Архитектуры процессора intel за все время. История процессоров интел

Скачать на Телефон 14.07.2019
Скачать на Телефон

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Липецкий государственный технический университет»

Кафедра электропривода

КУРСОВАЯ РАБОТА

по дисциплине:”Микропроцессорные средства.”

на тему:”История развития процессоров INTEL .Процессоры INTEL ATOM .Ноутбуки на базе технологии INTEL ATOM .”

Выполнила Верзилина О.Н.

Студентка группа ОЗЭП-04-1

Проверил

Преподаватель Пличко Н.П.

Липецк 2008


1.История развития фирмы INTEL………………………………………3

1.1.Развитие и выпуск процессоров INTEL……………………………..9

2.Обзор технологии ATOM………………………………………………20

3.Обзор процессоров INTELATOM……………………………………..22

4.Процессоры INTELATOM 230,Z520…………………………………..24

4.1.Материнская плата GigabyteGC230D………………………………..24

4.2.Материнская плата IXT………………………………………………..32

5.Процессор INTELATOM 330…………………………………………...42

6.Ноутбуки на базе процессоров INTELATOM…………………………43

6.1.Ноутбук MSI Wind U100-024RU………………………………………43

6.2.Ноутбук ASUS Eee 1000H……………………………………………...48

6.3.Ноутбук Acer One AOA 150-Bb………………………………………..51

6.4.Ноутбук Gigabyte M912V………………………………………………53

6.5.Ноутбук Asus N10………………………………………………………54

6.6.Ноутбук SatelliteNB 105……………………………………………….55


1. История создания фирмы INTEL .

12 декабря 2002 года исполнилось 75 лет со дня рождения Роберта Нойса, изобретателя микросхемы и одного из основателей фирмы Intel.

Началось все с того, что в 1955 году изобретатель транзистора Уильям Шокли открыл собственную фирму Shockley Semiconductor Labs в Пало-Альто (что, кроме всего прочего, послужило началом создания Кремниевой долины), куда набрал довольно много молодых исследователей. В 1959 году по ряду причин от него ушла группа в восемь инженеров, которых не устраивала работа “на дядю” и они хотели попробовать реализовать собственные идеи. “Восьмерка предателей”, как их называл Шокли, среди которых были в том числе Мур с Нойсом, основала фирму Fairchild Semiconductor.

Боб Нойс занял в новой компании должность директора по исследованиям и разработкам. Позднее он утверждал, что придумал микросхему из лени – довольно бессмысленно выглядело, когда в процессе изготовления микромодулей пластины кремния сначала разрезались на отдельные транзисторы, а затем опять соединялись друг с другом в общую схему. Процесс был крайне трудоемким – все соединения паялись вручную под микроскопом! – и дорогим. К тому моменту сотрудником Fairchild, тоже одним из сооснователей – Джином Герни (Jean Hoerni) уже была разработана т.н. планарная технология производства транзисторов, в которой все рабочие области находятся в одной плоскости. Нойс предложил изолировать отдельные транзисторы в кристалле друг от друга обратносмещенными p-n переходами, а поверхность покрывать изолирующим окислом, и выполнять межсоединения с помощью напыления полосок из алюминия. Контакт с отдельными элементами осуществлялся через окна в этом окисле, которые вытравливались по специальному шаблону плавиковой кислотой.

Причем, как он выяснил, алюминий отлично приставал как к кремнию, так и к его окислу (именно проблема адсорбции материала проводника к кремнию до последнего времени не позволяла использовать медь вместо алюминия, несмотря на ее более высокую электропроводность). Такая планарная технология в несколько модернизированном виде сохранилась до наших дней. Для тестирования первых микросхем использовался единственный прибор – осциллограф.

Между тем выяснилось, что Нойса в благородном деле создания первой микросхемы опередили. Еще летом 1958-го сотрудник Texas Instruments Джек Килби продемонстрировал возможности изготовления всех дискретных элементов, включая резисторы и даже конденсаторы, на кремнии.

