Бесконечное сопротивление - это капитуляция. Что такое Омметр? Практика измерения сопротивления омметром

Для Symbian 29.05.2019
Для Symbian

1.8. Расчет эквивалентных сопротивлений линейных бесконечных цепей

Особую группу образуют задачи на расчет эквивалентных сопротивлений бесконечных цепей. Как правило, эти цепи симметричны и во многих случаях содержат одинаковые элементы (резисторы). Рассматриваемые задачи можно разбить на три группы:
 а) линейные (одномерные);
 б) плоскостные (двумерные);
 в) объемные (трехмерные).
 Эвристические приемы решения подобных задач просты и достаточно оригинальны. Причем последние два типа задач решаются только с помощью искусственного приема, содержание которого будет рассмотрено ниже.

Найдем эквивалентное сопротивление типичной линейной бесконечной цепи резисторов, состоящей из повторяющихся элементов (секций), в типичной задаче.
Задача 1. Найдите эквивалентное сопротивление R каждый.


Решение (типовое, алгоритм).
 Для нахождения эквивалентного сопротивления цепи необходимо выделить общую секцию, которая бесконечно повторяется. Вполне очевидно, что если отделить ее от цепи, то общее сопротивление этой цепи не изменится, т.к. число элементов (секций) бесконечно. В силу вышесказанного, выделив повторяющуюся секцию в цепи и заменив сопротивление, остальной цепи искомым сопротивлением R х , получим эквивалентную схему (рис.).

 Найдем сопротивление цепи, предварительно записав выражение для R х через R x . Опуская промежуточные выкладки, получим:

или

откуда получим ответ:

Рассмотрим еще одну подобную задачу.
Задача 2. R каждый.


Решение.
 Применим точно такой же прием, но с другой повторяющейся секцией (рис.).

После аналогичных расчетов получим:

Отсюда легко записать ответ:

Можно сформулировать более сложные задачи, решение которых сводится к рассмотренным выше алгоритмам.

Задача 3. А и В бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.


Решение.
 Эквивалентное сопротивление цепи равно сопротивлению двух одинаковых и параллельно соединенных резисторов, сопротивления которых равны (см. решения задач 1 и 2):
справа

и слева

Тогда после простых расчетов легко получить ответ:

Задача 4. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.


Решение.
 Эквивалентное сопротивление цепи равно сопротивлению двух одинаковых и параллельно соединенных резисторов сопротивлением

каждый (см. решение задачи 2).
 Отсюда легко получить ответ:

Задача 5. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.


Решение.
 Эквивалентное сопротивление цепи равно сопротивлению четырех резисторов, соединенных между собой в цепь, которая изображена на рисунке.

 Сопротивление

(см. решения задач 1 и 2). Отсюда искомое эквивалентное сопротивление цепи между точками А и В :

Задача 6. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых проволочных резисторов сопротивлением R каждый.


Решение.
 Эквивалентная схема представлена на рисунке.

 Повторяющаяся секция состоит из четырех резисторов. Полное сопротивление цепи находим, полагая R AB = R х .
Опуская промежуточные выкладки, получим

или

откуда следует, что


Рассмотрим более трудную задачу, решение которой предполагает предварительное использование метода исключения пассивных элементов цепи.

Задача 7. Найти эквивалентное сопротивление между точками А и В бесконечной цепочки (рис. а), которая состоит из одинаковых проволочных резисторов сопротивлением R каждый.


Решение.
 Чтобы найти эквивалентное сопротивление цепи, необходимо сначала выделить общую секцию, которая бесконечно повторяется. Понятно, что если отделить ее от цепи, то общее сопротивление этой цепи не изменится. Выделить повторяющуюся секцию в рассматриваемой цепи можно, но заменить сопротивление остальной части цепи искомым сопротивлением R х нельзя, т.к. оставшаяся часть имеет четыре соединительных провода.
 Если посмотрим на каркас слева, то получим изображение цепи в перспективе, приведенное на рисунке б.

 Из симметрии этого рисунка видно, что потенциалы точек, обозначенных цифрой 1, одинаковы и равны потенциалам точек, обозначенных цифрой 2.
 Исключим из рассмотрения пассивные резисторы, соединяющие точки 1 и 2 (рис. в).

