Asus AMD Radeon HD7970 - "темный рыцарь" игрового мира. Видеокарты. В гонке за производительностью

Прочие модели 05.04.2019
Прочие модели

Первый графический адаптер с 28-нанометровым GPU. Комок высоких технологий, сплав запредельной производительности, образцовой функциональности и показательной экономичности. Или попросту говоря – самая быстрая в мире одночиповая видеокарта от AMD – Radeon HD 7970 .

Заждались мы уже от AMD чего-то неординарного, яркого и скоростного. Чуть больше года назад, когда была представлена линейка видеокарт Radeon HD 6900, у них не было шансов тягаться с GeForce GTX 580. Тогда компания осознанно отдала первенство в топ-сегменте, акцентируя внимание на том, что решения на чипах Cayman обладают лучшим, чем у конкурента, соотношением цена/производительность и более энергоэффективны. Но, как и любой серьезный игрок на рынке, компания может длительное время очень успешно предлагать достойные устройства по хорошей цене. Но где-то там, в глубине души… она, конечно же, хочет быть технологическим лидером в своем сегменте.

Radeon HD 7970 дает ей такую возможность. Новинка основана на чипе с принципиально новой архитектурой, который производится по наиболее прогрессивному 28-нанометровому техпроцессу. Гарантирует ли успех такое потенциально очень привлекательное сочетание?

Архитектура Graphics Core Next

Длительное время AMD для своих графических решений использовала архитектуру VLIW (Very Long Instruction Words), которая хорошо оптимизирована для работы с 3D, однако малоэффективна для универсальных вычислений. В подобных задачах довольно высокая теоретическая мощность GPU не давала ожидаемых результатов. Новая архитектура, получившая название Graphics Core Next, разрабатывалась в первую очередь для того, чтобы улучшить эффективность вычислений не связанных напрямую с 3D.

Строительными модулями GCN являются так называемые Compute Unit (CU), основу которых составляют векторные блоки, скалярный сопроцессор и независимый планировщик.

Такая модель организации более универсальна, легче поддается программированию, отладке и анализу. Но основным преимуществом GCN является хороший параллелизм вычислений в многозадачной среде и возможность динамического распределения нагрузки. По этой причине AMD делает акцент на том, что представленные решения с архитектурой GCN это нечто большее, чем просто мощные игровые видеокарты.

В максимальной конфигурации чип имеет 32 блока Compute Unit (суммарно 2048 потоковых процессора), шесть 64-битных контроллера памяти, и продвинутую систему двухуровневого кеширования. В новом ядре по-прежнему используется два блока обработки геометрии, которые были существенно модернизированы.

Функциональные нюансы

Помимо низкоуровневых архитектурных изменений, новинки AMD будут обладать целым набором различных нововведений, улучшающих их функциональность.

DirectX 11.1

Прежде всего, отметим поддержку DirectX 11.1, возможности которого будут реализованы в Windows 8. После выхода данной операционной системы от Microsoft, новая версия API сулит немало интересных возможностей. С предварительным перечнем функций DirectX 11.1 можно ознакомиться .

AMD ZeroCore Power

Функция PowerTune, появившаяся еще в адаптерах серии HD 6900, позволяет оптимальным образом задействовать ресурсы видеокарты, выжимая максимум производительности в рамках заданного теплового пакета. GPU с архитектурой GCN получили в свое распоряжение новый инструмент для оптимизации энергопотребления – AMD ZeroCore Power.

Данная функция, унаследованная от мобильной версии Radeon, позволяет переводить видеокарту в состояние глубокого сна, в котором ее энергопотребление не превышает 3 Вт, а вентилятор системы охлаждения останавливается. Это происходит в том случае, когда монитор переходит в режим stand-by (этот период изменяется в настройках ОС). Технология реализована на аппаратном уровне и не зависит от используемой операционной системы.

Подобный алгоритм работы акселератора настолько очевиден, что возникает лишь вопрос, почему же в железе он реализован только сейчас. Так или иначе, стремление AMD максимально улучшить экономичность своих решений можно только приветствовать.

Любопытно, что в режиме CrossFire все дополнительны адаптеры, не используемые в текущий момент, автоматически переводятся в состояние ZeroCore Power и не издают шума.

Video Codec Engine

Для декодирования видео используется блок, функционально идентичный UVD3, который реализован в чипах Cayman. Это наиболее функциональное решение на рынке, потому данный факт никаких нареканий не вызывает. В тоже время архитектура GCN предполагает наличие аппаратного блока Video Codec Engine, который предназначен для кодирования видео в формат H.264. Чтобы задействовать данную разработку, требуется соответствующее программное обеспечение, которое пока находится в процессе разработки.

В целом, возможность кодирования видео средствами GPU существует достаточно давно, однако ранее для этого задействовались потоковые процессоры. К тому же возможности по настройке, а также финальное качество картинки далеко не всегда устраивали требовательных пользователей. Ныне AMD обещает предоставить возможность гибкой настройки параметров, скорости, а также метода кодирования (возможен гибридный вариант с задействованием потоковых вычислителей).

Partially Resident Textures

Инновационная функция частично резидентных текстур (Partially Resident Textures) позволяет обрабатывать текстуры огромного размера (до 32 ТБ), используя локальную память адаптера, как своеобразный кеш-буфер. Блочный принцип работы с виртуальными текстурами и специальный алгоритм использования мип-уровней позволяет компенсировать задержки при подгрузке необходимых для рендеринга частей.

Данная функция может пригодиться в случаях, когда используется технология MegaTexture. Наглядный пример – игра Rage от id Software. В дальнейшем количество проектов, применяющих такой принцип визуализации, будет лишь увеличиваться.

Специально для перфекционистов улучшен алгоритм анизотропной фильтрации. Новый метод исключает случаи появления небольших артефактов в редких ситуациях, возникающих при обработке некоторых типов текстур. Функция активируется автоматически и не сказывается на общей производительности.

HDMI 1.4a (3ГГц)

Еще одним нововведением Radeon HD 7970 является скоростная версия HDMI 1.4a (3 ГГц) с поддержкой формата Frame Packing, позволяющая получить на подходящем экране стереокартинку не только для просмотра 3D-видео, но и игр в режиме 1080p с частотой обновления 60Гц для каждого глаза.

При этом максимальное разрешение при подключении по HDMI составляет 4096×3112. Таким образом, адаптер полностью готов к грядущей эре видео еще более высококачественных форматов Quad HD/4k.

Eyefinity 2.0

За последнее время несколько важных нововведений получила фирменная мультидисплейная технология Eyefinity. Вторая ревизия значительно увеличивает возможности создания конфигураций с несколькими мониторами. В частности теперь доступны режимы 5×1 с альбомной или портретной ориентациями экранов, а максимальное поддерживаемое разрешение увеличилось до 16384×16384.

Адаптеры с 28-нанометровыми чипами также получили технологию Discrete Digital Multi-Point Audio (DDMA), позволяющую выделить несколько независимых аудиопотоков для различных дисплеев, работающих в рамках Eyefinity.

С появлением Catalyst 11.12 стала возможной работа стереоскопической технологии HD3D на трех мониторах. В феврале ожидается выход драйверов 12.2, которые еще больше разнообразят возможности настройки конфигураций с несколькими дисплеями.

PCI Express 3.0

Видеокарты с GCN первыми получили поддержку PCI Express 3.0. Благодаря улучшенному алгоритму кодирования данных при передаче, пропускная способность шины нового поколения вдвое выше, чем у версии 2.0. В частность для режима х16 это 32 ГБ/c.

Напомним, что в случае с платформой Intel для полноценной работы данного скоростного интерфейса, соответствующую поддержку должны иметь центральный процессор, который собственно содержит контроллер PCI-E 3.0, материнская плата со специальными коммутирующими «вентилями», позволяющими получить необходимую скорость, и графический адаптер.

Что касается процессоров, то формально первыми CPU, которые получат поддержку PCI-E 3.0, должны стать предназначенные для платформы LGA1155 чипы Ivy Bridge, которые предположительно будут анонсированы в начале апреля. Однако в действительности, на рынке уже есть решения с контроллером шины нового стандарта. Речь о процессорах для LGA2011. Официально поддержка PCI-E 3.0 для них не заявлена, однако по факту, при наличии остальных требуемых компонентов экосистемы, шина работает именно в таком режиме.

Любопытно, что компания AMD в данном случае не торопится внедрять поддержку PCI Express 3.0 для своей настольной платформы. На текущий момент чипсеты для AM3+ и FM1 довольствуются шиной версии 2.0. Отчасти такой прагматичный подход оправдан. Возможностей текущей версии интерфейса вполне достаточно для нужд даже наиболее производительных видеокарт. Более того, в конфигурациях с несколькими адаптерами, когда слоты работают в режиме x8 (PCI-E 2.0) не наблюдается снижения производительности в игровых приложениях, соответственно пропускная способность шины не является узким местом платформы. С другой стороны, помимо сугубо маркетингового эффекта (и нужно признать, немалого) практическую пользу от PCI Express 3.0, возможно, удастся получить для GPGPU.

Серия процессоров Southern Islands

При формировании продуктовой линейки на основе решений с GCN, будут использоваться три типа графических чипов, принадлежащих семейству Southern Islands.

Tahiti – решение для максимально производительных адаптеров, которые должны будут удовлетворить запросы самых взыскательных энтузиастов. Для моделей линейки Radeon HD 7900 используется именно это ядро. Pitcairn – основа адаптеров, которые будут предлагаться для достаточно требовательных игроков. Данные GPU задействуются для видеокарт серии Radeon HD 7800. Cape Verde – чип для решений с хорошей энергоэффективностью и достаточной производительностью. Таковыми должны стать модели линейки Radeon HD 7700.

Приведем слайд, который поможет понять позиционирование будущих адаптеров серии Radeon HD 7000.

На начальном этапе 28-нанометровые чипы с архитектуру GCN будут использоваться лишь для видеокарт высокого и среднего уровней. В частности, для устройств серий Radeon HD 7900/7800/7700. Менее производительные видеокарты в линейке HD 7000 будут фактически идентичны тем, что сейчас включены в серии HD 6500/6600 и HD 6450/6350. Очевидно, что контрактный производитель кристаллов, компания TSMC, на текущий момент не в состоянии обеспечить AMD таким количеством чипов 28 нм, чтобы их можно было использовать и для бюджетных решений. В подобных условиях приоритет имеют более сложные, но и более прибыльные устройства.

Radeon HD 7970

Первой из семейства видеокарт с новой архитектурой была представлена Radeon HD 7970 . Давайте посмотрим на ее технические характеристики и сравним со старшей одночиповой моделью предыдущей линейки – Radeon HD 6970.

Графический адаптер основан на чипе Tahiti, который, как уже упоминалось, производится по 28-нанометровой технологии. Новый кристалл содержит 4,31 млрд. транзисторов, что на 63% больше, чем у предшественника, при этом его площадь даже несколько компактнее, чем у Cayman (365 vs. 389 мм2). Тактовая частота GPU увеличилась незначительно – до 925 МГц. АMD решила не форсировать события, преодолевая знаковую отметку в 1 ГГц. В случае с Radeon HD 7970 используется версия Tahiti со всем активными блоками, включая 2048 потоковых процессоров. Вычислительная производительность возросла на 40% и составляет 3,79 TFLOPS. Количество текстурных блоков возросло с 96 до 128, что, с учетом повышенной частоты ядра, позволило получить филрейт на уровне 118,4 ГТ/c. Число модулей ROPs не изменилось, потому пиксельная скорость заполнения практически на прежнем уровне.

Как и предшественник, Radeon HD 7970 использует память GDDR5, работающую на 1375 МГЦ (5500 МГц). Однако теперь передача данных производится по 384-битной шине, благодаря чему пропускная способность увеличена со 176 до 264 ГБ/c. При этом объем локальной ОЗУ для топового решения составляет 3 ГБ. Для традиционной одномониторной конфигурации такая емкость явно избыточна, даже если говорить о 27- или 30-дюймовой панели с разрешением 2560х1600. Однако в конфигурациях с несколькими дисплеями, кадровый буфер значительно увеличивается, потому подобный объем не окажется лишним.

Ознакомившись с техническими характеристиками можно смело говорить о том, что Radeon HD 7970 будет заметно производительнее предшественника с ядром Cayman. Новинка улучшена по всем параметрам, которые влияют на быстродействие GPU. При неизменном максимальном TDP в 250 Вт разработчикам удалось выжать максимум.

Референсная видеокарта

Внешне новинка лишь отчасти напоминает топовую модель предыдущей серии. Строгие прямоугольные формы внешнего кожуха системы охлаждения уступили место конструкции со скругленными углами, ярко-красными вставками и глянцевым покрытием элементов верхней защитной крышки.

Печатная плата имеет длину 270 мм, однако форма системы охлаждения увеличивает устройство до 280 мм. Корпусы Middle-tower даже средней ценовой категории, как правило, обеспечивают беспроблемную установку адаптеров подобных габаритов, в случае же с более дорогостоящими игровыми моделями проблем с размещением Radeon HD 7970 точно не возникнет.

В этот раз AMD не установила радиаторную пластину на тыльной стороне печатной платы. Греющиеся элементы, требующие дополнительного охлаждения, расположены на лицевой панели PCB, потому подобный элемент декора лишь ухудшил бы отвод тепла. Хотя, нужно признать, что анодированная пластина добавляет баллы за внешний дизайн, но в этот раз победила практичность.

На верхней кромке видеокарты расположена пара разъемов для подключения дополнительного питания: шести и восьмиконтактный. Соответствующие переходники с Molex-разъемов должны поставляться в комплекте с видеокартой.

Использование двух микросхем BIOS стало хорошей традицией для старших моделей адаптеров от AMD, и в данном случае компания не стала отказываться от функции Dual BIOS. Немалая часть владельцев таких решений – потенциальные экспериментаторы, которые захотят поиграться с частотами чипа/памяти, в том числе используя для этого и различные версии прошивок. Чтобы обезопасить пользователей от возможных проблем с этой стороны, AMD предлагает две версии BIOS, переключаться между которыми можно с помощью миниатюрного тумблера, расположенного на верхней кромке печатной платы.

По толщине Radeon HD 7970 занимает два слота расширения. На интерфейсной панели расположены четыре коннектора: пара Mini-DisplayPort, HDMI и DVI (Dual-Link). Примечательно, что все разъемы размещены в один ряд, тогда как большую часть крепежной пластины занимает решетка выхлопа системы охлаждения. Напомним, что Radeon HD 6900 имеют еще один порт DVI, расположенный на втором ярусе, что заметно уменьшает площадь решетки, тем самым замедляя вывод нагретого воздуха наружу.

