатию ‘p’ или прервать по нажатию ‘q’. Если hashcat-plus вдруг найдет пароль она вас обязательно с ним ознакомит.


Результат – 392.000 паролей в секунду! И это очень хорошо согласуется с теоретической предполагаемой скоростью, исходя из конфигурации системы.
Я не являюсь ярым сторонником или противником EWSA или hashcat-plus. Однако данный тест убедительно показывает, что hashcat-plus гораздо лучше масштабируем в случае использования нескольких GPU одновременно. Выбор за вами.

WPA2 (Wireless Protected Access ver. 2.0) – это вторая версия набора алгоритмов и протоколов обеспечивающих защиту данных в беспроводных сетях Wi-Fi. Как предполагается, WPA2 должен существенно повысить защищенность беспроводных сетей Wi-Fi по сравнению с прежними технологиями. Новый стандарт предусматривает, в частности, обязательное использование более мощного алгоритма шифрования AES (Advanced Encryption Standard) и аутентификации 802.1X.

На сегодняшний день для обеспечения надежного механизма безопасности в корпоративной беспроводной сети необходимо (и обязательно) использование устройств и программного обеспечения с поддержкой WPA2. Предыдущие поколения протоколов - WEP и WPA содержат элементы с недостаточно сильными защитой и алгоритмами шифрования. Более того, для взлома сетей с защитой на основе WEP уже разработаны программы и методики, которые могут быть легко скачаны из сети Интернет и с успехом использованы даже неподготовленными хакерами-новичками.

Протоколы WPA2 работают в двух режимах аутентификации: персональном (Personal) и корпоративном (Enterprise). В режиме WPA2-Personal из введенной открытым текстом парольной фразы генерируется 256-разрядный ключ PSK (PreShared Key). Ключ PSK совместно с идентификатором SSID (Service Set Identifier) используются для генерации временных сеансовых ключей PTK (Pairwise Transient Key), для взаимодействия беспроводных устройств. Как и статическому протоколу WEP, протоколу WPA2-Personal присуще определенные проблемы, связанные с необходимостью распределения и поддержки ключей на беспроводных устройствах сети, что делает его более подходящим для применения в небольших сетях из десятка устройств, в то время как для к орпоративных сетей оптимален WPA2-Enterprise .

В режиме WPA2-Enterprise решаются проблемы, касающиеся распределения статических ключей и управления ими, а его интеграция с большинством корпоративных сервисов аутентификации обеспечивает контроль доступа на основе учетных записей. Для работы в этом режиме требуются такие регистрационные данные, как имя и пароль пользователя, сертификат безопасности или одноразовый пароль, аутентификация же осуществляется между рабочей станцией и центральным сервером аутентификации. Точка доступа или беспроводной контроллер проводят мониторинг подключений и направляют аутентификационные запросы на соответствующий сервер аутентификации (как правило, это сервер RADIUS, например Cisco ACS). Базой для режима WPA2-Enterprise служит стандарт 802.1X, поддерживающий аутентификацию пользователей и устройств, пригодную как для проводных коммутаторов, так и для беспроводных точек доступа.



В отличие от WPA, используется более стойкий алгоритм шифрования AES. По аналогии с WPA, WPA2 также делится на два типа: WPA2-PSK и WPA2-802.1x.

Предусматривает новые, более надежные механизмы обеспечения целостности и конфиденциальности данных:

Протокол CCMP (Counter-Mode-CBC-MAC Protocol), основанный на режиме Counter Cipher-Block Chaining Mode (CCM) алгоритма шифрования Advanced Encryption Standard (AES). CCM объединяет два механизма: Counter (CTR) для обеспечения конфиденциальности и Cipher Block Chaining Message Authentication Code (CBC-MAC) для аутентификации.

Протокол WRAP (Wireless Robust Authentication Protocol), основанный на режиме Offset Codebook (OCB) алгоритма шифрования AES.

Протокол TKIP для обеспечения обратной совместимости с ранее выпускавшимся оборудованием. Взаимная аутентификация и доставка ключей на основе протоколов IEEE 802.1x/EAP. Безопасный Independent Basic Service Set (IBSS) для повышения безопасности в сетях Ad-Hoc. Поддержка роуминга.