 Между точками С и D (рис. в) находится фигура, эквивалентное сопротивление которой равно искомому, т.к. цепь бесконечна.
 Обозначим искомое сопротивление через R х (рис. г)

И получим (аналогично решению задачи 1)

или

откуда следует, что

 Второй корень уравнения отрицательный и не имеет смысла. Окончательный результат:

При проверке катушек индуктивности омметром контролируется только отсутствие в них обрыва. Сопротивление однослойных катушек должно быть равно нулю, сопротивление многослойных катушек близко к нулю. Иногда в пас­портных данных аппарата указывается сопротивление многослойных катушек постоянному току и на его величину можно ориентироваться при их проверке. При обрыве катушки омметр показывает бесконеч­но большое сопротивление. Если катушка имеет отвод, нужно про­верить обе секции катушки, подключая омметр сначала к одному из крайних выводов катушки и к ее отводу, а затем-ко второму крайнему выводу и отводу.

11.6. Проверка низкочастотных дросселей и трансформаторов.

Как правило, в паспортных данных аппаратуры или в инструкциях по ее ремонту указываются значения сопротивлений обмоток постоян­ному току, которые можно использовать при проверке трансформа­торов и дросселей. Обрыв обмотки фиксируется по бесконечно большому сопротивлению между ее выводами. Если же сопротивле­ние значительно меньше номинального, это может указывать на на­личие короткозамкнутых витков. Однако чаще всего короткозамкнутые витки возникают в небольшом количестве, когда происходит за­мыкание между соседними витками, и сопротивление обмотки изменяется незначительно. Для проверки отсутствия короткозамкнутых витков можно поступить следующим образом. У трансформато­ра выбирается обмотка с наибольшим количеством витков, к одному из выводов которой подключается омметр с помощью зажима «кро­кодил». Ко второму выводу этой обмотки прикасаются слегка влаж­ным пальцем левой руки. Держа металлический наконечник второго щупа омметра правой рукой, подключают его ко второму выводу обмотки, не отрывая от него пальца левой руки. Стрелка омметра отклоняется от своего начального положения, показывая сопротивле­ние обмотки. Когда стрелка остановится, отводят правую руку с щу­пом от второго вывода обмотки. В момент разрыва цепи при исправ­ном трансформаторе чувствуется легкий удар электрическим током за счет ЭДС самоиндукции, возникающей при разрыве цепи. В связи с тем что энергия разряда мизерна, никакой опасности такая про­верка не представляет. При наличии короткозамкнутых витков в проверяемой обмотке или в других обмотках трансформатора ЭДС самоиндукции резко падает и электрического удара не ощущается. Омметр при этом нужно использовать на самом меньшем пределе измерения, который соответствует наибольшему току измерения.

11.7. Проверка диодов.

Полупроводниковые диоды характеризуются резко нелинейной вольтамперной характеристикой. Поэтому их пря­мой и обратный токи при одинаковом приложенном напряжении различны. На этом основана проверка диодов омметром. Прямое сопротивление измеряется при подключении плюсового вы­вода омметра к аноду, а минусового вывода-к катоду диода. У пробитого диода прямое и обратное сопротивления равны нулю. Если диод оборван, оба сопротивления бесконечно велики. Указать заранее значения прямого и обратного сопротивлений или их соотно­шение нельзя, так как они зависят от приложенного напряжения, а это напряжение у разных мультиметров и на разных пределах изме­рения различно. Тем не менее, у исправного диода обратное сопро­тивление должно быть больше прямого. Отношение обратного со­противления к прямому у диодов, рассчитанных на низкие обратные напряжения, велико (может быть более 100). У диодов, рассчитанных на большие обратные напряжения, это отношение оказывается не­значительным, так как обратное напряжение, приложенное к диоду омметром, мало по сравнению с тем обратным напряжением, на ко­торое диод рассчитан. Методика проверки стабилитронов и варикапов не отличается от изложенной. Как известно, если к диоду при­ложено напряжение, равное нулю, ток диода также будет равен нулю. Для получения прямого тока необходимо приложить к диоду какое-то пороговое небольшое напряжение. Любой омметр обеспечи­вает приложение такого напряжения. Однако если соединено после­довательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается и может оказаться больше, чем напряжение на клеммах омметра. По этой причине измерить прямые напряжения диодных столбов или селеновых столбиков при помощи омметра оказывается невозможно.