Общая конструкция системы охлаждения во многом схожа с той, что используется для референсных видеокарт на чипах Cayman. К массивному алюминиевому основанию прикреплена крупная испарительная камера, на которую установлена кассета с набором алюминиевых пластин. Данный блок продувается 70-миллиметровым центробежным вентилятором. Чипы памяти, а также силовые элементы контактируют с радиаторной пластиной через теплопроводные прокладки, тогда как GPU сообщается непосредственно с теплосъемником испарительной камеры. Сверху кулер прикрыт защитным пластиковым кожухом. Подобная концепция СО уже доказала свою эффективность, потому вполне логично что AMD предпочла данный кулер для Radeon HD 7970. Важным преимуществом такой системы является то, что практически весь нагретый воздух выдувается за пределы системного блока. Это важный нюанс, особенно когда речь идет о производительных решениях с высоким TDP.

Теперь несколько слов о впечатлениях от работы видеокарты. В режиме покоя графический адаптер работает практически бесшумно, снижая частоту чипа до 300 МГц, а памяти до 600 МГц. Вентилятор вращается со скоростью 1000–1100 об/мин (20% от максимального значения). На открытом стенде этого оказывалось достаточно, чтобы температура GPU не поднималась выше 35 С.

Под нагрузкой вентилятор оживает, плавно увеличивая обороты. Алгоритм линейный, потому резких рывков или перепадов в процессе изменения не ощущается. После длительного прогрева температура чипа повысилась до 77 градусов, пропеллер вращался на 43% от максимума (~2300 об/мин). В таком режиме видеокарта, безусловно, слышна, но о серьезном дискомфорте речь не идет.

Мы также на практике убедились в работоспособности технологии AMD ZeroCore Power. Спустя 20–30 секунд после перехода монитора в режим ожидания, вентилятор кулера видеокарты действительно останавливается. Для охлаждения адаптера в таком состоянии достаточно работы СО в пассивном режиме.

В целом, штатная система охлаждения Radeon HD 7970 демонстрирует достойную эффективность при довольно умеренном звуковом сопровождении под нагрузкой. По этой причине нет сожаления о том, что на начальном этапе подавляющее большинство моделей от различных производителей видеокарт будут основаны на референсных печатных платах и кулерах, отличаясь между собой фактически только наклейками на верхней крышке.

Безусловно, компании работают над устройствами с альтернативными СО. В частности Gigabyte и XFX уже подготовили свои варианты.

Аналогичных шагов стоит ждать и от других весомых игроков на этом рынке. Другой вопрос, насколько эффективнее окажутся такие решения. Конструкции с габаритными тихоходными вентиляторами осевого типа выигрышно смотрятся на открытых стендах, но требуют заметно большего внимания к организации охлаждения внутри корпусов, так как горячий воздух в подобных случаях фактически не выводится за пределы системы.

Разгон

Тем, кто уже успел приобщить Radeon HD 797 0 к жидкому азоту, Tahiti раскрылся во всей красе, удивляя устойчивой работой на 1500–1600 МГц даже в CrossFire-конфигурациях. Оверклокеры, сумевшие обзавестись несколькими Radeon HD 7970, на зависть менее удачливым коллегам активно устанавливают новые мировые рекорды в классических приложениях от Futuremark.

К сожалению, на момент проведения тестирования, имеющиеся средства для разгона не позволяли нам изменять напряжения питания, а также увеличивать частоту GPU выше 1125 МГц – границы, установленной в драйвере. Достичь указанного значения не составило никаких проблем даже со штатным вольтажом. +200 МГц – уже очень неплохая прибавка, по сравнению с рекомендуемым значением, но наверняка это далеко не предел для нового чипа. Вопрос возможности разгона остается открытым, и мы к нему еще обязательно вернемся. Особенно любопытно будет оценить потенциал финальных Radeon HD 7970, которые попадут в розничную продажу. Все же в наших руках побывал инженерный образец видеокарты. Однако уже сейчас можно говорить, что 1 ГГц для Tahiti – это только начало. Учитывая легкость, с которой новому кристаллу даются такие частоты, производители видеокарт в последующем наверняка для своих турбированных модификаций будут изначально использовать более внушительные стартовые значения для графического ядра.

Что касается памяти, то для рассмотренной видеокарты используются 2-гигабитные чипы Hynix H5GQ2H24MFR-ROC с базовой частотой 6 ГГц. Так как штатным значением для Radeon HD 7970 является 5500 МГц, микросхемы изначально имеет определенный запас для разгона.

28-нанометровый техпроцесс творит чудеса. Несмотря на значительно возросшую сложность чипа, а также увеличившееся количество функциональных блоков и транзисторов, Tahiti работает на очень высоких тактовых частотах. В этом отношении их 40-нанометровые предки «сдувались» значительно раньше.

Конфигурация тестового стенда

Процессор: Intel Core i7-3930K

Материнская плата: MSI X79A-GD65 (8D)

Оперативная память: GeIL EVO TWO DDR3-2133 16 ГБ (GET316GB2133C11QC)

Накопитель: HDD WD WD1001FALS (1ТБ, 7200 об/мин)

Блок питания: be Quiet! Dark Power Pro 1000W

Результаты тестирования

Подбирать конкурентов для новинки AMD в данном случае было довольно легко. В первую очередь, это предыдущий флагман – Radeon HD 6970. Еще до начала практических тестов было очевидным, что Radeon HD 7970 окажется быстрее предшественника, вопрос был лишь в том, насколько значительной окажется разница в быстродействии этих решений в реальных условиях. А вот GeForce GTX 580 гораздо более интересный соперник для нового топового решения AMD. Уже более года данная видеокарта является обладателем чемпионского пояса в супертяжелом весе. И соперничество именно с этим адаптером вызывает наибольший интерес.

Первые результаты традиционной синтетики от Futuremark демонстрируют заявку на лидерство Radeon HD 7970. В 3DMark Vantage новинка имеет 20%-ное преимущество над GeForce GTX 580 в стандартном режиме Performance и почти вдвое больший перевес в Extreme – очень достойные показатели.

Схожую картину можно наблюдать и в более технологичном 3DMark 11 . С той лишь разницей, что преимущество в режиме с высоким разрешением и качеством графики составляет более скромные 28%.

Но, это еще не победа. Продукты от AMD всегда очень неплохо показывали себя в синтетических приложениях – вычислительная мощность позволяет, да и возможную программную оптимизацию под эталонные тесты не стоит сбрасывать со счетов. Тем не менее, полученные данные дают определенный повод для оптимизма.

В тесте Heaven Benchmark 2.5 использовался режим c максимальным уровнем тесселяции. Это очень некомфортные условия для чипов AMD предыдущего поколения. В подобных ситуациях серьезное преимущество имеют решения от NVIDIA. Собственно в этом можно убедиться, взглянув на соответствующую диаграмму. GeForce GTX 580 на 37% опережает до недавнего времени топовый Radeon HD 6970. Однако в случае с Radeon HD 7970 ситуация меняется на противоположную. Адаптер с Tahiti оказался проворнее и быстрее флагмана калифорнийцев, пересчитывая миллионы полигонов расторопнее предшественника на внушительные 67%. AMD сдержала слово в отношении скорости обработки тесселяции. Соответствующие блоки нового поколения действительно работают очень быстро. И хотя 4-кратного преимущества в данном случае получить не удалось, прирост в 1,7 раза оказался вполне реален.

В игре Мetro 2033 наблюдаем уверенное преимущество Radeon HD 7970 над основным оппонентом от NVIDIA. Разница в производительности составляет убедительные 21–26%. Обратим внимание на то, что Radeon HD 6970 здесь также выглядит очень неплохо, уступая более дорогостоящему GeForce GTX 580 всего 2–6%. Однако стоит учесть, что во время проведения теста в настройках игры отключалась опция PhysX. Ее активация добавляет визуальных эффектов, но ставит участников в неравные условия. В случае с решениями AMD расчет физики частиц ляжет на плечи CPU, тогда как с адаптером NVIDIA она будет просчитываться вычислительными блоками GPU посредством API CUDA.

Игра Far Cry 2 в режиме DirectX 10 также резвее бегает на Radeon HD 7970. Вряд ли кто-то способен на глаз ощутить разницу в скорости отрисовки между 153 и 142 кадрами/c, но 8%-ное преимущество все же факт неоспоримый. А с увеличением разрешения оно возрастает до более весомых 22%. В сравнении же с предшественником решение на Tahiti расторопнее на 35%.

Схожая расстановка сил наблюдается и в Colin McRae: DiRT 3 . GeForce GTX 580 на 13–22% отстает от Radeon HD 7970. И, что уже стало закономерностью, отрыв новичка AMD увеличивается с ростом разрешения. Ну, а самый скоростной Cayman в данном тесте довольствуется последним местом, отстав от лидера на 42–47%.

Оценивая производительность новинки, следует сказать и об ее скрытом потенциале, ведь Radeon HD 7970 имеет не просто улучшенную, а принципиально новую архитектуру. Как это часто бывает в подобных случаях, последующая программная оптимизация может принести очень хорошие результаты. Потому, вполне реально рассчитывать на дополнительную производительность решений с GCN по мере совершенствования драйверов. Разработчики наверняка сейчас сконцентрируют внимания на адаптерах линейки Radeon HD 7000. Потому очередные улучшения при обновлении ПО в первую очередь будут ощущать как раз владельцы видеокарт с новой графической архитектурой.

На этапе замера энергопотребления у нас осталось два участника. Дело в том, что в качестве тестовой Radeon HD 6970 использовалась MSI R6970 Lightning , которая, помимо используемого GPU, с референсной видеокартой не имеет ничего общего. Серьезно усиленная элементная база и оригинальная печатная плата не позволяют использовать полученные данные для прямого сравнения. А вот GeForce GTX 580 мы использовали адаптер ASUS ENGTX580/2DI/1536MD5 , который основан на эталонном дизайне и имеет рекомендуемые NVIDIA частотные и электрические характеристики.

Признаться, значения в 70 Вт на циферблате ваттметра весьма впечатляют. Особенно с учетом того, что тестовая система основана на отнюдь не самой экономичной платформе LGA2011 с шестиядерным процессором, четырьмя модулями памяти и двухдисковым HDD 7200 об/мин.

AMD хорошо поработала над тем, чтобы максимально снизить энергопотребление Radeon HD 7970. В режиме простоя система с такой видеокартой потребляет на 18 Вт меньше, чем ПК с GeForce GTX 580. Когда же речь идет о реальной игровой нагрузке, разница увеличивается еще больше – до 50–60 Вт. И это при том, что новинка на Tahiti обеспечивает большую скорость, а соответственно имеет лучшее соотношение производительности на ватт.

Итоги

В AMD, безусловно, уловила тренд гетерогенных вычислений. Более того, в сложившейся ситуации можно сказать, что компания всячески содействуют его развитию. По крайней мере, касаемо аппаратной части. Вполне вероятно, что в глобальном масштабе и недалекой перспективе Graphics Core Next поможет AMD более весомо заявить о себе, как о поставщике решений для самых разнообразных задач и применений: от ультимативных игровых систем, до HPC-вычислений.

Что же касается непосредственно Radeon HD 7970 , то видеокарта заслуживает похвалы. На текущий момент это самый производительный одночиповый графический адаптер. Без каких-либо скидок, оговорок и уточнений. Новинка имеет тотальное преимущество над флагманом предыдущего поколения, обеспечивая на 30–70% более высокие показатели, чем у Radeon HD 6970. Ей также удалось опередить и основного конкурента – GeForce GTX 580 – хотя разница здесь уже более скромная.

Тем не менее, для тех, кто готов потратить на видеокарту порядка $500, выбор не столь однозначен. Цена GeForce GTX 580 с референсной системой охлаждения и рекомендуемыми тактовыми частотами заметно снизилась за последние два-три месяца. Такую модель уже можно приобрести за $460-470. Тогда как розничная стоимость Radeon HD 7970 3GB в Украине ожидается на уровне $600. AMD не то, чтобы переоценила свое устройство, а скорее задала ту планку, с которой Radeon HD 7970 предлагает примерно схожее соотношение цена/производительность, что и у топового решения калифорнийцев. Последнее, хоть и оказывается медленнее, но настолько же и дешевле. Потому демпинга не получилось, хотя очень этого и хотелось. Впрочем, мы знаем, что AMD умеет оперативно реагировать на рыночную ситуацию, умело корректируя свою ценовую политику. К счастью для пользователей, в сегменте дискретной графики имеет место жесткая конкуренция, и нет явного лидера, что часто позволяет в ценовом вопросе расставить все точки над «i» сугубо рыночными методами.

Radeon HD 7970 – добротное решение с отличной производительностью, расширенной функциональностью, технологическими инновациями и хорошим потенциалом. За исключением цены, фактически, других слабых мест данный адаптер не имеет. Так или иначе, майка лидерства заслуженно переходит AMD. По крайней мере, на ближайшие пару месяцев, по прошествии которых NVIDIA также представит собственные разработки с 28-нанометровыми GPU и новой архитектурой Kepler. Так что очередная графическая партия также обещает быть весьма любопытной.

Новые топовые ускорители всегда выходят на рынок через какое-то время после анонса предыдущих, но в этот раз срок ожидания оказался более длительным, чем ранее. Однако сегодня мы все-таки можем лицезреть появление очередного лидера, ускорителя, способного взойти на вершину, превзойдя лидера прежнего - однопроцессорный Nvidia Geforce GTX 580. Правда, речь идет именно об однопроцессорных 3D-акселераторах: не забывайте, что двухпроцессорные находятся в особой нише, имея цену от 800 долларов и выше, а также свои нюансы. Можно предположить, что прирост производительности при смене поколений не превысит полтора раза, поэтому новинка уж точно не переплюнет двухпроцессорные ускорители предыдущего поколения.

Это все к тому, что читателям пора привыкнуть сравнивать однопроцессорные с однопроцессорными и не ждать, когда такой новый ускоритель поставит абсолютный рекорд по производительности. Вот когда на базе новых ядер появятся и соответствующие двухпроцессорные гиганты - они уже смогут штурмовать абсолютные значения, достигнутые прежними лидерами в 3D. А пока мы про двухпроцессорные модели с их очень далекими от народа ценами забываем.

Итак, Radeon HD 7970, он же Tahiti в кодовом именовании. Что дает нам выход этого решения? Чем порадует? Передаем слово Алексею Берилло, он расскажет о теории вопроса.

Часть 1: Теория и архитектура

Наконец-то это свершилось! Многомесячное ожидание новых GPU, произведённых по новым технологическим нормам 28 нм, закончилось под самый конец уходящего года. Мы неоднократно писали о проблемах, вызванных трудностями и задержками в освоении нового техпроцесса, компаниям AMD и Nvidia приходилось выпускать всё новые и новые модели видеокарт, основанных на старых GPU, и даже вносить корректировки в функциональные возможности промежуточных решений. Например, серия Radeon HD 6900 получилась переходной от архитектуры, начавшей свой путь в Radeon HD 5800, к анонсируемой сегодня совершенно новой.