Вклад в обеспечение безопасности беспроводных сетей механизм CCMP и стандарт IEEE 802.11i. Последний вводит понятие надежно защищенной сети (Robust Security Network, RSN) и надежно защищенного сетевого соединения (Robust Security Network Association, RSNA), после чего делит все алгоритмы на:

RSNA-алгоритмы (для создания и использования RSNA);

Pre-RSNA-алгоритмы.

К Pre-RSNA-алгоритмам относятся:

существующая аутентификация IEEE 802.11 (имеется в виду аутентификация, определенная в стандарте редакции 1999 г.).

То есть к данным типам алгоритмов относятся аутентификация Open System с WEP-шифрованием или без (точнее, отсутствие аутентификации) и Shared Key.

К RSNA-алгоритмам относятся:

TKIP; CCMP; процедура установления и терминации RSNA (включая использование IEEE 802.1x аутентификации); процедура обмена ключами.

При этом алгоритм CCMP является обязательным, а TKIP – опциональным и предназначен для обеспечения совместимости со старыми устройствами.

Стандартом предусмотрены две функциональные модели: с аутентификацией по IEEE 802.1x, т. е. с применением протокола EAP, и с помощью заранее предопределенного ключа, прописанного на аутентификаторе и клиенте (такой режим называется Preshared Key, PSK). В данном случае ключ PSK выполняет роль ключа PMK, и дальнейшая процедура их аутентификации и генерации ничем не отличается.

Так как алгоритмы шифрования, использующие процедуру TKIP, уже принято называть WPA, а процедуру CCMP – WPA2, то можно сказать, что способами шифрования, удовлетворяющими RSNA, являются: WPA-EAP (WPA-Enterprise), WPA-PSK (WPA-Preshared Key, WPA-Personal), WPA2-EAP (WPA2-Enterprise), WPA2-PSK (WPA2-Preshared Key, WPA2-Personal).

Процедура установления соединения и обмена ключами для алгоритмов TKIP и CCMP одинакова. Сам CCMP (Counter mode (CTR) with CBC-MAC (Cipher-Block Chaining (CBC) with Message Authentication Code (MAC) Protocol) так же, как и TKIP, призван обеспечить конфиденциальность, аутентификацию, целостность и защиту от атак воспроизведения. Данный алгоритм основан на методе CCM-алгоритма шифрования AES, который определен в спецификации FIPS PUB 197. Все AES-процессы, применяемые в CCMP, используют AES со 128-битовым ключом и 128-битовым размером блока.

Последним нововведением стандарта является поддержка технологии быстрого роуминга между точками доступа с использованием процедуры кэширования ключа PMK и преаутентификации.

Процедура кэширования PMK заключается в том, что если клиент один раз прошел полную аутентификацию при подключении к какой-то точке доступа, то он сохраняет полученный от нее ключ PMK, и при следующем подключении к данной точке в ответ на запрос о подтверждении подлинности клиент пошлет ранее полученный ключ PMK. На этом аутентификация закончится, т. е. 4-стороннее рукопожатие (4-Way Handshake) выполняться не будет.

Процедура преаутентификации заключается в том, что после того, как клиент подключился и прошел аутентификацию на точке доступа, он может параллельно (заранее) пройти аутентификацию на остальных точках доступа (которые он «слышит») с таким же SSID, т. е. заранее получить от них ключ PMK. И если в дальнейшем точка доступа, к которой он подключен, выйдет из строя или ее сигнал окажется слабее, чем какой-то другой точки с таким же именем сети, то клиент произведет переподключение по быстрой схеме с закэшированным ключом PMK.

Появившаяся в 2001 г. спецификация WEP2, которая увеличила длину ключа до 104 бит, не решила проблемы, так как длина вектора инициализации и способ проверки целостности данных остались прежними. Большинство типов атак реализовывались так же просто, как и раньше.

Заключение

В заключении я бы хотел подытожить всю информацию и дать рекомендации по защите беспроводных сетей.