Планарной технологии в его распоряжении не было, поэтому он использовал так называемые меза-транзисторы. В августе он собрал работающий макет триггера, в котором отдельные изготовленные им собственноручно элементы соединялись золотыми проволочками, а 12 сентября 1958 г. предъявил работающую микросхему – мультивибратор с рабочей частотой 1,3 МГц. В 1960 году эти достижения демонстрировались на публике – на выставке американского Института радиоинженеров. Пресса очень холодно встретила открытие. В числе прочих отрицательных особенностей “integrated circuit” называлась неремонтопригодность. Хотя Килби подал заявку на патент еще в феврале 1959, а Fairchild сделала это только в июле того же года, последней патент выдали раньше – в апреле 1961 г., а Килби – только в июне 1964 г. Потом была десятилетняя война о приоритетах, в результате которой, как говорится победила дружба. В конечном счете, Апелляционный Суд подтвердил претензии Нойса на первенство в технологии, но постановил считать Килби создателем первой работающей микросхемы. В 2000 Килби получил за это изобретение Нобелевскую премию (среди двух других лауреатов был академик Алферов).

Роберт Нойс и Гордон Мур ушли из компании FairchildSemiconductor и основали свою фирму, а вскоре к ним присоединилсяЭнди Гроув. Тот же финансист, который ранее помог создать Fairchild, предоставил $2.5 млн, хотя бизнес-план на одной страничке, собственноручно отпечатанный на пишущей машинке Робертом Нойсом, выглядел не слишком впечатляюще: куча опечаток, плюс заявления весьма общего характера.

Выбор имени оказался нелегким делом. Предлагались десятки вариантов, но все они были отброшены. Кстати, вам ничего не говорят названия CalCompили CompTek? А ведь они могли бы принадлежать не тем популярным фирмам, которые носят их сейчас, а крупнейшему производителю процессоров - в свое время их отвергли среди прочих вариантов. В итоге было решено назвать компанию Intel, от слов «интегрированная электроника». Правда, сначала пришлось выкупить это название у группы мотелей, зарегистрировавшей его ранее.

Итак, в 1969 году Intel начинала работу с микросхем памяти и добилась некоторого успеха, но явно недостаточного для славы. В первый год существования доход составил всего $2672.

Сегодня Intel производит чипы в расчете на рыночные продажи, но в первые годы своего становления компания нередко делала микросхемы на заказ. В апреле 1969 года в Intel обратились представители японской фирмы Busicom, занимающейся выпуском калькуляторов. Японцы прослышали, что у Intel самая передовая технология производства микросхем. Для своего нового настольного калькулятора Busicom хотела заказать 12 микросхем различного назначения. Проблема, однако, заключалась в том, что ресурсы Intel в тот момент не позволяли выполнить такой заказ. Методика разработки микросхем сегодня не сильно отличается от той, что была в конце 60-х годов XX века, правда, инструментарий отличается весьма заметно.

В те давние-давние годы такие весьма трудоемкие операции, как проектирование и тестирование, выполнялись вручную. Проектировщики вычерчивали черновые варианты на миллиметровке, а чертежники переносили их на специальную вощеную бумагу (восковку). Прототип маски изготовляли путем ручного нанесения линий на огромные листы лавсановой пленки. Никаких компьютерных систем обсчета схемы и ее узлов еще не существовало. Проверка правильности производилась путем "прохода" по всем линиям зеленым или желтым фломастером. Сама маска изготавливалась путем переноса чертежа с лавсановой пленки на так называемый рубилит - огромные двухслойные листы рубинового цвета. Гравировка на рубилите также осуществлялась вручную. Затем несколько дней приходилось перепроверять точность гравировки. В том случае, если необходимо было убрать или добавить какие-то транзисторы, это делалось опять-таки вручную, с использованием скальпеля. Только после тщательной проверки лист рубилита передавался изготовителю маски. Малейшая ошибка на любом этапе - и все приходилось начинать сначала. Например, первый тестовый экземпляр "изделия 3101" получился 63-разрядным.

Словом, 12 новых микросхем Intel физически не могла потянуть. Но Мур и Нойс были не только замечательными инженерами, но и предпринимателями, в связи с чем им сильно не хотелось терять выгодный заказ. И тут одному из сотрудников Intel, Теду Хоффу (Ted Hoff), пришло в голову, что, раз компания не имеет возможности спроектировать 12 микросхем, нужно сделать всего одну универсальную микросхему, которая по своим функциональным возможностям заменит их все. Иначе говоря, Тед Хофф сформулировал идею микропроцессора - первого в мире. В июле 1969 года была создана группа по разработке, и работа началась. В сентябре к группе присоединился также перешедший из Fairchild Стэн Мазор (Stan Mazor). Контролером от заказчика в группу вошел японец Масатоси Сима (Masatoshi Shima). Чтобы полностью обеспечить работу калькулятора, необходимо было изготовить не одну, а четыре микросхемы. Таким образом, вместо 12 чипов требовалось разработать только четыре, но один из них - универсальный. Изготовлением микросхем такой сложности до этого никто не занимался.