Рано или поздно проблемы с новым производством обязаны были закончиться, и вот они если не исчезли совсем, то хотя бы позволяют анонсировать свежие решения и начать массовые (степень их массовости пока под вопросом, впрочем) поставки. Самое время - ведь рынок ПК-игр переживает очередной небольшой расцвет из-за устаревания аппаратной начинки игровых консолей, даже с учётом засилья мультиплатформенных проектов.

Если брать даже чисто финансовые показатели, то продажи на игровом рынке ПК превысили 15 миллиардов долларов в текущем году, а в течение двух лет аналитиками ожидается рост объёма рынка до 20 миллиардов в той же валюте. При этом есть и стремительно растущие рынки, вроде Китая, который является крупнейшим рынком ПК-игр - продажи на нём достигли 4,8 млрд. долларов в 2010 году. Да и российский рынок является одним из важнейших даже для западных компаний, достаточно вспомнить выпуск специальных видеокарт ограниченного выпуска, рассчитанных в т. ч. и на нашу страну.

Понятное дело, что даже с учётом того, что большинство игр мультиплатформенные, они становятся сложнее графически. ПК-версии многих проектов выглядят лучше консольных собратьев по нескольким показателям, и не только экстенсивным, вроде разрешения рендеринга и текстур. Например, известнейшая игра Battlefield 3 использует многие возможности DirectX 11 для того, чтобы улучшить качество рендеринга. Насколько это удаётся разработчикам и каким был прогресс в качестве изображения, компания AMD предлагает посмотреть по таким примерам, как сериалы Battlefield и Deus Ex:

Как видно даже по этим маленьким скриншотам, скачки в качестве за прошедшие несколько лет вполне себе ощутимы. Но ещё более значительными они становятся, если учитывать рост разрешения рендеринга за всё это время. Даже если взять ситуацию трёхлетней давности, то с тех пор рынок шагнул далеко вперёд. Так, если в 2008 году основными на рынке игровых мониторов были модели с размером экрана 22″ и разрешением 1680×1050 пикселей, то в 2011 году распространение получили 24″ модели с FullHD-разрешением 1920×1080.

Но самое интересное даже не в размере и разрешении экрана. Если в 2008 году цена такого дисплея была порядка $360, то цены 24″ моделей в нынешнем году начинаются от $170-180. То есть, покупатель теперь получает чуть больший физически экран, имеющий почти на 20% больше пикселей, меньше чем за половину цены трёхгодичной давности для гораздо худшего монитора. Именно поэтому устройства с FullHD-разрешением уже стали наиболее распространёнными на рынке - ведь они стоят совсем недорого.

Ещё одним модным веянием в последние годы стало повышение энергоэффективности. Пользователи голосуют за эффективные устройства, использующие как можно меньше электроэнергии. Они и меньше воздействуют на окружающую среду, что влияет на умы сознательных граждан Земли, и позволяют экономить деньги на счетах за электричество, что весьма важно для остальных людей, менее сознательных. И компания AMD уделяет особенное внимание повышению энергоэффективности своих GPU, а также видеокарт на их основе.

Ну и нельзя не отметить значительный сдвиг графических процессоров в сторону неграфических вычислений (GPGPU). Все современные графические чипы делаются теперь совсем не только для игр, но и ускорения требовательных к вычислительной мощи задач, которые хорошо поддаются распараллеливанию. И хотя главным движителем рынка в эту сторону является компания Nvidia, выпускающая для рынка ПК лишь графические чипы, AMD старается не отстать. Кроме того, по пиковой вычислительной мощности лидируют именно видеокарты этой компании. Рост теоретически достижимой производительности можно пронаблюдать на диаграмме:

Как видите, скачки пиковой скорости при каждом новом технологическом процессе достигаются весьма значительные. Нужно ещё учесть, что техпроцесс 28 нм только начал свой путь, и можно с уверенностью сказать, что в будущем цифра в 3,79 терафлопа значительно подрастёт.

К слову о техпроцессах - именно компания AMD является их первопроходцем на рынке графических процессоров. В последние несколько лет эта компания опережала своего единственного сильного конкурента - Nvidia - по внедрению всех новых техпроцессов. Вот и сейчас они первые успели анонсировать свой новый продукт ещё в уходящем 2011 году (фотографии кристаллов схематичны, к сожалению):

28 нм - наиболее совершенная технология производства чипов, массово доступная на сегодняшний день, и именно по этой технологии производятся анонсируемые сегодня видеочипы серии AMD Radeon HD 7000. Эти решения поддерживают все современные индустриальные стандарты: GDDR5, PCI Express, DirectX и другие. Предыдущие серии видеокарт были настолько удачны, что AMD недавно отрапортовала о поставке 100 миллионов продуктов с поддержкой DirectX 11. И в результате, более двух третей DX11-совместимых видеокарт на руках у пользователей имеют графические процессоры производства этой компании.

Тем более значительным событием представляется сегодняшний анонс первой в мире линейки графических чипов под кодовым названием «Southern Islands» («южные острова»), обладающей поддержкой обновленной шины PCI Express 3.0 и будущей версии DirectX 11.1. Все подробности о первой видеокарте серии вы прочитаете далее, а сейчас мы вкратце расскажем о решениях, вошедших в новейшую линейку.

Серия «Southern Islands» включает:

  • «Tahiti» - решение наибольшей мощности, самый сложный и мощный GPU на данный момент (серия Radeon HD 7900 )
  • «Pitcairn» - графический процессор среднего ценового диапазона, предназначенный для массового пользователя (серия Radeon HD 7800 )
  • «Verde» - продукт, обладающий непревзойдённым сочетанием цены и производительности (выйдет под именем Radeon HD 7700 )

Чтобы понять, как именно планируется расположить новые решения в линейке продукции, AMD приводит такой слайд (положение по вертикали отражает производительность решений, по горизонтали - время выхода):

Как видите, младшие видеокарты линеек Radeon HD 6300, HD 6400, HD 6500 и HD 6600, продолжат свою жизнь и в следующем году. А вот более мощные решения постепенно заменятся новыми видеокартами указанных выше серий, основанных на представленной архитектуре. Но сегодня выходит только одна видеокарта - мощнейшее решение из линейка Radeon HD 7900, а остальные чипы серии «Southern Islands» выйдут на рынок несколько позже - в течение первого квартала 2012 года.

Предполагаем, что перед прочтением этого материала, читателям будет полезно ознакомиться с подробной информацией о ранних видеочипах компании по следующим статьям нашего сайта:

  • AMD Radeon HD 6950/6970: чуть слабее Geforce GTX 570/580, но и дешевле
  • AMD Radeon HD 6870 и HD 6850: теоретические сведения о новых решениях для среднего ценового сектора
  • ATI Radeon HD 5870: мощный удар из Канады - ATI (AMD) выпускает нового короля 3D-графики
  • ATI Radeon HD 4870 (RV770): самый мощный однопроцессорный 3D-ускоритель AMD

Ну а теперь мы переходим к описанию технических характеристик анонсированной сегодня первой видеоплаты из серии Radeon HD 7900, основанной на совершенно новом GPU с кодовым названием «Tahiti».

Графические ускорители серии Radeon HD 7900

  • Кодовое имя чипа: «Tahiti»
  • Технология производства: 28 нм
  • 4,3 млрд. транзисторов (более чем на 60% больше, чем у Cayman, и ровно вдвое больше, чем у Cypress)
  • Унифицированная архитектура с массивом общих процессоров для потоковой обработки многочисленных видов данных: вершин, пикселей и др.
  • Аппаратная поддержка DirectX 11.1, в том числе и шейдерной модели Shader Model 5.0
  • 384-битная шина памяти: шесть контроллеров шириной по 64 бита с поддержкой памяти GDDR5
  • Частота ядра: до 925 МГц (для Radeon HD 7970)
  • 32 вычислительных блока GCN, включающих 128 SIMD-ядер, состоящих в целом из 2048 ALU для расчётов с плавающей запятой (целочисленные и плавающие форматы, поддержка точности FP32 и FP64 в рамках стандарта IEEE 754)
  • 128 текстурных блоков, с поддержкой трилинейной и анизотропной фильтрации для всех текстурных форматов
  • 32 блока ROP с поддержкой режимов антиалиасинга с возможностью программируемой выборки более чем 16 сэмплов на пиксель, в том числе при FP16- или FP32-формате буфера кадра. Пиковая производительность до 32 отсчетов за такт, а в режиме без цвета (Z only) - 128 отсчетов за такт
  • Интегрированная поддержка шести мониторов, включая HDMI 1.4a и DisplayPort 1.2

Спецификации видеокарты Radeon HD 7970

  • Частота ядра: 925 МГц
  • Количество универсальных процессоров: 2048
  • Количество текстурных блоков: 128, блоков блендинга: 32
  • Эффективная частота памяти: 5500 МГц (4×1375 МГц)
  • Тип памяти: GDDR5
  • Объем памяти: 3 гигабайта
  • Пропускная способность памяти: 264 гигабайта в сек.
  • Теоретическая максимальная скорость закраски: 29,6 гигапикселей в сек.
  • Теоретическая скорость выборки текстур: 118,4 гигатекселей в сек.
  • Два разъёма CrossFire
  • Шина PCI Express 3.0
  • Разъёмы: DVI Dual Link, HDMI 1.4, два Mini-DisplayPort 1.2
  • Энергопотребление: от 3 до 250 Вт
  • Один 8-контактный и один 6-контактный разъёмы питания
  • Двухслотовый дизайн
  • Рекомендованная цена для рынка США: $549

Сразу же на себя обращает внимание огромная сложность нового чипа - 4 312 711 873 транзисторов (именно в таком сверхточном виде это число приведено в материалах AMD - наверняка вручную подсчитывали), что более чем наполовину превышает количество транзисторов в предыдущем топовом графическом процессоре. Возможность сделать такой сложный кристалл дало применение новейшего 28-нанометрового техпроцесса, новый чип по площади даже чуть меньше размера Cayman. Но практически все характеристики, влияющие на производительность, заметно улучшены: количество ALU, TMU, шина памяти. Лишь число блоков ROP не выросло, и частота видеопамяти GDDR5 осталась на той же отметке. Благодаря увеличению количества исполнительных блоков, возросшей эффективности, а также повышенной тактовой частоте GPU, он должен значительно превосходить Cayman во всех применениях.

Принцип наименования видеокарт компании остался прежним, продолжив тенденцию предыдущей серии, у которой в топовых решениях поменялась вторая цифра индекса с 8 на 9. Radeon HD 7970 является наиболее производительным одночиповым решением компании, через некоторое время выйдет и младшая модель HD 7950, но анонсирована сегодня она не будет. Понятно, что HD 7970 с её то характеристиками просто не имеет конкурентов на рынке и пока что не заменяет какую-то видеокарту из линейки AMD (разве что HD 6990 можно сразу смело списывать), а скорее сдвигает её вниз. Что касается сравнения с конкурентом, то у Nvidia своё 28-нанометровое решение ещё не готово, и его придётся подождать ещё несколько месяцев. А пока что Geforce GTX 580 придётся отдуваться, пытаясь противостоять HD 7950, но явно не HD 7970.

На новую видеокарту AMD устанавливается всё та же память типа GDDR5 (хотя ходили слухи о якобы совершенно ином типе памяти компании Rambus, но представители AMD их даже не комментируют), но объём вместо 2 гигабайт в предыдущем поколении вырос до 3 гигабайт. Так получилось из-за расширения шины памяти с 256-битной до 384-битной. И теперь на новую плату можно поставить или 1,5 ГБ или 3 ГБ. Естественно, с маркетинговой точки зрения установка меньшего объёма была бы явным поражением, и было принято решение поставить 3 ГБ, хотя на сегодняшний день это явный перебор. Лишь в сверхвысоких разрешениях да с MSAA 16x не хватит 1,5-2 ГБ. Впрочем, у AMD есть и Eyefinity, а для игр на трёх-пяти-шести мониторах экранный буфер будет как раз занимать огромный объём. Возможно, младшую модель Radeon HD 7950 когда-нибудь и выпустят с 1,5 ГБ памяти, для удешевления, но точно не старшую.

Итак, рассмотрим Radeon HD 7970. Новая видеокарта верхнего ценового диапазона имеет двухслотовую систему охлаждения, закрытую привычным для всех современных плат AMD пластмассовым кожухом по всей длине карты. Лишь дизайн этого кожуха немного изменился, хотя задняя часть всё так же выходит за пределы печатной платы. А вот дизайн планки с выводами был изменён - для улучшения охлаждения видеокарты, один из двух слотов (половина планки) был занят исключительно вентиляционным отверстием для отвода тепла.

Но пользователи не должны пострадать от снижения количества разъёмов DVI, распаянных прямо на плате. Для их удобства в комплект поставки будет включен специальный переходник HDMI-DVI, который позволит подключить два монитора, имеющих DVI-разъёмы. К слову, энергопотребление новой карты не ниже, чем у Radeon HD 6970, поэтому на неё пришлось установить набор из одного 8-контактного и одного 6-контактного разъёмов питания.

Зато в новой Radeon HD 7970 в лучшую сторону изменилась система охлаждения. Применяется новое поколение испарительной камеры и новый кулер большего размера, с изменённой формой лопастей и увеличенной производительностью (обеспечивается больший поток воздуха). В результате отмечается увеличение эффективности кулера при одновременном снижении шума.

С платы никуда не делся и переключатель прошивок Dual BIOS, о котором мы писали в обзоре Radeon HD 6900. Вкратце: видеокарта имеет две версии BIOS, одна с возможностью пользовательской перепрошивки, а вторая - с жёстко зашитой на фабрике прошивкой. Это удобное решение настолько приглянулось и пользователям и самой AMD, что та решила продолжить им комплектовать топовые решения.

Можно только поприветствовать данное решение, которое реально помогает в различных случаях, связанных как с неожиданными проблемами при перепрошивке (выключение электроэнергии в процессе, например), так и позволяет бесстрашно проводить различные эксперименты с образами BIOS. Неудивительно, что AMD ещё и снова намекает на отличные возможности разгона новой видеокарты:

Как видите, практически обещается разгон до частоты 1 ГГц и выше, если не учитывать мелкой надписи (она не вошла в кадр, но существует) о том, что гарантия перестаёт действовать даже в том случае, если видеокарта вышла из строя в результате эксперимента с поднятием частоты из настроек видеодрайвера. Кстати, новый слайд интересно сравнить со страницей из презентации давно ушедшего с рынка Radeon HD 4890:

Просто поразительное сходство (по компоновке и дизайну слайда), не правда ли? К сожалению, с тех пор хоть и освоены новые техпроцессы, но злополучный гигагерц никак на даётся в финальных продуктах с референсными частотами. А ведь, казалось бы, тут и 28 нм и явно улучшенное охлаждение, но нет - снова немного, но не дотянули. С другой стороны, зато пользователю будет чем заняться на досуге.