Термин "операционный усилитель" ранее применялся для усилителей постоянного тока с большим коэффициентом усиления и малым дрейфом, выполненных на электронных лампах и позднее на дискретных транзисторах. Такие усилители служили основой аналоговых ЭВМ, весьма эффективных для решения операторных уравнений высоких порядков. В настоящее время операционным усилителем (ОУ) называют интегральную микросхему, имеющую дифференциальный вход (U+ и U-) и выполняющую функцию Uвых = К * (U+ - U-) , где К - собственный коэффициент усиления. Схемотехнически они обычно выполняются по схеме прямого усиления с дифференциальными входами, двухтактным выходом, и рассчитаны на двуполярное симметричное питание (хотя используется и однополярное).
Кроме двух входов, выхода и выводов питания, ОУ может также иметь выводы для балансировки, коррекции, программирования (задания определенных параметров величиной управляющего тока).
В идеальном случае ОУ должен иметь бесконечный коэффициент усиления по напряжению, бесконечно большое входное и бесконечно малое выходное сопротивления, бесконечно большую амплитуду выходного сигнала, бесконечно большой диапазон усиливаемых частот. Параметры ОУ не должны зависеть от внешних факторов, напряжения питания и температуры. При соблюдении этих условий передаточная характеристика ОУ, охваченного отрицательной обратной связью (ООС) точно соответствует передаточной характеристике цепи ООС и не зависит от параметров самого усилителя. Именно на этом постулате основывается все бесконечное разнообразие схемных решений по применению ОУ.
Реальные ОУ, естественно, имеют характеристики отличные от идеальных. Поскольку схемотехнически и технологически спроектировать ОУ с хорошим приближением к идеальным всех параметров одновременно невозможно, проектировщики вынуждены идти на компромисс, отдавая предпочтение в каждом конкретном случае только одному - двум ключевым параметрам. Отсюда возникает довольно четкая классификация выпускаемых ОУ. В зависимости от поставленной задачи, оптимизированы могут быть следующие параметры:


*ОУ, относящиеся к этому классу, большей частью имеют на входе полевые транзисторы, которые обладают значительной зависимостью обратных токов от температуры. Отсюда, входной ток таких ОУ может увеличиваться на порядок и более при изменении температуры от 25°C до Tmax.
- Напряжение смещения (Input Offset Voltage), Uсм. - дифференциальное (между входами) напряжение, необходимое для того, чтобы выходное напряжение ОУ стало равно нулю. Появление напряжения смещения связано с технологическими отклонениями при изготовлении ОУ, в результате чего в схеме возникает некоторая разбалансировка. Последняя приводит к тому, что при нулевом входном сигнале ОУ и соединении между собой входов, из-за большого коэффициента усиления ОУ, схема входит в насыщение, и напряжение на выходе становится близким к напряжению питания;
- Температурный дрейф напряжения смещения (Offset Voltage Drift) , измеряется в мкВ/oС. Показывает зависимость напряжения смещения от температуры;
- Временной дрейф напряжения смещения , характеризующийся коэффициентом долговременной стабильности (Long Term Stability), измеряемый в мкВ/месяц;
- Коэффициент усиления по напряжению (Open-Loop Gain), K - динамический параметр-отношение приращения выходного напряжения
к вызвавшему его приращению дифференциального входного напряжения в схеме без обратной связи. Широко используется также статический коэффициент усиления при большом сигнале (Large-Signal Voltage Gain) - отношение максимального значения выходного напряжения к вызывающему его значению входного напряжения. Измеряется в ненормированных единицах, децибелах (дБ) или В/мВ;
- Коэффициент ослабления синфазного сигнала (Common Mode Rejection Ratio-CMRR), Косс - отношение приращений синфазного и дифференциального входных напряжений, вызывающих одинаковое приращение выходного напряжения. Говоря проще, ОУ должен усиливать только разность входных напряжений, независимо от их абсолютной величины. Насколько это не так и показывает CMRR. Измеряется в децибелах (дБ);
- Коэффициент влияния нестабильности источников питания (Power Supply Ripple Rejection - PSRR), Книп - отношение изменения напряжения питания к вызванному им изменению напряжения смещения. Измеряется в децибелах (дБ).