Существует три механизма защиты беспроводной сети: настроить клиент и AP на использование одного (не выбираемого по умолчанию) SSID, разрешить AP связь только с клиентами, MAC-адреса которых известны AP, и настроить клиенты на аутентификацию в AP и шифрование трафика. Большинство AP настраиваются на работу с выбираемым по умолчанию SSID, без ведения списка разрешенных MAC-адресов клиентов и с известным общим ключом для аутентификации и шифрования (или вообще без аутентификации и шифрования). Обычно эти параметры документированы в оперативной справочной системе на Web-узле изготовителя. Благодаря этим параметрам неопытный пользователь может без труда организовать беспроводную сеть и начать работать с ней, но одновременно они упрощают хакерам задачу проникновения в сеть. Положение усугубляется тем, что большинство узлов доступа настроено на широковещательную передачу SSID. Поэтому взломщик может отыскать уязвимые сети по стандартным SSID.

Первый шаг к безопасной беспроводной сети - изменить выбираемый по умолчанию SSID узла доступа. Кроме того, следует изменить данный параметр на клиенте, чтобы обеспечить связь с AP. Удобно назначить SSID, имеющий смысл для администратора и пользователей предприятия, но не явно идентифицирующий данную беспроводную сеть среди других SSID, перехватываемых посторонними лицами.

Следующий шаг - при возможности блокировать широковещательную передачу SSID узлом доступа. В результате взломщику становится сложнее (хотя возможность такая сохраняется) обнаружить присутствие беспроводной сети и SSID. В некоторых AP отменить широковещательную передачу SSID нельзя. В таких случаях следует максимально увеличить интервал широковещательной передачи. Кроме того, некоторые клиенты могут устанавливать связь только при условии широковещательной передачи SSID узлом доступа. Таким образом, возможно, придется провести эксперименты с этим параметром, чтобы выбрать режим, подходящий в конкретной ситуации.

После этого можно разрешить обращение к узлам доступа только от беспроводных клиентов с известными MAC-адресами. Такая мера едва ли уместна в крупной организации, но на малом предприятии с небольшим числом беспроводных клиентов это надежная дополнительная линия обороны. Взломщикам потребуется выяснить MAC-адреса, которым разрешено подключаться к AP предприятия, и заменить MAC-адрес собственного беспроводного адаптера разрешенным (в некоторых моделях адаптеров MAC-адрес можно изменить).

Выбор параметров аутентификации и шифрования может оказаться самой сложной операцией защиты беспроводной сети. Прежде чем назначить параметры, необходимо провести инвентаризацию узлов доступа и беспроводных адаптеров, чтобы установить поддерживаемые ими протоколы безопасности, особенно если беспроводная сеть уже организована с использованием разнообразного оборудования от различных поставщиков. Некоторые устройства, особенно старые AP и беспроводные адаптеры, могут быть несовместимы с WPA, WPA2 или ключами WEP увеличенной длины.

Еще одна ситуация, о которой следует помнить, - необходимость ввода пользователями некоторых старых устройств шестнадцатеричного числа, представляющего ключ, а в других старых AP и беспроводных адаптерах требуется ввести фразу-пароль, преобразуемую в ключ. В результате трудно добиться применения одного ключа всем оборудованием. Владельцы подобного оборудования могут использовать такие ресурсы, как WEP Key Generator, для генерации случайных ключей WEP и преобразования фраз-паролей в шестнадцатеричные числа.

В целом WEP следует применять лишь в случаях крайней необходимости. Если использование WEP обязательно, стоит выбирать ключи максимальной длины и настроить сеть на режим Open вместо Shared. В режиме Open в сети аутентификация клиентов не выполняется, и установить соединение с узлами доступа может каждый. Эти подготовительные соединения частично загружают беспроводной канал связи, но злоумышленники, установившие соединение в AP, не смогут продолжать обмен данными, так как не знают ключа шифрования WEP. Можно блокировать даже предварительные соединения, настроив AP на прием соединений только от известных MAC-адресов. В отличие от Open, в режиме Shared узел доступа использует ключ WEP для аутентификации беспроводных клиентов в процедуре запрос-отклик, и взломщик может расшифровать последовательность и определить ключ шифрования WEP.