Итальяно-японское содружество

В апреле 1970 года к группе по выполнению заказа Busicom присоединился новый сотрудник. Он пришел из кузницы кадров для Intel - компании Fairchild Semiconductor. Звали нового сотрудника Федерико Фэджин (Federico Faggin). Ему было 28 лет, но уже почти десять лет он занимался созданием компьютеров. В девятнадцать лет Фэджин участвовал в построении мини-ЭВМ итальянской компании Olivetti. Затем он попал в итальянское представительство Fairchild, где занимался разработкой нескольких микросхем. В 1968 году Фэджин покинул Италию и перебрался в США, в лабораторию Fairchild Semiconductor в Пало-Альто.
Стэн Мазор показал новому члену группы общую спецификацию проектируемого набора микросхем и сказал, что на следующий день прилетает представитель заказчика.

Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.

Как началось создание процессора

Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.

Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.

В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.

В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.

Самый первый персональный компьютер

Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.

История развития процессоров Intel

Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.

В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.

Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.

Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.

В то же самое время в СССР

В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.

В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.

Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.

Эволюция процессоров

В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.

В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.

По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.

В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

Эволюция процессоров Intel, Zilog, Motorola

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

Процессоры нового поколения от компании Intel

В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.

Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.

Недорогие разработки Intel

Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.

История процессоров Intel

Началось всё в далёком 1968 году. В этот год образовалась компания Intel. В то далёкое время из электроники пользовались спросом разве, что схемы для торговых аппаратов (для распознавания монеток) и калькуляторы. В 68-ом компания производила чипы оперативной памяти. Но это тоже высоко технологический процесс, для которого необходимо было освоить производство PMOS (поликристаллический кремневый логический элемент) и биполярные барьерные транзисторы Штоки. Самым первым продуктом компании стали 64-х разрядные 256-и байтные чипы памяти. Название они получили 1101 (RAM) и 3101 (биполярная).

Следующий шаг для компании стал микропроцессор - 4004. Он был представлен в ноябре 1971 года. Архитектура чипа была 4-х битная, кристалл содержал 2300 транзисторов (по тем временам это очень не плохо) и работал на частоте 108 кГц (0,1 мегагерца). И использовался в калькуляторах Японской фирмы Busicom, которой поставлялся по эксклюзивному договору. Возможно, если бы не Busicom мы могли и не увидеть Пентиумов.

Через год Intel, накопив денег, купила компанию Microma Universal, которая занималась производством электронных наручных часов. В этих часах использовались интегральные схемы произведённые по технологии CMOS, и отличались низким энергопотреблением. Также Интел не оставила производство чипов памяти (RAM, ROM, EPROM), которые всегда пользовались спросом и удерживали компанию на плаву. Свежий микропроцессор поступил в продажу в 1972 году и назывался 8008. Этот процессор уже использовал 8-и битную архитектуру и имел скорость всего 0,06 миллионов операций в секунду. 8008 производился только на заказ и использовался в терминалах и калькуляторах (хотя в последующий год Интел и наладила "массовый" выпуск этих процессоров, особой популярностью он не пользовался). Дон Ланкастер - обрисовал прототип персонального компьютера того времени: "Это печатная машинка с телевизором".

Затем появились модификации 8008-ого. 8080 - этот процессор работал заметно быстрее своего собрата, хотя и использовал всё туже архитектуру. Этот процессор поддерживал 8-и битную шину данных, 16-и битную адресную шину и позволял использовать до 64 Кб памяти, частота составляла 2 МГц. Популярность к этому процессору пришла с компанией MITS и их компьютером "Альтаир", стоимостью 440$. На этом компьютере было установлено 256 байт (не Кб, не Мб, именно 256 байт) оперативке, можно было установить 4 Кб оперативной памяти. Альтаир работал под управлением Control Program for Microcomputers (CP/M), прародителем DOS.