- Граничная частота усиления, Fгр - значение частоты, при котором коэффициент усиления ОУ по напряжению уменьшается на 3 дБ относительно значения на средних частотах. Используется также частота единичного усиления (Unity Gain Bandwidth) - значение частоты, соответствующей падению коэффициента усиления ОУ до единицы;
- Максимальная скорость нарастания выходного напряжения (Slew Rate) , Uвых определяется при подаче на вход ОУ прямоугольного импульса как отношение приращения выходного напряжения к времени, за которое произошло это приращение. Измеряется в В/мкс. Uвых зависит от многих факторов - коэффициента усиления усилителя с ООС, параметров цепей
частотной коррекции, направления изменения выходного напряжения. Наименьшая скорость нарастания выходного напряжения получается при единичном усилении, поэтому это значение и приводят в справочных данных. С конечным значением скорости нарастания связано также убывание максимальной амплитуды выходного напряжения усилителя с ростом частоты входного сигнала;
- Время установления (Settling Time), tуст - время, необходимое для достижения выходным сигналом расчетного значения с точностью до 0,1% (или другой, оговоренной).


*Следует отметить, что критерии достижения минимального энергопотребления противоречат критериям достижения максимального быстродействия, поэтому микромощные ОУ, как правило, имеют более, чем скромные скоростные параметры и наоборот. Необходимость минимизации энергопотребления объясняется требованиями к устройствам с батарейным питанием. В связи с этим, подавляющее большинство микромощных ОУ имеют к тому же пониженное напряжение питания. Плюс к этому - возможность работы от однополярного источника питания.
При небольшом напряжении питания <потеря> даже одного вольта, как разницы между напряжением питания и достижимым напряжением на выходе, представляется слишком расточительной. Поэтому большинство современных ОУ этого класса обладают возможностью достижения выходным сигналом полного размаха выходного напряжения в пределах напряжения питания. Такая способность называется R/R (Rail-to-Rail) выходом. Аналогично существуют и R/R входы.


Шумовые параметры ОУ в значительной степени определяют минимальный допустимый уровень входных сигналов и, в общем случае, шумы присущи всем ОУ во всех классах. В данном случае мы рассматриваем усилители для аудио применений и дополнительно приводим другие параметры, влияющие на качество передачи звукового сигнала.
* Отражение объективных характеристик ОУ не дает, к сожалению, полного впечатления об его <музыкальности>. При прочих равных условиях, одни усилители будут звучать субъективно лучше, другие хуже. Видимо, это находится за гранью измеряемых и описываемых параметров, хотя закономерности здесь, конечно, очевидны. По опыту многих любителей High-End, непревзойденным с точки зрения музыкальности является OP275 фирмы Analog Devices.


Такие усилители разрабатываются для непосредственного управления нагрузкой, и львиная их доля предназначена для работы в качестве УНЧ.

- Выходная мощность (Power Output), Рвых (Вт) - долговременная мощность, которую усилитель способен передавать в нагрузку без ухудшения оговоренных параметров. Обычно оговаривается допустимая величина нелинейных искажений и сопротивление нагрузки;
- Выходной ток (Output Current), Iвых (А) - максимальный выходной ток, передаваемый в нагрузку. Часто приводится значение максимального импульсного тока, который может выдаваться в нагрузку лишь кратковременно;
- Выходное сопротивление (Output Resistance), Rвых - динамическое сопротивление без ООС. При использовании ООС, выходное сопротивление, в зависимости от типа связи, становится пренебрежимо малым или большим, в связи с чем, большее значение имеет максимальный выходной ток или минимально допустимое сопротивление нагрузки (Ом);
- Иногда специально указывается ток при коротком замыкании выхода (большинство ОУ имеют схему ограничения тока короткого замыкания).