Архитектурные особенности Radeon HD 7970

Чтобы оценить актуальность архитектурных модификаций в Southern Islands, сначала рассмотрим развитие GPU за прошедшие несколько лет (в представлении AMD). До 2002 года графические чипы представляли собой специфичное аппаратное обеспечение, способное исключительно для обработки графики. Видеочипы того времени имели ограниченную функциональность, они умели лишь накладывать и фильтровать текстуры, обрабатывать геометрию, заниматься примитивной растеризацией и поэтому совсем не подходили для универсальных вычислительных задач.

За следующие несколько лет к GPU была добавлена базовая программируемость, но ориентированная также исключительно на графические задачи. Это было время поддержки DirectX 8 и 9, ограниченных по функциональности шейдерных программ с возможностью расчётов и с плавающей запятой. Видеочипы того времени имели специализированные блоки ALU для вершинной и пиксельной обработки, а также выделенные кэши для пикселей, текстур и других данных. Универсальности всё ещё не было даже близко.

И лишь в 2007 году у компании AMD появилась унифицированная шейдерная архитектура DirectX 10, а также возможности программирования GPU при помощи специальных средств: CAL, Brook, ATI Stream. GPU того времени уже имели продвинутое кэширование и поддержку локальных и глобальных общих данных. Архитектурно чипы были основаны на блоках VLIW5 и VLIW4, достаточно гибких для некоторых базовых неграфических вычислений, но всё же ориентированных на графические алгоритмы.

А теперь настало время для новой архитектуры, ещё лучше подходящей для универсальных вычислений - Graphics Core Next (GCN) . Для AMD это новая архитектурная эра, поэтому и название выбрано такое. Новые GPU предлагают отличные возможности и производительность по обработке графики, но сделанные архитектурные изменения предназначены, прежде всего, для улучшения позиций в неграфических вычислениях - увеличению производительности и эффективности в сложных универсальных задачах. Новый дизайн GPU предназначен для так называемых гетерогенных вычислений - смеси графических и универсальных в мультизадачной среде. Архитектура GCN стала гибче и должна ещё лучше подходить для энергоэффективного выполнения различных задач.

Базовым блоком в новой архитектуре является блок GCN. Именно на таких «кирпичиках» основаны все новые графические процессоры серии Southern Islands. Архитектура впервые для графических чипов компании AMD использует не VLIW-дизайн, в нём применяются векторные и скалярные блоки, и одним из самых важных изменений стало то, что каждый из вычислительных блоков GCN имеет свой планировщик и может выполнять инструкции из различных программ (kernel).

Новая вычислительная архитектура разработана для высокой эффективности загрузки вычислительных блоков в многозадачной среде. Вычислительный блок GCN разделён на четыре подраздела, каждый из которых работает над своим потоком команд каждый такт. Потоки могут использовать и скалярный блок, имеющийся в GCN, для управления потоком данных или операций над указателями. Комбинация векторных и скалярных блоков предлагает очень простую программную модель. Например, указатели на функции и стек (function pointers и stack pointers) программируются гораздо проще, да и задача компилятора теперь значительно упрощена, так как исполнительные блоки скалярные.

Каждый блок GCN имеет выделенное локальное хранилище данных для объёмом 64 КБ для обмена данными или расширения локального стека для регистров. Также блок имеет в своём составе и кэш-память первого уровня с возможностью чтения и записи, и полноценный текстурный конвейер (блоки выборки и фильтрации). Поэтому новый вычислительный блок способен работать самостоятельно, без центрального планировщика, который в предыдущих архитектурах отвечал за распределение работы по блокам. Теперь каждый из блоков GCN способен заниматься планированием и распределением команд сам, один вычислительный блок может исполнять до 32 разных потоков команд, которые могут быть из разных виртуальных адресных пространств в памяти и полностью защищены и независимы друг от друга.

Предыдущие архитектуры GPU компании AMD использовали архитектурные модели VLIW4 и VLIW5, и хотя они достаточно хороши для графических задач, но являются недостаточно эффективными для универсальных вычислений, так как загрузить все исполнительные блоки работой в таких условиях очень непросто. Новая архитектура GCN предлагает столь же большое количество исполнительных блоков, но при скалярном исполнении, которое убирает ограничения и зависимости регистров и инструкций. Переход от архитектуры VLIW к скалярному исполнению даёт заметное упрощение задач по оптимизации кода.

При исполнении инструкций на предыдущей VLIW4 архитектуре компилятору приходится заниматься решением конфликтов регистров, выполнять сложное распределение инструкций на исполнительные блоки на стадии компиляции кода и т. д. При этом для достижения высокой производительности зачастую требуется нетривиальная оптимизация, что подходит для большинства графических задач и гораздо менее гибко для других вычислений. Новая же архитектура предлагает значительное упрощение разработки и поддержки, упрощённое создание, анализ и отлов ошибок в низкоуровневом коде, стабильную и предсказуемую производительность.

Подсистема кэширования памяти

Пропускной способности и объёма памяти и кэшей никогда не бывает достаточно, и всегда есть необходимость и методы их увеличения. В новых GPU компании AMD применяется полноценная двухуровневая кэш-память с возможностью чтения и записи. Каждый вычислительный блок имеет по 16 килобайт кэша первого уровня, а общий объём кэша второго уровня составляет 768 килобайт (всего в чипе получается 512 КБ L1 и 768 КБ L2), что на 50% больше, чем в предыдущем чипе, вовсе не имеющем возможности записи в L2-кэш.

Что касается производительности, то каждый вычислительный блок GCN за один такт может получить или записать по 64 байта данных из/в L1-кэш или глобальную память, которая служит для обмена данными между потоками команд. Столько же данных способен передавать и принимать каждый раздел кэш-памяти второго уровня L2. В результате, для топового GPU компании получается 2 терабайт/с для L1 и 700 ГБ/с для L2, что на 50% больше, чем у предыдущего топового решения AMD.

Графический процессор «Tahiti»

После того, как мы рассмотрели низкоуровневые архитектурные изменения новой серии Southern Islands, самое время перейти к подробностям о самом мощном решении этой линейки - Radeon HD 7900, включающей в себя две модели. Прежде всего, отметим просто огромную сложность нового GPU, ведь он включает более чем 4,3 миллиарда транзисторов, что вдвое больше, чем было в чипе, на котором основан Radeon HD 5870! Естественно, что такой могучий чип стал возможен лишь благодаря применению нового техпроцесса 28 нм. Итак, что же у него есть внутри?

Количество геометрических блоков не изменилось, по сравнению с Cayman, их всё так же две штуки, но зато эффективность их работы значительно увеличена - мы остановимся на этом подробнее чуть позже. На схеме графического процессора мы видим 32 вычислительных блока архитектуры GCN, доступные на Radeon HD 7970, а в случае с младшим решением, некоторые из них будут отключены. Если считать пиковую вычислительную производительность решения, то она составляет почти 3,8 терафлопа (количество операций с плавающей запятой в секунду), что является абсолютным рекордом для GPU на сегодняшний день.

Каждый блок GCN имеет в своём составе по 16 текстурных блоков, что даёт итоговую цифру в 128 TMU на чип, или более чем 118 гигатекселей/сек - и это ещё один рекорд на сегодня, и он далеко не последний. А вот количество блоков ROP не изменилось, их всё так же 32 штуки в 8 укрупнённых блоках RBE. Ещё одно интересное архитектурное изменение - теперь блоки ROP «прикреплены» не к каналам памяти, как это было ранее, а к блокам GCN.

Хотя теоретически скорость записи во фреймбуфер почти не изменилась, и максимально возможны те же 32 значений цвета и 128 значений глубины за такт, практическая скорость заполнения (филлрейт) в реальных применениях значительно возросла из-за увеличенной пропускной способности памяти. По измерениям AMD, Cayman обеспечивал запись лишь 23 пикселей за такт, в то время как новый Tahiti приблизился к теоретическим 32 пикселям за такт.

Это и понятно, ведь новый видеочип компании AMD имеет 384-битную шину памяти - шесть 64-битных каналов, точно как и текущее топовое решение конкурента. Именно это полуторакратное увеличение ПСП и даёт возможность повысить реальную скорость текстурных выборок и записи во фреймбуфер. Пропускная способность в 264 ГБ/сек должна помочь выжимать близкие к теоретическим показатели в 118 гигатекселей/сек и 30 гигапикселей/сек, и в практической части мы это проверим.

Тесселяция и обработка геометрии

С архитектурной точки зрения, ничего особенного в геометрических блоках Tahiti со времен Cayman не изменилось. Используется всё так же по два блока для обработки (установка вершин и тесселяция) геометрических данных и растеризации, и схема весьма похожа на ту, что мы видели ранее, разве что тесселяторы названы аж 9-м поколением:

Несмотря на схематическое сходство, последнее поколение этих блоков способно на значительно большую производительность тесселяции и обработки геометрии, так как блоки подверглись значительным модификациям. Хотя пиковая производительность выросла лишь почти до двух миллиардов вершин и примитивов в секунду (925 МГц и две вершины а такт), реальная производительность выросла больше. Это было достигнуто при помощи увеличения объёма кэшей, улучшения буферизации геометрических данных и повторного использования вершинных данных.

В результате, производительность тесселяции улучшена при всех коэффициентах разбиения треугольников до четырёх раз, по сравнению с Radeon HD 6970 из предыдущего поколения. Но четыре раза достигаются не во всех случаях даже на диаграмме от самой AMD:

Диаграмма показывает сравнение производительности тесселяции Radeon HD 7970 по сравнению с HD 6970 при коэффициентах разбиения от 1 до 32. И, как вы видите, разница в производительности получилась от 1,7 до 4 раз. Но это - голая синтетика. И чтобы приблизиться к реальности, приведём ещё данные о скорости тесселяции уже в игровых приложениях:

Как видите, синтетические цифры AMD неплохо подкрепляются игровыми - производительность в реальных приложениях с «тяжёлой» тесселяцией значительно выросла. Это очень неплохой результат, который мы обязательно проверим в практической части, на примере синтетики и игровых приложений.

Неграфические вычисления

С точки зрения гетерогенных и неграфических вычислительных задач весьма важны появившиеся два асинхронных вычислительных движка (Asynchronous Compute Engines - ACE). Они предназначены для планирования и распределения работы между исполнительными блоками для эффективной многозадачности и работают вместе с графическим командным процессором (Command Processor).

Radeon HD 7900 имеет два независимых вычислительных движка и один графический. В сумме это даёт три программируемых блока и три потока команд, полностью отделённых друг от друга. А в дополнение к асинхронной подаче команд для быстрого переключения контекста, новый GPU также имеет два двунаправленных контроллера прямого доступа к памяти (DMA), появившиеся в Cayman. Эти два контроллера необходимы для того, чтобы полностью использовать возможности новой шины PCI Express 3.0.

Как мы знаем, с точки зрения серьёзных вычислений важна не только скорость выполнения операций с плавающей запятой с одинарной точностью, но и двойной (double precision floating point). И новая архитектура AMD весьма неплохо справляется с такой задачей. На данный момент предполагается существование двух версий вычислительных блоков GCN, имеющих разный темп исполнения FP64 инструкций. Для старшего GPU темп выполнения составляет 1/4 от скорости FP32, а для младших чипов выбран темп 1/16, что вполне достаточно для сохранения совместимости, но не слишком усложняет недорогие решения. В итоге, Radeon HD 7970 способен на 947 миллиардов операций двойной точности в секунду (эх, до терафлопа совсем же чуть-чуть не дотянули!) - налицо очередное высочайшее достижение нового чипа AMD.

Причём, это не те гигафлопы, что в случае предыдущих архитектур, а более «жирные». Ведь эффективность нового GPU в сложных вычислительных задачах должна серьёзно возрасти. Во-первых, улучшена подсистема памяти и кэширования. Во-вторых, каждый вычислительный блок GCN имеет свой планировщик, что должно улучшить исполнение ветвящегося кода и общую эффективность. Ну и в третьих отметим скалярное исполнение, не требующее сложных оптимизаций от компилятора, в результате чего вычислительные блоки будут гораздо реже простаивать. И в итоге в любых задачах новому чипу будет легче показать высокую производительность и загрузку ALU.

Из других нововведений, связанных с вычислительными возможностями, отметим полную поддержку ECC для DRAM и SRAM. С программной стороны важно, что Tahiti - это первый графический процессор с полной поддержкой новых версий API: OpenCL 1.2, DirectCompute 11.1 и C++ AMP и их возможностей. Например, OpenCL 1.2 позволяет объединять возможности нескольких вычислительных устройств в одно, и компания AMD уже выпустила соответствующую поддержку в виде AMD APP SDK 2.6 и драйвера Catalyst 11.12.

Производительность и эффективность архитектуры

После обзора всех архитектурных нововведений на примере топового чипа серии Southern Island настало время поговорить об эффективности всех этих изменений. Понятно, что производительность новых чипов гораздо выше, чем у предыдущих, обратное было бы весьма удивительно. Вопрос в том, насколько быстрее. В различных задачах получаются цифры от 40-50% (минимум!) до пятикратной разницы. Улучшения в архитектуре позволяют превысить теоретическую 1,4-кратную разницу по тупым гигафлопсам. Давайте рассмотрим это на примерах:

На диаграмме сравнивается новое топовое решение и предыдущее одночиповое: Radeon HD 7970 и HD 6970, что вполне справедливо. Тесты производительности выбраны различные: SmallptGPU и LuxMark - это рейтрейсинг на OpenCL, SHA256 - безопасный алгоритм хеширования, а AES256 - симметричный алгоритм шифрования. Ну а Mandelbrot - широко известная задача, рассчитанная с двойной точностью вычислений.

Вертикальной прерывистой линией на графике отмечена теоретическая разница в производительности, но данные о скорости показывают, что в трёх из пяти задач скорость нового GPU оказалась значительно выше. Это вызвано всеми изменениями, направленными на увеличение эффективности: уход от VLIW, наличие планировщика в каждом вычислительном блоке, улучшенное кэширование и т. п.

Изменения в качестве рендеринга

Собственно, эту часть вполне можно было бы и пропустить, так как к качеству изображения в последнее время особенных претензий уже нет и быть не может - по разным причинам. Например, качество полноэкранного сглаживания у видеокарт разных производителей весьма близкое, особенно учитывая широкое распространение программных методов сглаживания при помощи фильтров постобработки, выполняемых на всех GPU абсолютно одинаково.

То же самое касается и текстурной фильтрации - сейчас её качество таково, что отличить решения AMD и Nvidia весьма непросто даже если делать попиксельное сравнение. У Radeon HD 6900 - предыдущего поколения компании - анизотропная фильтрация улучшилась ещё немного, и теперь даже «микроскоп» не поможет найти там какие-то значительные недостатки. Единственное замечание в том, что в движении видеокарты Radeon немного уступали Geforce из-за более заметных специфических артефактов, вроде «шума» или «песочка».