Следующим процессором был 8085 (март 1976 года). Процессор получил две инструкции для контроля за прерываниями и производился в более качественном корпусе, работал на частоте 3 - 6 МГц. В отличии от 8080, 8085 требовал только один источник питания +5 В, в то время как 8080 +12В, +5В и -5В. В компьютерах 8085 практически не использовался, он использовался в электронных весах Toledo.

Время шло. На рынке интегральных схем всё больше развивалась конкуренция. Интел боролась за выживание. В 1978 году был разработан процессор ставшей легендой и стандартом, который сохранился до наших дней. Это был 8086. Все программы разработанные под этот процессор с лёгкостью работают на Core 2 Duo и Athlon 64. Этот процессор заложил основы архитектуры процессоров, которая дожила до сегодняшних дней. 8086 содержал 29 тысяч транзисторов и работал в 10 раз быстрее 8080. Количество базовых команд составляло 92, шина была 16 разрядной, количество поддерживаемой памяти (ОЗУ) стало 1 Мб. Это был революционный процессор. Но в то время у этого процессора был серьёзный конкурент: Z80 (Спектрум) от Zilog Corporation. 8086 - в компьютерах использовался редко, т.к. стоил дорого. Для уменьшения цены производства Интел приняла решение сделать аналог, но с 8-и битной шиной. Этим процессором стал 8088. Решение было обоснованным, в то время были распространены 8-и разрядные чипы памяти. Объём продаж процессоров заметно увеличился, что позволило компании остаться на плаву. В августе 1981-го года в продаже появились IBM PC на базе 8088. В этих компьютерах было установлено 16 Кб ОЗУ, и работали под управлением DOS 1.0. Именно с этого момента стал образовываться союз Интел и Майкрософт. IBM PC получили огромное распространение, а Интел попала в список "500 лучших производителей Америки"

С появлением 80186 наступила новая эра микропроцессоров. Он стал первым процессором второго поколения. Однако широкой известности не приобрёл, т.к. был не совместим с 8086 и практически не использовался в компьютерах, однако есть сведения что его использовали Toshiba в своих лэптопах, Nokia в ПК и U.S.Robotics в модемах. 80186 был разработан в 1981 году, на публику представлен в 1982. Сразу после его появления был разработан 8-и битный процессор 80188. Нововведением было то, что он имел контроллер прямого доступа к памяти (DMA), контроллер прерываний и генератором синхронизации. Работали эти процессоры на частоте 6-16 МГц. Также к этому процессору выпускались математические сопроцессоры 80187 (для 8086 - 8087).

В феврале 1982 года, свет увидел 80286. Он поддерживал многозадачность, включал в себя 16-битную шину данных, 24-битную адресную шину, мог поддерживать до 16 мегабайт памяти, работал на частотах 6-12 МГц. В 1984 году на базе 286 были созданы IBM PC AT, которые пользовались просто сумасшедшей популярностью, несмотря на его стоимость (на эти деньги можно было купить два неплохих автомобиля). Поэтому многие не могли позволить себе купить его домой. Но народ играл, старшее поколение наверно вспомнит, как ходили на работу в выходные, проводили через проходную друзей, задерживались допоздна, и играли, играли... Спросите во что. Отвечаю: Civilization, Wolfenstein 3D, Warcraft (у многих нахлынули воспоминания и со щеки скатилась скупая мужская слеза). Однако время шло. Требовательность игр росла (спросите почему игр, а не приложений, отвечаю: Игры это двигатель компьютерного прогресса, офис может спокойно работать и на 486). В 1985 году был создан первый 32-разрядный процессор из семейства х86. Скорость возросла в 1,5 раза по сравнению с 286. И назывался он - 80386. Процессор имел на борту 275 тысяч транзисторов, мог адресовать до 4 Гб памяти, имел 32-ух битную адресную шину и шину данных, рабочими частотами стали 16 и 33 МГц, и имел целых 132 ножки. Также интересным фактом можно считать, что 80386 не использовал множитель, а это значит, что работал он на частоте материнской платы. В 1988 году был выпущен облегчённый вариант 386-ого и назывался он 80386SX (срезали шину данных до 16 бит, адресную до 24 бит), а полноценный вариант стал маркироваться 386DX. SX, по сравнению с DX, потерял в производительности примерно 20%, а в 32-битных приложениях 33%. Также у 80386 был и мобильный собрат, который работал на пониженной частоте (всего 25 МГц) и потреблял меньше энергии, звали его 80386 SL. Также для 80386 выпускался внешний математический сопроцессор - 80387.