В ряде случаев к параметрам ОУ не предъявляется особых требований. Тогда на первое место выходят экономические соображения. Как известно, цены на микросхемы в значительной степени зависят от массовости их выпуска. Применяя стандартные микросхемы, можно быть уверенным в их дешевизне и доступности.
Мы рекомендуем следующие типы ОУ общего назначения: одиночные - uA741, сдвоенные - LM358 и счетверенные - LM324. Эти усилители обладают сбалансированными параметрами и чрезвычайной распространенностью. В каждом из вышерассмотренных классов ОУ тоже есть определенные <лидеры> с экономической точки зрения. Так, в классе прецизионных ОУ, самым доступным является OP07; среди ОУ с высоким входным сопротивлением - серия TL071/2/4 - TL081/2/4; из микромощных можно рекомендовать TL061/2/4; из аудио - NE5532/34; недорогими быстродействующими (до определенной степени) можно считать OP27/37 или LF357.

В заключение стоит отметить, что столь краткий обзор не охватывает огромного числа интересных разновидностей ОУ, например

При ремонте радиотехнических и электротехнических изделий, ремонте проводки возникает потребность в поиске контакта проводников тока в месте, в котором может возникнуть короткое замыкание (в этом случае сопротивление = 0), поиске места плохого контакта между проводниками (сопротивление стремится к бесконечности). В этом случае стоит использовать прибор под названием Омметр. Сопротивление обозначается буквой R, измеряется в Омах.

Омметр представляет собой прибор (батарейку) с последовательно включенным цифровым или стрелочным индикатором. Так же, омметр служит для проверки измерительных приборов, измерения сопротивления изоляции при повышенном напряжении. Все мультиметры и тестеры имеют функцию измерения сопротивления.

Обратите внимание! Измеряйте сопротивление при полном обесточивании приборов, дабы омметр не вышел из строя. Для этого выньте вилку из розетки либо батарейки. Если схема включает в себя конденсаторы, имеющие большую емкость, их следует разрядить. Закоротите выводы конденсаторов через сопротивление, номинальный ток которого 100 кОм на пару секунд.

Для того чтоб воспользоваться измерением Ом, установите ползунок на приборе в положение, которое соответствует минимальному измерению величины сопротивления.

Прежде чем проводить измерения, проверьте прибор на работоспособность. Для этого следует соединить концы щупов между собой.

Если это тестер, необходимо установить стрелку на отметку «0». Если не получается, замените батарейки. При проверке лампы накаливания можно использовать прибор, батарейки которого разрядились и стрелка не устанавливается на ноль, но при соединении щупов отклоняется от «0».

Если есть отклонение от нуля, то значит, цепь цела. Цифровые приборы имеют возможность выводить показания в десятых долях Омов. Если цепь разомкнута, цифровые приборы мигает перегрузка, на стрелочных приборах стрелка стремится к «0».

Если прибор имеет функцию прозвонки цепей (символ диода), низкоомные цепи, провода лучше прозванивать этим способом. При положительном результате будет слышен звуковой сигнал.

Не горит лампа в светильника? В чем причина? Поломка может быть в патроне, выключателе или электропроводке. Лампа накаливания, энергосберегающая, лампа дневного света проверяется тестером. Причем сделать это довольно таки просто. Для этого следует установить на тестере ползунок в положение измерения минимального сопротивления и прикоснуться к цоколю концами щупов.

На экране видно, что сопротивление нити накала равно 51 Ом. Это значит, что лампа исправна. Если бы нить была оборвана, на экране показалось бесконечное сопротивление. Автомобильная лампа 12 В и 100 Вт показывает сопротивление в 1,44 Ом. Галогенка на 220 В и 50 Вт выдает 968 Ом.

Нить накала будет показывать меньшее сопротивление в охлажденном состоянии, когда лапа нагрета, этот показатель может увеличиться в несколько раз. Поэтому, зачастую лампы сгорают во время включения. Это потому, что при включении, ток, идущий через нить, превышает допустимый в несколько раз.