С выходом видеочипов нового поколения веса текселей в текстурном фильтре пересмотрели ещё раз, модифицировав их так, чтобы снизить подобные артефакты, иногда видимые на Radeon HD 6900 при наличии текстур определённого вида («высокочастотных», с резкими переходами от тёмного к светлому, например). Изменения в качестве настолько трудно показать на примерах, что AMD не приводит сравнительные картинки HD 7900 против HD 6900, а просто сравнивает качество «аппаратного» алгоритма с чисто программным, выполняемым на потоковых процессорах GPU, а потому - идеальным:

На таком мелком скриншоте разницы в качестве не видно, но AMD уверяет, что все проведённые изменения не привнесли никакого падения производительности и ни в одном из аспектов не ухудшили качество картинки - оно всё так же не зависит от угла и качество фильтрации близко к идеальному. В одном из будущих практических материалов мы это обязательно проверим.

Частично резидентные текстуры (Partially Resident Textures)

Идея Partially Resident Textures (PRT) заключается в использовании аппаратной возможности представленного графического процессора - виртуальной памяти. Наверняка многие пользователи уже видели игру RAGE компании id Software, которая использует технологию виртуального текстурирования, так называемое мегатекстурирование («MegaTexture»), которое обеспечивает возможность использования огромных объёмов текстурных данных и подкачку (streaming) их в видеопамять.

Используя виртуальную видеопамять, очень легко получить эффективную аппаратную поддержку подобных алгоритмов, позволяющих применять в приложении до 32 терабайт текстур, что даёт возможность сделать уникальные локации в играх, без повторяющихся кусков текстур, при полном отсутствии проблем с подгрузкой текстурных данных. Правда, наглядный пример AMD приводит слишком странный, из которого ничего особо непонятно:

PRT позволяет добиться высокого качества картинки и помогает повысить эффективность использования видеопамяти. Подобные алгоритмы уже применяются в движке id Software, и ожидается их появление во многих движках следующего поколения. Игры будущего нуждаются в работе с огромными объёмами данных и преимущество нового GPU в том, что локальная графическая память в алгоритмах а-ля PRT работает как аппаратная кэш-память, и текстуры в неё подгружаются при необходимости. GPU семейства Southern Islands поддерживают «мегатекстуры» объёмом до 32 терабайт (разрешением до 16384×16384) и, что особенно важно, аппаратную текстурную фильтрацию для них, что недоступно на более ранних видеочипах.

Виртуальные текстуры разбиваются на куски размером 64 килобайта (именно килобайты, а не тексели) и этот размер куска фиксирован. И в локальную память видеокарты подгружаются только те из них, которые нужны при рендеринге текущего кадра. Технология работает независимо от текстурного формата, просто размеры кусков в текселях будут отличаться. Например, для обычной несжатой текстуры с 32 бит на цвет, размер куска будет 128×128 текселей, а для сжатой в DXT3-формат - 256×256 текселей.

Технология предполагает и использование мип-уровней текстур (уменьшенных копий, используемых при текстурной фильтрации). При рендеринге и фильтрации к ним требуется многократный доступ. Рассмотрим работу алгоритма на примере.

На этом рисунке выделены четыре разных куска из разных мип-уровней, требуемые при рендеринге. Когда шейдерная программа запрашивает данные из них, некоторые из кусков уже имеются в локальной памяти и эти данные сразу же отправляются в шейдер для дальнейших вычислений. Но некоторые куски отсутствуют в таблице, и приложение должно выбрать последующие действия при таком промахе. Например, можно запросить данные из мип-уровня меньшего разрешения, тогда изображение будет нечётким, но оно хотя бы будет похоже на правду и отрисуется без задержки. А к рендерингу следующего кадра оно уже может быть подгружено в кэш - локальную видеопамять. Игравшие в RAGE нас поймут.

Это - мощнейший алгоритм, позволяющий использовать огромные текстуры, уникальные для каждого из объектов. Аналогичные алгоритмы давно используются при оффлайн-рендеринге, за исключением необходимости расчётов в реальном времени. AMD даже сделала демо-программу, использующую технику наложения текстур Per-Face Texture Mapping, разработанную Walt Disney Animation Studios для их анимационных фильмов. К сожалению, демонстрационная программа ещё не готова, и мы видели лишь скриншоты низкого разрешения.

Суть данной техники наложения текстур в том, чтобы каждому полигону назначить определённый кусок текстуры, без необходимости использования UV-преобразования (нахождения соответствия между координатами поверхности трёхмерного объекта и координатами на двухмерной текстуре). Такой подход решает некоторые проблемы с созданием тесселированного контента, делая алгоритм смещения векторов (displacement mapping) очень простым. А PRT в этом методе используется для эффективного хранения и доступа к текстурных данным.

Инструкции по обработке медиаданных

Интересным нововведением в Southern Islands кажется поддержка специализированных инструкций, используемых при обработке изображений, статичных и динамических. Например, была улучшена широко используемая инструкция под названием «сумма абсолютных разностей», более известная как SAD (Sum of Absolute Differences). Скорость её исполнения - весьма критичное к производительности узкое место многих алгоритмов обработки изображений и видеоданных, вроде определения движения (motion detection), распознавания жестов (gesture recognition), поиска по изображениям, компьютерного зрения и многих других.

Но постойте, в обзоре древней видеокарты Radeon HD 5870 мы уже писали о поддержке SAD! Всё правильно, но теперь кроме обычного SAD (4×1) в Southern Islands появилась новая инструкция - QSAD (счетверённый SAD), объединяющая SAD с операторами сдвига для увеличения производительности и энергоэффективности, а также «маскируемая» инструкция MQSAD, игнорирующая пиксели заднего плана и используемая для изоляции движущихся в кадре объектов от фона.

Новые GPU могут обрабатывать до 256 пикселей на каждый вычислительный блок GCN за такт, что в случае модели AMD Radeon HD 7970 означает возможность обработки до 7,6 триллионов пикселей в секунду в случае 8-битных целочисленных значений цвета. Хотя это теоретическая цифра, возможности новых графических процессоров по обработке визуальных данных весьма впечатляют - многие задачи по обработке видео можно будет выполнять в режиме реального времени.

PCI Express 3.0

Не могли мы пройти и мимо поддержки третьей версии PCI Express всей линейкой новых графических решений Southern Islands, выпущенных сегодня и будущих. Эта поддержка была вполне ожидаемой, так как спецификации третьей версии PCI Express окончательно утвердили ещё осенью 2010 года, но аппаратных решений с её поддержкой до сих пор не было, хотя системные платы уже появляются, видеокарты выпущены сегодня, теперь дело за центральными процессорами.

Обновленный интерфейс обладает скоростью передачи 8 гигатранзакций в секунду вместо 5 ГТ/с для версии 2.0, и его пропускная способность ещё раз выросла вдвое (до 32 Гб/с), по сравнению со стандартом PCI Express 2.0. В новой шине применяется другая схема кодирования пересылаемых по шине данных, но совместимость с предыдущими версиями PCI Express была сохранена.

Первые системные платы с поддержкой PCI Express 3.0 были представлены летом 2011, в основном базе чипсета Intel Z68, а в широкой продаже они появились лишь осенью. Вот и видеокарты подоспели, и AMD по скорости выхода новых графических процессоров с поддержкой самых совершенных технологий снова стала впереди планеты всей. Будет ли от PCI-E 3.0 какой-то практический толк - судить слишком рано, но когда такая возможность появится, мы обязательно протестируем все возможные варианты.

Технология AMD PowerTune

Одним из самых интересных нововведений в Cayman была технология расширенного управления питанием PowerTune. Гибкое управление питанием GPU уже давно применялось, но до Radeon HD 6900 все эти технологий были довольно примитивными и в основном программными методами и изменяли частоту и напряжение ступенчато, не умея отключать большие части видеочипов.

Ещё в семействе Radeon HD 5000 появился ограничитель производительности при превышении определённого уровня потребления, а в Radeon HD 6900 система перешла на качественно иной уровень. Для этого в чип включили специальные датчики во все блоки, которые отслеживают параметры загрузки. Графический процессор постоянно измеряет нагрузку и энергопотребление и не позволяет последнему выйти за определённый порог, автоматически регулируя частоту и напряжение, чтобы параметры оставались в рамках указанного теплопакета.

В отличие от ранних технологий управления питанием, PowerTune обеспечивает прямой контроль над энергопотреблением GPU, в отличие от косвенного управления при помощи изменения частот и напряжений. Эта технология помогает установить высокие частоты GPU, получив высокую производительность в играх, и не бояться, что потребление может выйти за безопасные пределы. Ведь большинство игр и обычных приложений, использующих вычисления на GPU, предъявляют значительно менее высокие требования к питанию и не подходят к опасным пределам энергопотребления, в отличие от тестов стабильности, вроде Furmark и OCCT.

Даже самые тяжёлые игры не требуют максимального потребления энергии, и если ограничить потребление частотой, испытывая видеокарты экстремальными тестами, то в случае 3D-игр останется довольно много неиспользованных возможностей по производительности и питанию. В случае, когда видеокарта не достигла предела безопасного уровня потребления, GPU будет работать на выставленной на фабрике частоте, а в тестах FurMark и OCCT, частота GPU понизится, чтобы оставаться в рамках потребления.

Таким образом, PowerTune помогает выставить более высокие фабричные частоты и настроить систему на максимально эффективное использование ресурсов GPU при установленном максимальном уровне потребления. На показанном выше примере, HD 5870 не использует PowerTune и из-за ограничения частоты GPU высоким потреблением в тестах выносливости не использует все свои возможности. В то время как для Radeon HD 7970 установлен максимальный TDP, и видеочип сбрасывает частоты лишь при его превышении, получая максимально возможную производительность в любых приложениях.

Наглядно это показано на следующей диаграмме. В случае игровых приложений достижение TDP возможно при повышении частоты GPU, а для пиковых нагрузок тестами выносливости частота снижается до безопасного уровня энергопотребления. Без PowerTune пришлось бы выбирать - или получить вероятность выхода из строя видеокарты при длительной работе FurMark и OCCT, или урезать потенциально возможную производительность в играх. Новая технология решает эти вопросы максимально эффективно.

AMD PowerTune отличается быстрой отзывчивостью на изменение условий (микросекунды), так как это аппаратная технология. Также её отличает гибкая настройка частот, а не ступенчатая, как это было в предыдущих чипах. Все измерения не зависят от драйвера, но могут быть скорректированы пользователем при помощи настроек видеокарты.

Отличия PowerTune от общепринятого ранее подхода в том, что в других случаях используется защита от перегрева (thermal throttling), которая переводит графический процессор в режим значительно пониженного потребления, а PowerTune просто плавно снижает его частоту, приводя потребление GPU к установленному ограничителю. При этом достигаются более высокие тактовые частоты и производительность.

Технология AMD ZeroCore

Компания AMD не ограничилась применением уже известной по предыдущим решениям технологии управления питанием. В первых чипах семейства Southern Islands она представляет технологию AMD ZeroCore, которая помогает добиться ещё большей энергетической эффективности в режиме «глубокого простоя» (или «сна») с отключенным устройством отображения, который поддерживается всеми операционными системами.

Ведь практически любая система, даже игровая, большую часть времени проводит в режиме низкой нагрузки на графический процессор. И видеокарта не должна потреблять много энергии в таком режиме. И уж тем более не говоря о режиме с отключенным монитором - в этом случае GPU желательно вовсе отключить. Так в AMD и сделали. Благодаря ZeroCore, в состоянии глубокого простоя новый GPU потребляет менее 5% энергии полноценного режима, отключая большинство функциональных блоков в этом режиме.

AMD приводит схематическое сравнение со своей же Radeon HD 5870, которая поддержкой такой технологии не обладала. ZeroCore - эксклюзивное нововведение Southern Islands, пришедшее в настольные решения из мобильных GPU, предназначенных для ноутбуков. Кстати, преимущества этой технологии связаны не только со снижением потребления. Кроме этого, в режиме длительного простоя при отключении дисплея видеокарта ещё и полностью выключает вентилятор на кулере видеокарты!

Это именно то, чего давно ждали многие пользователи. Самое интересное, что по нашим данным, лабораторные испытания подобных PowerTune и ZeroCore решений проходили ещё несколько поколений видеокарт назад. Некоторые из инженерных сэмплов видеокарт давно ушедших с рынка серий компании AMD именно так и работали, полностью отключая кулер в простое.

Но не только пользователи систем с одной видеокартой получат бонус от снижения шума и потребления энергии с новыми видеокартами AMD с поддержкой ZeroCore. Аналогичные улучшения ожидают и счастливых владельцев CrossFire систем на базе двух, трёх и даже четырёх GPU. Логично ведь, что в режиме отрисовки двухмерного интерфейса операционной системы все видеокарты, кроме главной, не должны бы работать вовсе? Но ведь сейчас они работают именно так!

В случае же CrossFire систем на видеокартах с поддержкой ZeroCore в 2D-режиме все вторичные видеокарты погружены в глубокий сон с минимальным потреблением энергии и отключенным кулером. Такой режим работает и для нескольких одночиповых видеокарт и для двухчиповых решений. Кроме того, первичная видеокарта CrossFire также будет переходить в такой режим в случае длительного простоя, настроенного в Windows. Наглядно разница в работе выглядит так:

Кстати, технология не так проста, как может показаться. Инженерам AMD пришлось решить массу вопросов, связанных с работой операционной системы в режиме простоя. Например, они выяснили, что Windows пытается обновлять информацию на экране даже при отключенном мониторе. Что, естественно, не позволяет отключить GPU вовсе. Поэтому программистам компании пришлось пойти обходным путём, игнорируя все команды отрисовки экрана при отключенном мониторе в режиме сна.

Технология AMD Eyefinity 2.0

Естественно, что в новой архитектуре нашлось место и для улучшений проверенной технологии вывода изображения на несколько мониторов - AMD Eyefinity, теперь в версии 2.0. Она получила новые возможности, большие разрешения, поддержку большего количества дисплеев и расширение гибкости.

Эта технология довольно интересна, хотя крайне малое количество пользователей найдёт в комнате место и наберётся смелости перед семьёй для установки более чем двух мониторов. Но лучше иметь возможность, чтобы всегда смочь ей воспользоваться, чем не иметь её вовсе. Тем более, что цены на мониторы больших диагоналей почти не снижаются, а вот решения среднего уровня постоянно дешевеют.

И действительно, сейчас выгодне купить три монитора с диагональю экрана в 24″, чем один 30-дюймовый. AMD приводит именно такой пример, когда 30″ монитор с разрешением 2560×1600 стоит более $1000, а три 24″ FullHD можно купить за половину этой цены:

Но как тратить свои деньги и пространство в комнате - это личное дело каждого пользователя. Главное, что такая возможность есть. Плюс к этому, Eyefinity 2.0 теперь поддерживает вывод изображения и в стереорежиме HD3D - то, чего не хватало в предыдущих решениях, которые по этому параметру уступали конкурирующим. Объединившая технологии AMD Eyefinity и HD3D видеокарта Radeon HD 7970 является первым одночиповым решением с поддержкой трёх мониторов, работающих в стереорежиме.