10 апреля 1989 года был разработан и пущен в серию 80486, именно этот процессор рассказал миру, что такое мультимедиа. Самое главное отличие от 80386 заключалось в том, что математический сопроцессор находился на кристалле главного процессора. Впервые в х86 был реализован конвейер, который разбивал команды на 5 составляющих. Процессор состоял из пяти мини-устройств - каждое для своей задачи, это увеличивало производительность и снижало себестоимость процессора и сложность его производства. Также впервые в архитектуре х86 было использование двухуровневого кэша. Кэш первого уровня - был расположен на кристалле процессора, кэш второго уровня находился на материнской плате и имел объём от 256 до 512 Кбайт (в зависимости от производителя и цены). Известно, что до 486 операции с плавающей точкой выполнял сопроцессор, этот процесс происходил крайне медленно, поэтому программисты старались избегать операции деление. В 486-ом сопроцессор стал находиться на кристалле и скорость вычисления дробей увеличилась в разы. Также этот процессор, в отличие от 386, использовал множитель, и процессор работал на частоте превосходящей частоту системной шины (сегодня все процессоры используют множители). Также с появлением 486 впервые на процессорах стали устанавливать кулера, т.к. усложнение архитектуры ведут к увеличению количества транзисторов, а увеличение их числа неизбежно ведёт к увеличению выработки тепла, которое необходимо отводить. Бороться с этим можно уменьшая тех процесс (уменьшение расстояния между транзисторами и собственно сами транзисторы). Интересно проследить техпроцесс: в 386 он составлял 1 мкм, у 486 DX он тоже был 1 мкм, в последствии он уменьшился до 0,8 мкм, а топовые модели 486DX4 - 0,6 мкм. Также 486 был лидером по количеству модификациям: первым был 486DX с тактовой частотой 20 МГц, позже появились 33 МГц и 50 МГц. Через год появился 486SX - это была урезанная версия с выключенным сопроцессором. Первые процессоры с множителем появились в 1992 году - это были 486DX2 работающий на частоте 66 МГц. В конце 1992 года увидел свет мобильный процессор 486SL, работающий на пониженной частоте и обладал меньшем энергопотреблением, но меньшей производительностью. Топовой моделью стал 486DX4 - на борту имелось 16 Кб кэша первого уровня и использовал тройной коэффициент умножения (работал на частоте 75 и 100 МГц). Производительность была даже больше чем у первых пентиумов. С появлением множителя появилось понятие "Оверлокер". У многих пользователей просто чесались руки от желания переключить джемпер для повышения коэффициента умножения, и этим самым повышая производительность (не на много), и собственно повышая тепловыделения (ух и много же сгорело таких 486).

Необходимо сказать, что до появления 486 пользователям было просто не зачем знать, кто производил процессоры, т.к. они просто впаивались на материнскую плату (между прочим, в начале девяностых Интел завоевала уже 80% рынка). Но с появлением "четвёрок", это стало просто необходимо, потому что появилась возможность менять только процессоры, а систему оставлять такой, какая есть (мать, память, винчестер). И Intel задумалась над созданием бренда! Такой бренд, был в скорее придуман, и завоевал просто бешенною популярность, им стала фраза "Intel inside". В 1993 году, по сведениям Financial World, бренд "Intel Inside" занял третье место в списке самых узнаваемых продуктов Америки, после Кока Коллы и Мальборо. Но это была палка о двух концах, марка стала всемирно известной, и стоило сделать один неосторожный шаг, как о нём узнает весь мир. Такой шаг был сделан: через некоторое время после выпуска Pentium (кстати на раскрутку марки, они убили около 80-и миллионов зелёных бумажек) в нём нашли ошибку. Разгорелся скандал и Интел не оставалось ничего, кроме замены всей бракованной партии, что и было сделано. Но перейдём к делу.