Проверка наушников гарнитуры

Бывают проблемы с наушниками, связанные с пропаданием или искажением звука, либо полным его отсутствием. Причиной тому может быть выход наушников из строя либо устройства, с которого принимается сигнал.

При помощи омметра можно установить причину неисправности. Чтоб проверить наушники, нужно присоединить концы щупов к разъему, через который наушники подключаются к аппаратуре. Обычно, это разъем «Джек 3,5». Контакт, находящийся в разъеме ближе к держателю общий, фигурный для левого канала, кольцевой, расположенный между ними, для правого.

Один конец щупа преподносим к общему выводу, вторым касаемся поочередно к правому и левому. Сопротивление на обоих концах должно быть равным 40 Ом. Зачастую, в паспорте наушником указаны все параметры.

Если разница в показаниях велика, имеет место быть короткое замыкание. Это легко проверить. Достаточно коснуться щупами к левому и правому каналам одновременно. Сопротивление должно увеличиться в 2 раза, то есть показывать 80 Ом.

Получается, что мы проводим измерение двух последовательно подключенных цепей. Если при шевелении провода сопротивление меняется, провод перетерт в каком-либо месте. Обычно это происходит в месте выхода из излучателей или Джека. Чтоб точно определить место поломки, зафиксируйте провод, изогните его локально, подключив омметр. Если разрыв в месте установки Джека, нужно купить разборной Джек.

Старый придется откусить вместе с частью перетертого провода, припаять контакты к новому разъему по такому принципу, как они припаяны к Джеку. Если обрыв был найден в наушниках, отрежьте старый кусок провода, припаяйте новый к тому мету, где была старая пайка.

Измерение номинала резистора

Сопротивления (в цепи их называют резисторами) имеют широкое применение в электросхемах. Зачастую приходить проверять резистор на исправность, чтоб определить поломку электроцепи.

На схеме резистор показывают в виде прямоугольника, иногда внутри есть надпись, которая может свидетельствовать о его мощности. Например, I – 1 Вт и так далее.

Чтоб определить номинал омметром, включите его в режим промера сопротивления. Сектор проверки сопротивления поделен на части. Это сделано с целью повышения эффективности измерений. К примеру, ползунок «200» свидетельствует о том, что мы можем промерять сопротивление до 200 Ом. «2k» — 2000 Ом и так далее. «k» свидетельствует о том, что к числу нужно добавить 1000, так как это приставка кило; «М»- мега, следовательно, число умножается на 1000000.

Если установить ползунок на измерения «2k» и при этом измерять резистор номиналом 300 кОм, на дисплей будет выведен значок перегрузки. Значит, нужно установить ползунок в положение 2М. Не важно, в каком положении он установлен, поменять его можно в процессе измерений.

Во время измерений сопротивления тестер может показывать другие показания, но не те, которые указаны на резисторе. Такой резистор не пригоден для дальнейшей эксплуатации.

На современных резисторах имеется цветная маркировка.

Проверка диодов мультиметром или тестером

Если необходимо преобразовать переменный ток в постоянный, применяются полупроводниковые диоды. При проверке платы первое внимание нужно уделить именно им. Они изготавливаются из кремния, германия и других материалов, служащих полупроводниками.

На внешний вид диоды отличаются между собой. Корпус может быть выполнен из пластика, стекла, металла. Они могут быть как цветные, так и прозрачные. Несмотря на это, все они имеют 2 вывода. В схемах,как правило, применяют светодиоды, стабилитроны, выпрямительные диоды.

Условно их показывают как стрелку, которая упирается в отрезок линии. Диод обозначается буквами VD и только светодиоды обозначают HL. Назначение диодов напрямую зависит от обозначений, которые показываются на чертеже. Из-за того, что схема может включать в себя огромное количество диодов, включенных параллельно, из нумеруют.

Диод легко проверить, если знать его принцип работы. А все просто, это как ниппель. Когда воздух входит, колесо накачивается, но назад уже не выйдет. Такой принцип работы и у диода. Только он пропускает через себя ток. Для проверки его работоспособности нужен постоянный источник питания, в роли которого может быть омметр, тестер, так как они мет батарейки.