Если можно применить WPA, то необходимо выбрать между WPA, WPA2 и WPA-PSK. Главным фактором при выборе WPA или WPA2, с одной стороны, и WPA-PSK - с другой, является возможность развернуть инфраструктуру, необходимую WPA и WPA2 для аутентификации пользователей. Для WPA и WPA2 требуется развернуть серверы RADIUS и, возможно, Public Key Infrastructure (PKI). WPA-PSK, как и WEP, работает с общим ключом, известным беспроводному клиенту и AP. WPA-PSK можно смело использовать общий ключ WPA-PSK для аутентификации и шифрования, так как ему не присущ недостаток WEP.

Список используемой литературы

1. Горальски В. Технологии xDSL. М.: Лори, 2006, 296 с.

2. www.vesna.ug.com;

3. www.young.shop.narod.com;

7. www.opennet.ru

8. www.pulscen.ru

9. www.cisco.com

10. Барановская Т.П., Лойко В.И. Архитектура компьютерных систем и сетей. М.: Финансы и статистика, 2003, 256 с.

11. Манн С., Крелл М. Linux. Администрирование сетей TCP/IP. М.: Бином-Пресс, 2004, 656с.

12. Смит Р. Сетевые средства Linux. М.: Вильямс, 2003, 672 с.

13. Кульгин М. Компьютерные сети. Практика построения. СПб.: Питер, 2003, 464 с.

14. Таненбаум Э. Компьютерные сети. СПб.: Питер, 2005, 992 с.

15. Олифер В.Г., Олифер Н.А. Основы Сетей передачи данных. Курс лекций. М.: Интернет-Университет Информационных Технологий, 2003, 248 с.

16. Вишневский В.М. Теоретические основы проектирования компьютерных сетей. М.: Техносфера, 2003, 512 с.

В последнее время появилось много «разоблачающих» публикаций о взломе какого-либо очередного протокола или технологии, компрометирующего безопасность беспроводных сетей. Так ли это на самом деле, чего стоит бояться, и как сделать, чтобы доступ в вашу сеть был максимально защищен? Слова WEP, WPA, 802.1x, EAP, PKI для вас мало что значат? Этот небольшой обзор поможет свести воедино все применяющиеся технологии шифрования и авторизации радио-доступа. Я попробую показать, что правильно настроенная беспроводная сеть представляет собой непреодолимый барьер для злоумышленника (до известного предела, конечно).

Основы

Любое взаимодействие точки доступа (сети), и беспроводного клиента, построено на:
  • Аутентификации - как клиент и точка доступа представляются друг другу и подтверждают, что у них есть право общаться между собой;
  • Шифровании - какой алгоритм скремблирования передаваемых данных применяется, как генерируется ключ шифрования, и когда он меняется.

Параметры беспроводной сети, в первую очередь ее имя (SSID), регулярно анонсируются точкой доступа в широковещательных beacon пакетах. Помимо ожидаемых настроек безопасности, передаются пожелания по QoS, по параметрам 802.11n, поддерживаемых скорости, сведения о других соседях и прочее. Аутентификация определяет, как клиент представляется точке. Возможные варианты:

  • Open - так называемая открытая сеть, в которой все подключаемые устройства авторизованы сразу
  • Shared - подлинность подключаемого устройства должна быть проверена ключом/паролем
  • EAP - подлинность подключаемого устройства должна быть проверена по протоколу EAP внешним сервером
Открытость сети не означает, что любой желающий сможет безнаказанно с ней работать. Чтобы передавать в такой сети данные, необходимо совпадение применяющегося алгоритма шифрования, и соответственно ему корректное установление шифрованного соединения. Алгоритмы шифрования таковы:
  • None - отсутствие шифрования, данные передаются в открытом виде
  • WEP - основанный на алгоритме RC4 шифр с разной длиной статического или динамического ключа (64 или 128 бит)
  • CKIP - проприетарная замена WEP от Cisco, ранний вариант TKIP
  • TKIP - улучшенная замена WEP с дополнительными проверками и защитой
  • AES/CCMP - наиболее совершенный алгоритм, основанный на AES256 с дополнительными проверками и защитой

Комбинация Open Authentication, No Encryption широко используется в системах гостевого доступа вроде предоставления Интернета в кафе или гостинице. Для подключения нужно знать только имя беспроводной сети. Зачастую такое подключение комбинируется с дополнительной проверкой на Captive Portal путем редиректа пользовательского HTTP-запроса на дополнительную страницу, на которой можно запросить подтверждение (логин-пароль, согласие с правилами и т.п).