Для стереорендеринга в высоком разрешении нужен очень быстрый интерфейс передачи данных. И с предыдущими версиями HDMI выходов, возможности были ограничены 24 Гц на каждый глаз, что вполне достаточно для просмотра кино на Blu-ray 3D, но для любителей игр явно слишком мало.

Для таких задач стали применять формат frame packing, когда кадры для левого и правого глаза объединяются в один, и AMD Radeon HD 7970 поддерживает формат HDMI 1.4a frame packing для вывода стереокартинки. Это первая видеокарта с поддержкой 3-гигагерцового HDMI с frame packing, когда на каждый глаз приходится FullHD картинка с частотой 60 Гц (120 Гц в итоге):

Ещё одной любопытной новинкой нам кажется технология многоканального вывода звука Discrete Digital Multi-Point Audio (DDMA), работающая вместе с Eyefinity. Все предыдущие GPU способны выводить по HDMI и DisplayPort лишь по одному аудиопотоку. То есть, даже если к ПК подключены по HDMI три монитора, находящиеся в разных комнатах, то звуковой канал передаётся лишь один. А вот AMD Radeon HD 7900 получил поддержку одновременного вывода сразу нескольких независимых аудиоканалов, что вполне может пригодиться в некоторых мультимониторных конфигурациях.

Эта же возможность будет весьма полезной для применения в сфере видеоконференций с выводом нескольких собеседников на отдельные экраны, а также многозадачного применения вроде игры на трёх мониторах с игровым аудиосопровождением и просмотром новостей на отдельном экране с независимым звуковым потоком. Ранее для всего этого приходилось применять несколько отдельных аудиосистем, а теперь всё работает максимально удобно.

Не забыта и программная поддержка Eyefinity, почти каждый месяц технология обновляется - появляются новые возможности. Так, ещё в октябре появилась поддержка разрешений вплоть до 16384×16384 и новые мультимониторные конфигурации: горизонтальные и вертикальные 5×1, а также на основе шести мониторов в режиме 3×2.

В декабрьском обновлении видеодрайвера AMD Catalyst стала возможной совместная работа Eyefinity и HD3D, а в феврале обещают поддержку пользовательских разрешений, настройки размещения панели задач и улучшения управления наборами настроек.

Вывод изображения на шесть мониторов может быть осуществлён при помощи двух портов DisplayPort 1.2 и двух концентраторов MST (о которых мы писали ранее), а три или даже четыре монитора потребуют лишь одного порта и соответствующего концентратора. Такие концентраторы позволяют гибко конфигурировать систему вывода изображения, они поддерживают до четырёх FullHD-устройств на один разъём DisplayPort 1.2 и должны появиться в продаже к лету 2012 года.

К слову о разрешении. Высоком разрешении или даже ультравысоком - Ultra High Resolution. Нынешние устройства с разрешением 4000 пикселей по большей стороне требуют подключения при помощи сразу нескольких кабелей: двух DP 1.1 или четырёх DVI. Мониторы такого разрешения следующего поколения будут подключаться лишь по одному кабелю: DP 1.2 HBR2 или HDMI 1.4a 3 ГГц. И новая видеокарта компании AMD уже готова к таким мониторам, снова она стала первой в мире.

Кодирование и декодирование видеоданных

Вполне естественно, что в состав AMD Radeon HD 7970 включён всё тот же блок UVD для декодирования видеоданных, появившийся ещё в предыдущем поколении видеочипов компании. Он просто не нуждается в доработках, поддерживая многопоточный кодек MVC, декодирование форматов MPEG-2/MPEG-4 (DivX), VC-1 и H.264, а также декодирование двух FullHD-потоков во всех поддерживаемых форматах.

Решения AMD обеспечивают максимальное качество декодирования видеопотока, используют несколько десятков специальных алгоритмов улучшения качества и обеспечивают максимальный результат в тестах качества вроде HQV. Среди поддерживаемых особенностей отметим: регулировку цвета и тона, шумоподавление, повышение резкости, качественное масштабирование, динамическую контрастность, продвинутый деинтерлейсинг, а также inverse telecine. Вот пример улучшения контрастности на лету:

Но с декодированием у всех видеочипов давно всё более-менее в порядке. Все новые GPU обеспечивают приличное качество и производительность при просмотре видеоданных. А вот кодирование видео на GPU всё ещё пребывает в зачаточной стадии и основные претензии пользователей направлены на низкое качество получаемой сжатой картинки.

Возможно, новая серия Radeon HD 7000 сможет помочь и в этом, ведь все графические процессоры серии имеют в своём составе блок кодирования видео Video Codec Engine (VCE). Модель Radeon HD 7970 стала первой видеокартой с поддержкой аппаратно ускоренного кодирования и сжатия видео при помощи специализированного блока (ранее в кодировании принимали участие потоковые процессоры).

Качество и производительность должно быть явно лучше, чем раньше, поддерживается кодирование в формат 1080p при 60 кадрах в секунду, причём даже быстрее, чем в реальном времени. Про качество сказать без тестов что-то сложно, но нам обещаны разные уровни оптимизации кодера для видеоданных и игр, а также изменяемое качество сжатия (возможность выбирать между повышением качества или производительности).

Пока что опробовать VCE негде - приложений с его поддержкой просто нет, но компания AMD работает с партнёрами, такими как ArcSoft, для обеспечения поддержки VCE в соответствующих программных продуктах. В будущем планируется выпуск программной библиотеки для ускорения кодирования видеоданных, которая облегчит задачу разработчиков по поддержке продукции AMD нового поколения.

Кодирование может производиться в двух режимах: полное и гибридное (с использованием возможностей потоковых процессоров GPU). Полный режим разработан для задач, которые требуют максимальной энергоэффективности и постоянного уровня производительности. Кодирование в полном режиме на VCE быстрее реального времени и обеспечивает низкие задержки. Но есть и гибридный режим:

В таком режиме вместе с VCE работают и математические блоки GPU. Все хорошо распараллеливающиеся стадии, которые обведены жёлтой линией на схеме, могут использовать мощь вычислительных блоков GCN, а выделенный блок VCE занимается эффективным аппаратным энтропийным кодированием. Такой режим хорошо подходит для видеокарт с большой математической мощью, вроде Radeon HD 7970. Остаются вопрос к качеству этих двух режимов, но это требует тщательного анализа в отдельном материале.

AMD Steady Video

Кроме кодирования и декодирования видеоданных, есть и ещё одна область применения мощи новой графики от компании AMD - улучшение видеороликов плохого качества, снятых с рук, без использования штатива и других аналогичных средств стабилизации изображения. Технология стабилизации видео называется AMD Steady Video, и уже выпущена её вторая версия.

Алгоритм работы программного стабилизатора довольно прост: на основе видеопотока собирается статистика о движении камеры (сдвиг, вращение, приближение) и это движение компенсируется в текущем кадре, относительно предыдущих - изображение сдвигается, поворачивается и масштабируется так, чтобы картинка сильно не прыгала и оставалась стабильной.

Насколько это просто на словах, настолько же сложно в реализации. Просто потому, что пикселей на экране два миллиона, а кадров в секунду до 30 или даже 60. Представьте, сколько вычислений нужно проделать, чтобы отследить все возможные смещения кадра. Мы уже писали выше о функции QSAD, применяемой в видеообработке, как раз она используется и в Steady Video 2.0 для ускорения алгоритма определения движения. Так вот GPU должен обрабатывать случайные сдвиги с амплитудой до 32 пикселей в любом направлении и для этого требуется производительность, соответствующая более чем 500 млрд. операций SAD в секунду (для 1920×1080 при 60 FPS).

За счёт поддержки новых инструкций QSAD в представленном сегодня Radeon HD 7970, его преимущество над мощными CPU в алгоритме motion detection превышает 10x! То есть, качественное видео нам теперь будет обеспечено, причём не только при обработке домашних роликов в видеоредакторах, но и просмотре чужих онлайновых видеороликов, снятых неизвестно чем и неизвестно как. Ну хотя бы трястись всё теперь так не будет…

Программная поддержка

Читатели давно нас спрашивают - когда ж польза от неграфических вычислений на GPU наконец-то достигнет обычных пользователей? Ведь кодированием видео занимаются далеко не все, а вот со сжатием и архивированием любых типов данных сталкивается практически каждый и довольно часто. Что же, у нас есть хорошая новость не только для энтузиастов 3D-графики, но и для нормальных людей - поддержка чипов AMD Fusion и Radeon появилась в широко известном архиваторе WinZip 16.5.

Это приложение известно давно и хотя лучшие его годы позади и уже придуманы более мощные методы сжатия, формат ZIP остаётся одним из наиболее распространённых и быстрых для архивации и сжатия различных типов данных. И теперь он станет ещё быстрее!

Работая в сотрудничестве с AMD, разработчики WinZip смогли ускорить движок этого пакета, используя возможности GPU при помощи OpenCL. Естественно, на GPU пока что ускоряется не всё, но сжатие в формат Deflate (комбинация алгоритмов LZ77 и Хаффмана), декомпрессия Inflate и AES-шифрование получат преимущества от исполнения на потоковых процессорах GPU. Интересно, что OpenCL позволяет даже распределять нагрузку между CPU и GPU, используя оба устройства.

Но топовые видеокарты вроде Radeon HD 7970 предназначены скорее для игровых приложений. Самых современных и работающих на максимальных настройках. Команда программистов AMD находится в постоянном контакте с множеством игровых разработчиков, помогая им внедрять современные технологии, поддерживаемые графическими процессорами компании. AMD всегда поддерживала игровую ПК индустрию, так как они напрямую заинтересованы в её процветании. Так, в 2010 году на игры было потрачено 16,2 миллиарда долларов, а на игровое аппаратное обеспечение для ПК покупатели потратили $16,6 млрд (по оценкам аналитиков, в текущем году цифра вырастет до $22 млрд.). Понятно, что AMD хочет получить часть этих денег.

В наступающем году ожидается большое количество интересных игр, которые выйдут на ПК. Среди таких проектов, к созданию которых AMD приложила руку и которые выйдут в первом полугодии, можно отметить: Blacklight: Retribution, Syndicate, Sniper Elite 2, Max Payne 3, Hitman: Absolution и другие. Но ждать следующего года не обязательно, совсем недавно вышло первое дополнение популярнейшей игры - Battlefield 3: Back to Karkand. Движок там используется всё тот же Frostbite 2, но дополнение Back to Karkand отличается улучшенной разрушаемостью уровней и включает четыре переработанные многопользовательские карты из Battlefield 2, новые транспортные средства, оружие и др. Скриншоты смотрятся просто замечательно:

Чтобы статья была максимально полной, упомянем и основное нововведение AMD Catalyst 12.1 - пользовательские профили для 3D-приложений, позволяющие изменять базовые настройки качества и установки CrossFire отдельно для каждой программы (наконец-то AMD догнала конкурентов):

Ну и чтобы дать закипающим мозгам наших читателей отдых от столь скурпулёзного описания возможностей нового продукта компании AMD, мы наконец-то покажем что-то развлекательное - скриншот из демонстрационной программы, сделанной компанией к анонсу первых решений из семейства Southern Islands. Демка называется «Leo» и показывает забавную сказочную сценку с применением современных графических технологий:

После того, как мы познакомились с теоретическими аспектами новой архитектуры, а также характеристиками и функциональными возможностями Radeon HD 7970, самое время обратиться к практике. Следующая часть материала посвящена практическому исследованию скорости рендеринга новой видеокарты AMD в чисто синтетических тестах. В ней мы определим, как производительность первого решения семейства Southern Islands соотносится со скоростью предыдущих решений компании AMD, а также конкурирующих видеокарт компании Nvidia из верхнего ценового диапазона.

AMD Radeon HD 7970 - Часть 2: видеоплата и синтетические тесты →

Трудности с освоением нового 28-нм техпроцесса немного сбавили темпы гонки между AMD и NVIDIA. Год назад были представлены флагманы прошлого поколения, и после довольно длительного периода доминирования AMD на рынке графических ускорителей их конкурент, наконец-то, смог уверенно потеснить «красных», выпустив GeForce GTX 580 . И этот акселератор всерьез и надолго занял место лидера среди однопроцессорных решений. Но так было до недавнего момента. С анонсом Radeon HD 7970 компания AMD снова вырывается вперед — новый техпроцесс и новый уровень производительности дают шанс вернуть обратно пальму первенства.

Архитектура GCN и графический процессор Tahiti

Последние несколько лет архитектура графических процессоров AMD серьезно не менялась. Но прогресс диктует свои условия. Функциональность и сфера применения графических процессоров расширяются. Все более актуальными становятся неграфические вычисления, и технология GPGPU становится все более востребованной. Лидером в этой области является NVIDIA, которая всячески популяризовала свою платформу CUDA и с недавнего времени даже открыла доступ к исходному коду компилятора. Архитектура GeForce уже давно идет по пути унификации. И вслед за конкурентом, AMD переходит от VLIW к более гибкой и универсальной архитектуре под названием Graphics Core Next (GCN). Старая архитектура в первую очередь была ориентирована на графические расчеты, новая — на смешанные гетерогенные вычисления для одновременной обработки совместно с CPU. И это является одной из ступенек для дальнейшего развития гибридных процессоров Fusion.

В основе старой архитектуры лежали блоки SIMD Engine по 16 потоковых процессоров, которые выполняли одну VLIW-инструкцию над разными блоками данных. При неграфических вычислениях основной проблемой была полная загрузка SIMD-блока. Новая архитектура построена на более универсальных блоках GCN Compute Unit (CU), которые могут гибко распределять нагрузку.


Каждый CU разбит на четыре векторных модуля по 16 ALU и имеет свой скалярный блок для контроля и управления потоками, а также выполнения отдельных операций, не являющихся частью основного массива обрабатываемых данных. У CU имеется локальная память объемом 64 КБ, кэш L1 на 16 КБ и свои блоки выборки и фильтрации текстур. Наличие внутреннего планировщика у такого GCN-блока позволяет им обрабатывать разные потоки и легко переключаться на другие задачи, обходясь без единого внешнего планировщика.

У каждых четырех модулей CU имеется общее хранилище 32 КБ для данных и кэш 16 КБ для инструкций. Общий объем кэша второго уровня в два раза выше, чем у Cayman, и достигает 768 КБ. Пропускная способность шин кэша L1 и L2 позволяет передавать 64 байта за такт. Общая пропускная способность для кэш-памяти первого уровня достигает 2 ТБ/с, для второго — 700 ГБ/с, что в два раза больше возможностей старого Cayman.