На фото показано схема работы тестера при проверке сопротивления. На клеммы поступает напряжение определенного вида полярности. «+» подается на клемму красного цвета, «-» на черную. Когда мы прикоснемся, окажется так, что на анодном выводе будет плюсовой щуп, на катодном — минусовой. Ток начнет движение через диод.

Если перепутать метами щупы, ток не будет двигаться. Диод может быть как пробитым, исправным, так и находиться в обрыве. Когда образовался пробой, в какую бы сторону мы не подсоединили щупы, ток будет проходить через диод. Это все потому, что диод в таком случае будет представлять из себя кусочек провода.

Если произошел обрыв, ток не будет поступать. Редко случается такое, что сопротивление перехода изменяется. Такую поломку легко выявить, глядя на дисплей. По такому принципу можно проверить выпрямительный диод, светодиод, стабилитрон, диод Шоттки. Диоды могут быть как с выводами, так и иметь SMD исполнение. Давайте попрактикуемся.

Сначала вставляем щупы в прибор соблюдая цветовую маркировку. COM – черный кабель, R/V/f — красный, плюс. Далее устанавливаем ползунок на «прозвонку». На фото положение 2kOm. Включаем прибор, сомкнув щупы, убеждаемся в том, что он работает.

Первым делом проверим германиевый диод Д7. Ему уже 53 года. Такие диоды сейчас не производят, так как цена сырья велика, да и малая рабочая температура (max 80-100). Однако они хороши тем, что имеют низкий уровень шумов и малое падение напряжения. Их ценят люди, собирающие ламповые усилители звука.

При прямом подключении падение напряжения равно 0,129 мВ. Стрелочный прибор покажет где-то 130 Ом. Если изменить полярность, показание мультиметра будет равно 1, стрелочный в свою очередь покажет бесконечность. Это значит, что сопротивление слишком большой. Диод исправен.

Диод на кремниевой основе проверяется таким же способом. Корпус имеет 2 вывода катода, которые маркируются точкой, линией или окружностью. При прямом подключении падение равно около 0,5 В. Более мощные диоды покажут приблизительно 0,4 В. Таким способом проверяются диоды Шоттки, падение которых равно 0,2 В.

Мощные светодиоды имеют падение более 2 В, прибор может показать 1. В таком случае светодиод и есть индикатором. Если он светится, даже слабо, значит все исправно.

Некоторые типы более мощных светодиодов сделаны по принципу цепочки. То есть имеют несколько последовательно включенных светодиодов. Внешне это не просматривается. Падение на них может равняться до 30 В, проверять их стоит блоком питания, имеющего соответствующее напряжение и резисторами, включенными в цепь.

Проверка электролитических конденсаторов

Конденсаторы делятся на 2 типа: электролитические и простые. Простые подсоединяются в схему любым способом. Но с электролитическими такой способ не пройдет. Важно соблюдать полярность, чтоб не вывести его из строя.

Конденсаторы показываются на схеме при помощи двух параллельных линий. Если конденсатор электролитический, необходимо указать полярность, поставив рядом знак «+». Такие конденсаторы не надежны и причиной выхода из строя блока питания само чаще являются именно они. Вздутый конденсатор в устройстве можно часто заметить.

Мультиметром или тестером можно проверить такой конденсатор, в простонародии говорится «прозвонить». Прежде чем приступить к проверке, нужно выпаять конденсаторов и разрядить его. Для этого просто закоротите его выводы пинцетом или похожим предметом, корпус которого выполнен из металла. Прибор следует установить на проверку сопротивления в диапазоне от сотен килом до мегаом.

Щупами прикоснитесь к выводам конденсатора. При этом, стрелка на приборе плавно будет быстро отклоняться и плавно опускаться. Это зависит от того, какой величины испытываемый конденсатор. Чем емкость больше, тем возвращение стрелки в изначальное положение медленнее. Тестер покажет малое сопротивление, но через некоторое время оно может достигнуть сотни мегом.



Рекомендуем почитать

Наверх