Шифрование WEP скомпрометировано, и использовать его нельзя (даже в случае динамических ключей).

Широко встречающиеся термины WPA и WPA2 определяют, фактически, алгоритм шифрования (TKIP либо AES). В силу того, что уже довольно давно клиентские адаптеры поддерживают WPA2 (AES), применять шифрование по алгоритму TKIP нет смысла.

Разница между WPA2 Personal и WPA2 Enterprise состоит в том, откуда берутся ключи шифрования, используемые в механике алгоритма AES. Для частных (домашних, мелких) применений используется статический ключ (пароль, кодовое слово, PSK (Pre-Shared Key)) минимальной длиной 8 символов, которое задается в настройках точки доступа, и у всех клиентов данной беспроводной сети одинаковым. Компрометация такого ключа (проболтались соседу, уволен сотрудник, украден ноутбук) требует немедленной смены пароля у всех оставшихся пользователей, что реалистично только в случае небольшого их числа. Для корпоративных применений, как следует из названия, используется динамический ключ, индивидуальный для каждого работающего клиента в данный момент. Этот ключ может периодический обновляться по ходу работы без разрыва соединения, и за его генерацию отвечает дополнительный компонент - сервер авторизации, и почти всегда это RADIUS-сервер.

Все возможные параметры безопасности сведены в этой табличке:

Свойство Статический WEP Динамический WEP WPA WPA 2 (Enterprise)
Идентификация Пользователь, компьютер, карта WLAN Пользователь, компьютер
Пользователь, компьютер
Пользователь, компьютер
Авторизация
Общий ключ

EAP

EAP или общий ключ

EAP или общий ключ

Целостность

32-bit Integrity Check Value (ICV)

32-bit ICV

64-bit Message Integrity Code (MIC)

CRT/CBC-MAC (Counter mode Cipher Block Chaining Auth Code - CCM) Part of AES

Шифрование

Статический ключ

Сессионный ключ

Попакетный ключ через TKIP

CCMP (AES)

РАспределение ключей

Однократное, вручную

Сегмент Pair-wise Master Key (PMK)

Производное от PMK

Производное от PMK

Вектор инициализации

Текст, 24 бита

Текст, 24 бита

Расширенный вектор, 65 бит

48-бит номер пакета (PN)

Алгоритм

RC4

RC4

RC4

AES

Длина ключа, бит

64/128

64/128

128

до 256

Требуемая инфраструктура

Нет

RADIUS

RADIUS

RADIUS

Если с WPA2 Personal (WPA2 PSK) всё ясно, корпоративное решение требует дополнительного рассмотрения.

WPA2 Enterprise



Здесь мы имеем дело с дополнительным набором различных протоколов. На стороне клиента специальный компонент программного обеспечения, supplicant (обычно часть ОС) взаимодействует с авторизующей частью, AAA сервером. В данном примере отображена работа унифицированной радиосети, построенной на легковесных точках доступа и контроллере. В случае использования точек доступа «с мозгами» всю роль посредника между клиентов и сервером может на себя взять сама точка. При этом данные клиентского суппликанта по радио передаются сформированными в протокол 802.1x (EAPOL), а на стороне контроллера они оборачиваются в RADIUS-пакеты.