Radeon предыдущих серий сильно уступали конкурентам из линейки GeForce при работе с тесселяцией. Поэтому значительному улучшению подверглись блоки обработки геометрии. Их по-прежнему два. Но производительность блока тесселяции значительно повысилась, а сам он получил принадлежность аж к 9 поколению. В определенных режимах обещано ускорение производительности при тесселяции до четырех раз. Но это в синтетике, в реальных играх разница будет значительно меньше. AMD говорит о приросте от 50 до 130% в сравнении с Radeon HD 6900 , что тоже немало.


В неграфических задачах прирост обещают не менее внушительный — от 1,4 до 4 раз в определенных расчетах и задачах.

Появилась поддержка алгоритма Ptex (Per-face texture mapping), который упрощает тесселяцию некоторых объектов. Вместо совмещения целой текстуры с моделью на каждый полигон накладывается отдельная текстура. А технология Partially Resident Textures позволит использовать видеопамять как кэш, в который по мере надобности будут подгружаться текстуры.

Новое поколение графических процессоров AMD совместимо с DirectX 11.1. К числу нововведений также относится поддержка API DirectCompute 11.1, OpenCL 1.2 и C++ AMP.

На базе новой архитектуры планируется в начале следующего года выпустить три линейки видеокарт. Флагманский GPU под кодовым именем Tahiti даст жизнь картам серии Radeon HD 7900, на базе Pitcairn увидят свет Radeon HD 7800, а Verde придет в средний класс с продуктами линейки Radeon HD 7700.

Блок-схема топового Tahiti приведена ниже.


Этот графический процессор включает 32 GCN Compute Unit, каждый из которых насчитывает 64 ALU. А всего получается 2048 штук, что на треть больше, чем у Cayman. Общее количество текстурных блоков достигает 128 штук (96 у предшественника). Не выросло лишь число ROP — их по-прежнему 32. Шесть 64-битных контроллеров обеспечивают связь с памятью по 384-битной шине — прямо как у топового GeForce GTX 580 от NVIDIA. В таком полнофункциональном варианте выпускается Radeon HD 7970. У его младшего брата в лице Radeon HD 7950 часть GCN-блоков будет отключена. GPU у старшей карты работает на 925 МГц, что лишь на 45 МГц выше частоты графического процессора Radeon HD 6970. Память GDDR5 функционирует на 5500 МГц. И тут вообще никакой разницы с предшественником. Правда, у последнего шина 256 бит, так что его пропускная способность памяти заметно ниже. Объем видеобуфера вырос с двух гигабайт до трех.
Видеоадаптер Radeon HD 7970 Radeon HD 6970 Radeon HD 5870
Ядро Tahiti Cayman Cypress
Архитектура GNC VLIW4 VLIW5
4312 2640 2154
Техпроцесс, нм 28 40 40
Площадь ядра, кв. мм 365 389 334
2048 1536 1600
Количество текстурных блоков 128 96 82
Количество блоков рендеринга 32 32 32
Частота ядра, МГц 925 880 850
Шина памяти, бит 384 256 256
Тип памяти GDDR5 GDDR5 GDDR5
Частота памяти, МГц 5500 5500 4800
Объём памяти, МБ 3072 2048 1024
11.1 11 11
Интерфейс PCI-E 3.0 PCI-E 2.1 PCI-E 2.1
Заявленная потребляемая мощность в простое, Вт 3 20 27
250 250 188

Из-за кардинально переработанной архитектурой новый GPU стал намного сложнее и более громоздким. В итоге он даже обогнал GF110 по количеству транзисторов. Но благодаря более тонкому техпроцессу кристалл Tahiti по размерам не больше Cayman, и даже чуть меньше. Максимальный уровень энергопотребления тоже не вырос. И достигнуть этого помог не только новый технологический процесс производства, но и усовершенствованная технология AMD PowerTune. Процессор обладает еще более гибкой системой управления напряжениями и отключает функциональные блоки при простое видеокарты. По показателям энергопотребления в простое Radeon HD 7970 просто рекордсмен — всего 3 Вт! Технология PowerTune контролирует уровень TDP, регулируя рабочие частоты так, чтобы не превысит лимит. Сверхбыстрое реагирование возможно благодаря датчикам, отслеживающим загрузку всех блоков. Конечно, в реальных играх снижаться частоты не будут, а вот в Furmark такое возможно. Нельзя не вспомнить, что подобного рода «защита» от программ стресс-тестирования реализована и в последних видеокартах GeForce. PowerTune — технология аппаратная, но пользователь может корректировать максимальный уровень мощности с помощью соответствующего параметра в Catalyst Control Center.

В режиме длительного простоя при отключенном дисплее карта может полностью выключить вентилятор. Если в системе несколько видеокарт Radeon, которые объединены в CrossFireX, то в простом 2D-режиме простаивающие карты переводятся в самый экономичный режим и отключают вентилятор.


Radeon HD 7970 и все последующие графические решения AMD обрели поддержку высокопроизводительной шины PCI Express 3.0. Хотя сомнительно, что для игровой карты даже такого уровня нужна быстрая шина. А вот для неграфических расчетов это будет более актуальным. Сохранена аппаратная совместимость со старыми стандартами PCI-E, так что никаких проблем с использованием новых видеоадаптеров на относительно старых системных платах быть не должно.

Получила развитие и технология AMD Eyefinity. Вместе с индексом 2.0 появилась поддержка HD3D для мультимониторных конфигураций. Radeon HD 7970 — первая карта AMD, которая позволяет выводить стереоизображение на три монитора. Специально для этого режима она обзавелась поддержкой интерфейса HDMI 1.4a frame packing, который (в отличие от простого HDMI 1.4a) позволяет передавать картинку в Full HD с частотой 60 Гц на глаз. Добавилась поддержка новых разрешений и конфигураций. Как и ранее, подключить к карте можно шесть мониторов. С помощью специального хаба к одному интерфейсу Display Port 1.2 возможно подключить три устройства. Правда, такие хабы появятся в продаже значительно позже.

Блок UVD в GPU Tahiti обеспечивает аппаратное декодирование данных в форматах MPEG-2/MPEG-4 (DivX), VC-1 и H.264. Для аппаратного кодирования видео появился специальный блок VCE, который может работать как совместно с потоковыми процессорами, так и сам обрабатывать видео. Новая технология AMD Steady Video позволит улучшить видео плохого качества и убрать дрожание камеры.

В числе уникальных достоинств Radeon HD 7970 — поддержка Ultra High Resolution. Тут новинка снова в роли первопроходца, хотя эра UHDTV пока еще кажется очень далекой.

Новичок по своим размерам не отличается от референсных Radeon HD 6950/6970.


Представители шеститысячной серии Radeon не отличались изысканным дизайном. Своими строгими угловатыми формами они напоминали кирпич. У Radeon HD 7970 более оригинальный внешний вид — черный округлый кожух с красными вставками.


Смотрится очень симпатично. Глянцевая поверхность пластикового кожуха придает лоска.


Сбоку расположены два разъема питания — один на шесть контактов, второй на восемь. AMD решила продолжить традицию использования двойного BIOS, которая взяла начало с Radeon HD 6950/6970. И возле пары разъемов CrossFire имеется соответствующий переключатель. Это весьма удобно для экспериментов с разгоном. Тем более, что одна микросхема недоступна для перепрошивки, и в случае какого-то сбоя всегда можно вернуться к рабочей конфигурации.

Обратная сторона платы уже не закрыта цельной пластиной.


Набор разъемов на задней панели включает пару Display Port 1.2, один HDMI 1.4a и привычный DVI.


За охлаждение видеокарты отвечает «турбина» стандартной конструкции. Это почти полная копия кулера Radeon HD 6970 .


Массивная испарительная камера с рядом алюминиевых пластин. Основание кулера — большая алюминиевая пластина, которая отводит тепло от микросхем памяти и силовых элементов. Вентилятор стал чуть больше, диаметр его увеличился на 5 мм, да и сами лопасти более широкие. Так что эффективность системы охлаждения по сравнению с предшественником тоже должна немного улучшиться.


Оценить размеры радиатора можно по нижней фотографии, где видеокарта изображена без пластикового кожуха. Длина платы 27 сантиметров.


Дизайн самой платы напоминает Radeon HD 6970 второй ревизии с шестифазной схемой питания графического процессора. Только используются другие компоненты.


Впервые на референсном решении мы видим «мосфеты» в корпусе DirectFET, которые обладают самыми лучшими характеристиками в сравнении с другими полевыми транзисторами. Решение более дорогое, но и более надежное. И до появления Radeon HD 7970 такие компоненты использовались только MSI в своих топовых видеокартах оверклокерской серии Lighting .


Системой питания управляет контроллер CHiL CHL8228G. Точно такой же использовался у Cayman. Так что после обновления MSI Afterburner можно рассчитывать на полноценную поддержку софтвольтмода.


Вокруг кристалла GPU имеется большая рамка, которая надежно защищает его от сколов. Хотя и сама конструкция кулера исключает любую возможность его перекоса. На процессоре нет никакой маркировки. Все данные нанесены на рамку.


Три гигабайта видеопамяти набраны 12 микросхемами Hynix H5GQ2H24MFR R0C, которые рассчитаны на частоту 6 ГГц.

Последняя версия GPU-Z правильно определяет все параметры видеокарты. Графический процессор работает на 925 МГц, память — на 5500 МГц.


Отслеживать температуру ядра можно с помощью GPU-Z или beta-версий MSI Afterburner 2.2.0. Последняя утилита не позволяет корректно менять частоты, но регулирует обороты вентилятора и поддерживает все функции мониторинга.


Нагрузив видеокарту демо Ambush из Crysis Warhead Benchmarking Tool (на максимальных настройках качества изображения в разрешении 1920x1080 при AA8x) мы сумели прогреть GPU всего лишь до 75 °C в открытом корпусе при 24 градусах в помещении. И при такой умеренной температуре вентилятор раскручивался только до 2200 об/мин, так что уровень шума был невысокий. Отличный результат! Ведь за последние несколько лет пользователи привыкли к тому, что старшие графические ускорители горячие или громкие, а то сразу и те и другие одновременно.

Конечно, Crysis уже не сможет прогреть такую видеокарту по полной. Но даже после часа тестов в DirectX 11 температура не поднялась выше 76 °C. Все вроде отлично, и ничто не греется, однако в какой-то момент Radeon HD 7970 начал «радовать» нас сверхнизкими результатами и артефактами в играх. Все решилось довольно просто. После того, как карта остыла, мы загрузились и сразу же подняли обороты в MSI Afterburner до 60%. Это позволило нормально пройти все тесты заново. Причина такого поведения видеокарты не совсем ясна. Возможно, дело в «сыром» BIOS или программном обеспечении, из-за чего некорректно сработала система PowerTune, переводя карту в более медленный режим. Но это один из первых инженерных образцов видеокарты, первый BIOS и первый видеодрайвер. До официального старта продаж еще полторы недели и этого более чем достаточно для устранения каких-то огрехов в программном обеспечении. Так что потенциальным покупателям новинок бояться ничего не стоит.

Что же касается разгона, то пока весь инструментарий для этих целей ограничен возможностями Catalyst Control Center. Хотя ограничения там не такие уж и маленькие. AMD Overdrive позволяет поднимать частоту ядра до 1125 МГц, а памяти до 6300 МГц. Такой «запас» намекает на то, что 1 ГГц Tahiti должен взять с полпинка.


Так это или нет, мы выясним в следующей части статьи. В данном обзоре сосредоточимся на производительности нового Radeon в номинальном режиме.
Характеристики видеокарт

В наше тестирование мы включили такие видеокарты:

  • Radeon HD 6970 (ASUS EAH6970 DCII/2DI4S/2GD5);
  • Radeon HD 6990 (PowerColor AX6990 4GBD5-M4D);
  • GeForce GTX 580 (Zotac GeForce GTX 580 AMP! Edition на пониженных до стандарта частотах).
Видеокарта ASUS идет с заводским разгоном 10 МГц по ядру. Но это настолько мизерная разница со стандартной частотой, что для тестов мы не стали ее снижать до 880 МГц.
Видеоадаптер Radeon HD 6990 Radeon HD 7970 ASUS Radeon HD 6970 GeForce GTX 580
Ядро Antilles Tahiti Cayman XT GF110
Количество транзисторов, млн. шт 2640x2 4312 2640 3000
Техпроцесс, нм 40 28 40 40
Площадь ядра, кв. мм 389x2 365 389 520
Количество потоковых процессоров 1536x2 2048 1536 512
Количество текстурных блоков 96x2 128 96 64
Количество блоков рендеринга 32x2 32 32 48
Частота ядра, МГц 800 (880*) 925 880 772
Частота шейдерного домена, МГц 800 (880*) 925 880 1544
Шина памяти, бит 256x2 384 256 384
Тип памяти GDDR5 GDDR5 GDDR5 GDDR5
Частота памяти, МГц 5000 5500 5500 4008
Объём памяти, МБ 2048x2 3072 2048 1536
Поддерживаемая версия DirectX 11 11.1 11 11
Интерфейс PCI-E 2.1 PCI-E 3.0 PCI-E 2.1 PCI-E 2.0
Заявленная максимальная потребляемая мощность, Вт 350—375 250 250—190 244

Тестовый стенд

Конфигурация тестового стенда следующая:

  • процессор: Core i7-975 EE (3,2@4,15 ГГц, BCLK 173 МГц);
  • кулер: Thermalright Venomous X;
  • материнская плата: Gigabyte GA-X58A-UD3R (Intel X58 Express);
  • память: G.Skill F3-12800CL8T-6GBRM (3x2GB, DDR3-1600@1730 МГц, 8-8-8-24-1T);
  • жесткий диск: Hitachi HDS721010CLA332 (1 ТБ, SATA2, 7200 об/мин);
  • блок питания: FSP FX700-GLN (700 Вт);
  • операционная система: Windows 7 Ultimate x64;
  • драйвер Radeon: ATI Catalyst 11.12;
  • драйвер GeForce: NVIDIA GeForce 285.62.
В операционной системе были отключены User Account Control, Superfetch, Windows Defender и визуальные эффекты интерфейса. Настройки драйверов стандартные, без изменений.

Результаты тестирования




В 3DMark 11 новый Radeon обходит предшественника на 41—45% и не дотягивает до двухчипового видеоадаптера 27—31%. GeForce GTX 580 проигрывает новичку где-то 26—29%.


Два пятикратных прогона Ambush из Crysis Warhead Benchmarking Tool. Настройки графики максимальные (Enthusiast), сглаживание AA8x.


В данной игре преимущество Radeon HD 7970 над однопроцессорными моделями намного скромнее. В этот раз ему даже не удается обогнать GeForce GTX 580 по минимальному fps. Да и по среднему показателю разница между ними небольшая — всего 10,7% в пользу новинки AMD.