Применение механизма авторизации EAP в вашей сети приводит к тому, что после успешной (почти наверняка открытой) аутентификации клиента точкой доступа (совместно с контроллером, если он есть) последняя просит клиента авторизоваться (подтвердить свои полномочия) у инфраструктурного RADIUS-сервера:

Использование WPA2 Enterprise требует наличия в вашей сети RADIUS-сервера. На сегодняшний момент наиболее работоспособными являются следующие продукты:

  • Microsoft Network Policy Server (NPS), бывший IAS - конфигурируется через MMC, бесплатен, но надо купить винду
  • Cisco Secure Access Control Server (ACS) 4.2, 5.3 - конфигурируется через веб-интерфейс, наворочен по функционалу, позволяет создавать распределенные и отказоустойчивые системы, стоит дорого
  • FreeRADIUS - бесплатен, конфигурируется текстовыми конфигами, в управлении и мониторинге не удобен

При этом контроллер внимательно наблюдает за происходящим обменом информацией, и дожидается успешной авторизации, либо отказа в ней. При успехе RADIUS-сервер способен передать точке доступа дополнительные параметры (например, в какой VLAN поместить абонента, какой ему присвоить IP-адрес, QoS профиль и т.п.). В завершении обмена RADIUS-сервер дает возможность клиенту и точке доступа сгенерировать и обменяться ключами шифрования (индивидуальными, валидными только для данной сеcсии):

EAP

Сам протокол EAP является контейнерным, то есть фактический механизм авторизации дается на откуп внутренних протоколов. На настоящий момент сколько-нибудь значимое распространение получили следующие:
  • EAP-FAST (Flexible Authentication via Secure Tunneling) - разработан фирмой Cisco; позволяет проводить авторизацию по логину-паролю, передаваемому внутри TLS туннеля между суппликантом и RADIUS-сервером
  • EAP-TLS (Transport Layer Security). Использует инфраструктуру открытых ключей (PKI) для авторизации клиента и сервера (суппликанта и RADIUS-сервера) через сертификаты, выписанные доверенным удостоверяющим центром (CA). Требует выписывания и установки клиентских сертификатов на каждое беспроводное устройство, поэтому подходит только для управляемой корпоративной среды. Сервер сертификатов Windows имеет средства, позволяющие клиенту самостоятельно генерировать себе сертификат, если клиент - член домена. Блокирование клиента легко производится отзывом его сертификата (либо через учетные записи).
  • EAP-TTLS (Tunneled Transport Layer Security) аналогичен EAP-TLS, но при создании туннеля не требуется клиентский сертификат. В таком туннеле, аналогичном SSL-соединению браузера, производится дополнительная авторизация (по паролю или как-то ещё).
  • PEAP-MSCHAPv2 (Protected EAP) - схож с EAP-TTLS в плане изначального установления шифрованного TLS туннеля между клиентом и сервером, требующего серверного сертификата. В дальнейшем в таком туннеле происходит авторизация по известному протоколу MSCHAPv2
  • PEAP-GTC (Generic Token Card) - аналогично предыдущему, но требует карт одноразовых паролей (и соответствующей инфраструктуры)

Все эти методы (кроме EAP-FAST) требуют наличия сертификата сервера (на RADIUS-сервере), выписанного удостоверяющим центром (CA). При этом сам сертификат CA должен присутствовать на устройстве клиента в группе доверенных (что нетрудно реализовать средствами групповой политики в Windows). Дополнительно, EAP-TLS требует индивидуального клиентского сертификата. Проверка подлинности клиента осуществляется как по цифровой подписи, так (опционально) по сравнению предоставленного клиентом RADIUS-серверу сертификата с тем, что сервер извлек из PKI-инфраструктуры (Active Directory).

Поддержка любого из EAP методов должна обеспечиваться суппликантом на стороне клиента. Стандартный, встроенный в Windows XP/Vista/7, iOS, Android обеспечивает как минимум EAP-TLS, и EAP-MSCHAPv2, что обуславливает популярность этих методов. С клиентскими адаптерами Intel под Windows поставляется утилита ProSet, расширяющая доступный список. Это же делает Cisco AnyConnect Client.

Насколько это надежно

В конце концов, что нужно злоумышленнику, чтобы взломать вашу сеть?

Для Open Authentication, No Encryption - ничего. Подключился к сети, и всё. Поскольку радиосреда открыта, сигнал распространяется в разные стороны, заблокировать его непросто. При наличии соответствующих клиентских адаптеров, позволяющих прослушивать эфир, сетевой трафик виден так же, будто атакующий подключился в провод, в хаб, в SPAN-порт коммутатора.
Для шифрования, основанного на WEP, требуется только время на перебор IV, и одна из многих свободно доступных утилит сканирования.
Для шифрования, основанного на TKIP либо AES прямое дешифрование возможно в теории, но на практике случаи взлома не встречались.

Конечно, можно попробовать подобрать ключ PSK, либо пароль к одному из EAP-методов. Распространенные атаки на данные методы не известны. Можно пробовать применить методы социальной инженерии, либо

Личные данные и файлы в беспроводной сети иногда могут быть доступны посторонним людям, перехватывающим сетевой сигнал. Это может привести к краже личных данных и другим злонамеренным действиям. Ключ безопасности сети или парольная фраза могут помочь защитить беспроводную сеть от подобного несанкционированного доступа.

Следуйте инструкциям мастера настройки сети, чтобы настроить ключ безопасности.

Примечание.

  • Не рекомендуется использовать протокол WEP для защиты беспроводной сети. Более надежным является защищенный доступ Wi-Fi Protected Access (WPA или WPA2). Если при попытке использовать WPA и WPA2 они не работают, рекомендуется заменить сетевой адаптер на адаптер, поддерживающий WPA или WPA2. Все сетевые устройства, компьютеры, маршрутизаторы и точки доступа также должны поддерживать WPA или WPA2.

Методы шифрования для беспроводных сетей

На сегодняшний день имеется три типа шифрования беспроводных сетей: Защищенный доступ Wi-Fi (WPA и WPA2), Wired Equivalent Privacy (WEP) и 802.1x. Первые два метода подробно описаны в следующих разделах. Протокол 802.1x используется, как правило, в корпоративных сетях и не рассматривается здесь.

Защищенный доступ Wi-Fi (WPA и WPA2)

WPA и WPA2 требуют от пользователя предоставления ключа безопасности для подключения. После проверки ключа шифруются все данные, передаваемые между компьютером или устройством и точкой доступа.

Существует два типа проверки подлинности WPA: WPA и WPA2. По возможности используйте WPA2, так как он обеспечивает наибольшую безопасность. Почти все новые адаптеры беспроводной сети поддерживают WPA и WPA2, но некоторые старые модели не поддерживают. В WPA-личное и WPA2-личное всем пользователям назначается одинаковая парольная фраза. Этот режим рекомендуется для домашних сетей. WPA-предприятие и WPA2-предприятие разработаны для использования с сервером проверки подлинности стандарта 802.1x, который предоставляет всем пользователям разные ключи. Этот режим используется главным образом в рабочих сетях.

Протокол WEP (Wired Equivalent Privacy)

WEP - более старый метод обеспечения безопасности сети. Он все еще доступен для поддержки устаревших устройств, но использовать его не рекомендуется. При включении протокола WEP выполняется настройка ключа безопасности сети. Этот ключ осуществляет шифрование информации, которую компьютер передает через сеть другим компьютерам. Однако защиту WEP относительно легко взломать.

Существует два типа методов защиты WEP: проверка подлинности в открытой системе и проверка подлинности с использованием общих ключей. Ни один из них не обеспечивает высокий уровень безопасности, но метод проверки подлинности с использованием общих ключей является менее безопасным. Для большинства компьютеров и точек доступа беспроводной сети, ключ проверки подлинности с использованием общих ключей совпадает со статическим ключом шифрования WEP, который используется для обеспечения безопасности сети. Злоумышленник, перехвативший сообщения для успешной проверки подлинности с использованием общих ключей, может, используя средства анализа, определить ключ проверки подлинности с использованием общих ключей, а затем статический ключ шифрования WEP. После определения статического ключа шифрования WEP злоумышленник может получить полный доступ к сети. По этой причине эта версия Windows автоматически не поддерживает настройку сети через проверку подлинности с использованием общих ключей WEP.