Карты протестированы в «ручном» режиме при помощи Fraps. Для теста выбран небольшой эпизод на первом уровне. Прогулка по скверику с расстрелом камней и водной поверхности. Три повтора для каждого режима. Настройки графики максимальные с включенными улучшенными текстурами в разрешении 1920x1080.


В Crysis 2 Radeon HD 7970 выглядит намного лучше. Отрыв от Radeon HD 6970 достигает 50% по среднему fps. GeForce GTX 580 отстает на 24%. Очень маленькая разница с двухчиповым Radeon HD 6990, а по минимальному fps этот двуглавый титан даже хуже. Дело в большом разбросе по минимальному fps. И хотя мы дополнительно увеличили число прогонов до 6, но все равно получали на этой карте от 16 до 31 fps.


Стандартный игровой бенчмарк Frontline. Три пятикратных прогона. Настройки графики максимальные. Тесселяция и Depth of Field включены.



Отличный результат без сглаживания. А вот с AA4x мощности нового Radeon все равно не хватает. Предшественник слабее на 28—36%, GeForce GTX 580 — на 11—14%.


Частота кадров измерялась с помощью Fraps. Выбрана миссия «Молот и наковальня» (Rock and a hard place). После первой контрольной точки мы спускаемся по склону холма в долину до укреплений врага. Тестовая сценка включала, кроме спуска, начало перестрелки при штурме первого ряда укреплений. Огонь велся по двум точкам из-за укрытия через прицел. С учетом простого спуска общий порядок действий легко повторим, а итоговые результаты не зависят от случайных факторов. Плюс в кадре находится не только большая площадь с детализированными текстурами, но и световые эффекты выстрелов, и парочка взрывов. Это помогает создать максимально адекватную картину реальной производительности, как в сложных насыщенных сценах одиночной кампании, так и в многопользовательских схватках. Три повтора. Настройки в положении Ultra при сглаживании AA4x.


А вот в этой игре GeForce GTX 580 и вовсе наступает на пятки новичку AMD. Между ними разница всего лишь 5%.

Выводы

С выпуском Tahiti начинается новая эра для видеокарт Radeon. Прогрессивная архитектура станет основной для дальнейшего развития графических ускорителей AMD в ближайшие годы. В области неграфических вычислений компания AMD сделала значительный шаг вперед, который позволит не только отвоевать свою долю рынка в этой сфере, но и далее развивать и совершенствовать гибридные процессоры Fusion. Но нас в первую очередь интересует игровая производительность нового Radeon HD 7970. С этим у него тоже все обстоит отлично. Он демонстрирует значительное преимущество над предшественником Radeon HD 6970, которое иногда достигает 30—50%. И недавний одночиповый флагман GeForce GTX 580 тоже сдается под натиском мощного новичка AMD. Разница между ними уже поменьше, иногда и вовсе в несколько кадров. Но, к примеру, результаты в Crysis 2 у Radeon просто отличные. Явно сказывается повышение производительности при обработке тесселяции, что было слабым местом старых видеоадаптеров AMD. Благодаря новому 28-нм техпроцессу столь мощное графическое решение по уровню энергопотребления не превысило аппетитов старшего одночипового ускорителя шеститысячной серии. А конкурент от NVIDIA по этому параметру и вовсе окажется в невыгодном положении. Несмотря на заявленные цифры его реальное энергопотребление значительно выше Radeon HD 6970. Еще Radeon HD 7970 является пока что единственным видеоадаптером с поддержкой DirectX 11.1. Среди своих товарищей он также пока единственный, кто предлагает HD3D с поддержкой нескольких мониторов.

Прогрессивное решение с отличным сочетанием потребительских характеристик. Минус у него один — цена. Рекомендованная стоимость составляет 550 долларов, и это самая дорогая однопроцессорная видеокарта в истории ATI/AMD. Вряд ли цена существенно изменится до тех пор, пока NVIDIA не выпустит свои модели нового поколения. Если лишние деньги жмут вам карман, то можете готовиться к покупке — в январе Radeon HD 7970 уже будут доступны в магазинах. Более экономные энтузиасты могут подождать младший Radeon HD 7950, который тоже обещает выйти очень интересным продуктом.

В данной статье мы обошли стороной разгон. Да и набор тестов был невелик. Но, как понятно из названия — это не последняя наша встреча с Radeon HD 7970. Во второй части обзора вы увидите больше игровых приложений и участников. Конкурентов мы сравним не только на стандартных частотах, но и при разгоне. Посмотрим, сможет ли разогнанный Radeon HD 7970 сравнятся с двухчиповым титаном Radeon HD 6990, и удастся ли GeForce GTX 580 компенсировать свое отставание от новичка благодаря повышению частот.

Оборудование для тестирования было предоставлено следующими компаниями:

  • 1-Инком — память G.Skill F3-12800CL8T-6GBRM;
  • AMD — видеокарта Radeon HD 7970;
  • ASUS — видеокарта EAH6970 DCII/2DI4S/2GD5;
  • DCLink — видеокарта PowerColor HD6990 4GB GDDR5;
  • Gigabyte — материнская плата GA-X58A-UD3R;
  • Intel — процессор Intel Core i7-975 EE;
  • Thermalright — Thermalright Venomous X;
  • Zotac — видеокарта GeForce GTX 580 AMP! Edition.

Слухи о выходе обновлённой видеокарты Radeon HD 7970 , и на Computex 2012 о ней не говорил только ленивый. Конечно, мы имеем в виду Radeon HD 7970 GHz Edition. Между тем AMD выпускает процессоры "Southern Island" по 28-нм техпроцессу на заводах TSMC уже несколько месяцев, и такого срока достаточно, чтобы внести оптимизации в процесс производства и повысить долю выхода годных кристаллов. Тем более что высокая производительность GeForce GTX 680 от NVIDIA заставила AMD искать новую более скоростную версию Radeon HD 7970 для конкуренции. В нашем обзоре мы рассмотрим, насколько достойным оппонентом станет Radeon HD 7970 GHz Edition по сравнению с GeForce GTX 680, какие улучшения по сравнению со стандартной моделью HD 7970 мы получим.

Производители, уже отметившиеся выпуском видеокарт с заводским разгоном, планируют сделать то же самое и с новой Radeon HD 7970 GHz Edition. AMD явно нацелилась на возможность увеличения частот GPU выше планки 1 ГГц при сохранении тех же уровней напряжения, что и у оригинальной модели. Это касается и ручного разгона энтузиастами, и заводского разгона производителями видеокарт. "Старая" модель Radeon HD 7970 будет пока что продаваться, но версию GHz Edition AMD позиционирует на ступень выше по производительности и, соответственно, по цене

Технические спецификации приведены в следующей таблице:


NVIDIA GeForce GTX 680 AMD Radeon HD 7970 AMD Radeon HD 7970 GHz Edition
Розничная цена около 460 евро в Европе
около 18,5 тыс. рублей в России
около 380 евро в Европе
около 17 тыс. рублей в России
499 долларов США
Сайт производителя NVIDIA AMD AMD
Технические спецификации
GPU GK104 (GK104-400-A2) Tahiti XT Tahiti XT2
Техпроцесс 28 нм 28 нм 28 нм
Число транзисторов 3,54 млрд. 4,3 млрд. 4,3 млрд.
Тактовая частота GPU 1006 МГц (Boost: 1058 МГц) 925 МГц 1000 МГц (Boost: 1050 МГц)
Тактовая частота памяти 1502 МГц 1375 МГц 1500 МГц
Тип памяти GDDR5 GDDR5 GDDR5
Объём памяти 2048 Мбайт 3072 Мбайт 3072 Мбайт
Ширина шины памяти 256 бит 384 бит 384 бит
Пропускная способность памяти 192,3 Гбайт/с 264 Гбайт/с 288 Гбайт/с
Версия DirectX 11.1 11.1 11.1
Потоковые процессоры 1536 (1D) 2048 (1D) 2048 (1D)
Текстурные блоки 128 128 128
ROP 32 32 32
Пиксельная скорость заполнения 32,2 Гпиксель/с 29,6 Гпиксель/с 33,6 Гпиксель/с
Минимальное энергопотребление 15 Вт 2,6 Вт 2,6 Вт
Максимальное энергопотребление 195 Вт 250 Вт 250 Вт
SLI/CrossFire SLI CrossFire CrossFire

Архитектурно новая версия GHz Edition не отличается от Radeon HD 7970. AMD опиралась только на оптимизации техпроцесса, возможность работы GPU на меньшем напряжении, что позволило увеличить штатную тактовую частоту GPU с 925 МГц до 1000 МГц. Что интересно, 1000 МГц соответствует базовой частоте, поскольку AMD реализовала режим Boost. Он у видеокарты Radeon HD 7970 GHz Edition будет увеличивать тактовую частоту до 1050 МГц. То есть по сравнению с первоначальной частотой 925 МГц мы получаем разгон на 13,5 процентов.

Приятно и то, что GPU "Tahiti XT2" в режиме бездействия работает всего от 0,807 В. У Radeon HD 7970, напомним, напряжение составляло 0,85 В. Под нагрузкой тактовые частоты увеличиваются до обещанного AMD уровня 1050 МГц, GPU при этом работает от напряжения 1,201 - 1,221 В. "Старый" графический процессор Radeon HD 7970 работал от напряжения 1,139 В.

Механизм Powertune хорошо известен по предыдущим поколениям GPU. Но в случае Radeon HD 7970 GHz Edition технология AMD Powertune даёт прирост тактовой частоты Boost. В дополнение к ранее известному состоянию "High P-State", AMD добавляет ещё P-состояние "Boost P-State". Оно позволяет получить ещё более высокие тактовые частоты, которые стали возможными благодаря динамическому изменению напряжения.

Но, в отличие от NVIDIA, AMD не указывает минимального режима Boost - он фиксирован на уровне 1050 МГц. Кроме того, для работы используется технология, известная по процессорам Trinity. А именно "Digital Temperature Estimation", которая заблаговременно оценивает нагрузку и выставляет тактовые частоты соответствующим образом. На архитектурном уровне чипы Tahiti в двух видеокартах Radeon HD 7970 не отличаются друг от друга. Таким образом, Powertune реализована через VBIOS и драйвер, теоретически технология может работать и на старых видеокартах.

Память тоже была разогнана. Как можно видеть по спецификациям выше, VRAM работает на частотах 1500 МГц, что увеличивает пропускную способность с 264 до 288 Гбайт в секунду. Из-за более широкого интерфейса памяти, AMD смогла в данном отношении ещё сильнее оторваться от NVIDIA.

Теоретическая производительность новинки составляет 4,3 терафлопа с одинарной точностью и 1,08 терафлопа с двойной точностью. NVIDIA недавно анонсировала вычислительный ускоритель Tesla K10 на основе двух GPU GK104, который даёт производительность с одинарной точностью 4,58 терафлопа. Но у GK104 производительность с двойной точностью составляет 1/24 от уровня с одинарной точностью. Подобная ситуация изменится только с чипом GK110 и Tesla K20, когда можно будет ожидать трёхкратный прирост по производительности с двойной точностью. Таким образом, если Tesla M2090 на основе Fermi даёт 665 гигафлопов, то от GK110 можно ожидать производительности 1,5 терафлопа и больше.

Для получения дополнительных деталей об архитектуре "Graphics Core Next" и поколении "Southern Island" мы рекомендуем обратиться к нашему .

AMD Radeon HD 7970M - это графическая карта, разработанная для больших ноутбуков. Она построена на микроархитектуре GCN (Graphics Core Next) по 28 нм технологическому процессу и поддерживает DirectX 11. Относится к категории лучших видеокарт 2012 года.

Видеокарты серии Radeon HD 7900M основаны на чипе Pitcairn, так же, как адаптер для настольных компьютеров Radeon HD 7870 . В частности, AMD Radeon HD 7970M с ее 1280 потоковыми процессорами и 80 текстурными блоками имеет частоту ядра лишь 850 МГц, уступая в мощности видеокарте HD 7870 с частотой 1000 МГц. В результате, общий уровень производительности HD 7970M находится между моделями карт Radeon HD 7850 и HD 7870 для настольных ПК.

По сравнению с GPU от NVIDIA, HD 7970M должна работать значительно быстрее, чем GeForce GTX 675M и примерно на одном уровне с GTX 680M , анонсирование которой ожидается летом 2012 года. Однако, поскольку GTX 680M пока не представлена общественности, HD 7970M считается самой быстрой из доступных видеокарт.

Особенностью карты 7970M является наличие видео дешифратора UVD3, который способен декодировать не только форматы MPEG-4 AVC/H.264, VC-1, MPEG-2, Flash, но и Multi-View Codec (MVC) и MPEG-4 part 2 (DivX, xVid) HD.

Серия 7900М также поддерживает функцию автоматического переключения между интегрированной и дискретной видеокартами. Такая технология от производителя AMD получила название Enduro, по выполняемым функциям она идентична технологии Optimus от NVIDIA. Кроме того, 7970M имеет способность поддерживать одновременно до 6 мониторов, используя для этого технологию Eyefinity, если Enduro отключена.

Следующей особенностью адаптеров серии 7900М является наличие технологии ZeroCore, созданной для оптимизации энергопотребления. Суть работы этой технологии состоит в значительной экономии потребляемой энергии при выключенном мониторе. А вот технология Power Gating не поддерживается AMD. PowerTune позволяет автоматически разгонять видеокарту и понижать ее частоту до тех пор, пока тепловыделение графической карты находится в допустимых пределах. Например, рабочая частота чипа может быть снижена при загрузке FurMark и OCCT, и, наоборот, поднята в некоторых играх, например Lost Planet, Crysis или Resident Evil 5.

Встроенный HD аудио процессор способен передавать аудио в высоком качестве (в форматах TrueHD и DTS Master Audio) через порты HDMI и DisplayPort (например, Blu-ray видео). К тому же, наличие технологии Discrete Digital Multipoint Audio (DDMA) позволяет выводить звук одновременно с нескольких устройств.

Уровень энергопотребления AMD Radeon HD 7970M довольно высок, и составляет 100 Вт (такую же мощность имеет карта GeForce GTX 675M). Поэтому, вследствие большого тепловыделения 7970M идеально подойдет только для больших ноутбуков либо для DTR (высокопроизводительных ноутбуков, заменяющих настольные ПК), которые имеют довольно мощную систему охлаждения.

Производитель: AMD
Серия: Radeon HD 7900M
Код: Wimbledon XT
Архитектура: GCN
Потоки: 1280 - unified
Тактовая частота: 850* МГц
Частота шейдеров: 850* МГц
Частота памяти: 1200* МГц
Разрядность шины памяти: 256 Бит
Тип памяти: GDDR5
Общая память: нет
DirectX: DirectX 11, Shader 5.0
Энергопотребление: 100 Вт
Технология: 28 нм
Размер ноутбука: большой
Дата выхода: 01.05.2012

* Указанные тактовые частоты могут быть изменены производителем



Рекомендуем почитать

Наверх