Если, несмотря на эти предупреждения, требуется проверка подлинности с использованием общих ключей WEP, выполните следующие действия.

Часто у пользователей возникает проблема с подключением к интернету, когда сеть действует, но сигнал не раздаётся. Устройство пытается подключиться к точке доступа, но появляется надпись «Сохранено защита WPA» и в результате соединение отсутствует.

Иногда бывает, что девайс к сети подключается, но по факту раздача интернета не работает

Что с этим делать? В большинстве случаев неполадки касаются не телефона или планшета, устройств на Андроиде, а самого роутера . Есть несколько способов изменить его настройки, чтобы наладить его на корректную работу и качественное соединение с вашим оборудованием.

Иногда для решения проблемы с соединением, когда выбивает «Сохранено защита WPA», достаточно сделать перезагрузку точки Wi-Fi и заново подключиться к ней. Вероятно, в работе маршрутизатора попросту возникла неполадка, которая легко устраняется его перезапуском.

Ещё одна возможная причина, связанная с некорректной работой оборудования, может быть связана с тем, что у него устарела прошивка. Скачайте с сайта производителя наиболее актуальную прошивку для маршрутизатора, загрузите файл в меню настроек.

Настройки открываются так: введите IP-адрес роутера в адресную строку любого браузера, впишите значение «Admin» вместо логина и пароля, если вы не изменяли их.

После входа обновите оборудование . Даже если дело не в прошивке, лишний раз поставить новую версию всегда полезно, ведь выпуская её, производитель исправляет все предыдущие неполадки.

Региональные настройки

Доступ к сети может быть недоступен по банальной причине - в оборудовании неправильно установлен регион, где вы проживаете.

Чтобы выяснить это, зайдите в настройки маршрутизатора, выберите раздел Wireless, строку Wireless Settings (для моделей марки TP-Link) и проверьте, какой регион указан в строке с одноимённым названием. Если данные некорректны, исправьте их.

Если у вас роутер другой марки, ищите эти данные в разделе, где помимо региона задаётся имя устройства, а также параметры соединения.

Проблемы с паролем

Проверка правильности ключа

В некоторых случаях строка «Сохранено защита WPA» появляется, если при подключении вы ввели неверный пароль. Чтобы сбросить его, нажмите на значок сети, выберите «Удалить», после чего заново подключитесь и введите правильную комбинацию.

Изменение пароля и типа шифрования

Вполне вероятно, что устройство, при помощи которого вы подключаетесь к Wi-Fi, не воспринимает пароль или тип его шифрования. Эти параметры изменяются в настройках оборудования.

Чтобы сделать это на моделях марки TP-Link, зайдите в меню Wireless, выберите вкладку Wireless Security. Здесь вы измените пароль - попробуйте создать комбинацию, состоящую только из цифр. Ниже выберите способ шифрования - лучше всего выбрать пункт WPA/WPA2 - Personal (Recommended), установите тип AES.

Не забудьте сохранить изменения, сделайте перезагрузку и заново подключитесь к Wi-Fi со своего гаджета. Обратите внимание, что при установке нового пароля и изменении параметров вам нужно изменить данные на остальных устройствах, которые ранее соединялись с этим беспроводным подключением.

Изменение режима работы

Соединение зачастую отсутствует по причине того, что телефон, планшет или другая техника не поддерживает режим работы роутера. Существует три таких режима, все они называются латинскими буквами b, g, n. Если маршрутизатор установлен на работу в режиме n, а гаджет его не поддерживает, то вам не удастся их соединить.

Поэтому проведите эксперимент: измените способ работы устройства , для чего необходимо выполнить следующие действия:

  • Зайдите в настройки оборудования, воспользуйтесь упомянутым ранее разделом Wireless, вкладка Wireless Settings.
  • Остановитесь на строке под названием Mode.
  • Теперь вам предстоит выбрать другой режим - используйте вариант с наличием всех трёх букв - b, g, n, чтобы вы могли подключаться к Wi-Fi со всех устройств, работающих, по крайней мере, в одном из этих режимов.



Рекомендуем почитать

Наверх