Разработка Пентиумов началась в 1989 году, в серию он пошёл в 1993. Первые модели использовали напряжение 5В, последующие 3,3В, что позволило снизить тепловыделение на тех же частотах. Также особенностью Пентиумов было наличие двух арифметичекологических устройств (АЛУ) на кристалле процессора, что позволило производить суперскалярные счисления (обрабатывать сразу несколько вычислений). Также появился блок предсказания переходов, что позволило снизить простои при работе с памятью. Шина данных заметно подросла и стала 64-х битной. Кэш первого уровня был увеличен до 16 Кб и был разделён на две части: 8 Кб для данных и столько же для команд. Однако кэш второго уровня всё ещё устанавливался на материнской плате. Первые модели Пентиумов работали на частоте 60 МГц, в 1994 году увидели свет модели, работающие на частотах 75 и 100 МГц. Позже были разработаны и выпущены процессоры с маркировкой MMX (они то и открыли Эру трёхмерных игр). Отличие состояло в следующем: был увеличен кэш первого уровня до 32 Кб, стартовой частотой линейки было 150 МГц и были введены дополнительные инструкции для работы с 2D и 3D графикой (на сегодняшний день все современные процессоры поддерживают этот набор инструкций, хотя они практически не используются). Благодаря MMX процессор работал на 10-20% быстрее с изображениями и видео, а с заточенными под MMX приложениями скорость увеличилась практически вдвое. Также к заслугам Пентиумов можно отнести появление новых форматов записи видео и звука (MPEG и MP3, соответственно).

Следующим процессором стал Pentium Pro. Стоил он дорого и мимо меня прошёл не заметно. Хотя именно он открыл следующие поколение процессоров. В нём было несколько интересных и логически обоснованных решений: впервые на кристалл процессора стали устанавливать кэш второго уровня, увеличилось число конвейеров - их стало 3.

1994 г. Процессоры Pentiumс частотами 75, 90 и 100 МГц являлись вторым поколением процессоровPentium. При том же количестве транзисторов они выполнялись по технологии 0.6 мкм, что позволило снизить потребляемую мощность. Эти процессоры отличались внутренним умножением частоты, поддержкой многопроцессорных конфигураций, другим типом корпуса.

1995 г. Выпущены процессоры Pentium120 и 133 МГц, выполненные по технологии 0.35 мкм.

1996 г. Этот год заслуженно получил название "года Pentium". Появились процессоры с частотами 150, 166 и 200 МГц иPentiumстал рядовым процессором в массовых РС. В это же время, параллельноPentiumу развивается процессорPentiumPro, который отличался приоритетом на увеличение числа параллельно выполняемых инструкций. Кроме того, в его корпусе разместили вторичный кэш, работающий на частоте ядра (для начала - 256 Кб). Однако на 16-разрядных приложениях и в ОСWindows95 он был ничуть не быстрееPentium. Процессор содержал 5.5 млн. транзисторов ядра и 15.5 млн. транзисторов для вторичного кэша объемом 256 Кб. Первый процессор с частотой 150 МГц появился в начале 1995 г (технология 0.6 мкм), а уже в конце года были достигнуты частоты 166, 180 и 200 МГц (технология 0.35 мкм), а кэш увеличен до 512 Кб.

1997 г. Выпущен процессор PentiumMMX.MMX-MultiMediaExtensions- мультимедийные расширения). ТехнологияMMXбыла призвана ускорить работу мультимедийных приложений, в частности операции с изображениями и обработку сигналов. Кроме ММХ эти процессоры, по сравнению с обычнымPentium, имели удвоенный объем первичного кэша и некоторые элементы архитектурыPentiumPro, что повышало их производительность на обычных приложениях. ПроцессорыPentiumMMXимели 4.5 млн. транзисторов и выполнены по технологии 0.35 мкм. Развитие линейки моделейPentiumMMXвскоре было остановлено. Последние из достигнутых тактовых частот - 166, 200 и 233 МГц.

Май 1997 г. Технология ММХ была соединена с технологией PentiumProи в результате появился процессорPentiumII(7.5 млн. транзисторов только в ядре). Он представляет собой слегка урезанный вариант ядраPentiumProс более высокой тактовой частотой в которое ввели поддержку ММХ. При этом возникли технологические трудности размещения вторичного кэша и процессорного ядра в корпусе одной микросхемы. Ее решили следующим образом: кристалл с ядром (processorcore) и набор кристаллов статической памяти и дополнительных схем, реализующие вторичный кэш, разместили на небольшой печатной плате-картридже. Все кристаллы закрыли общей крышкой и охлаждали специальным вентилятором. Первые процессоры имели тактовые частоты ядра 233, 266 и 300 МГц (технология 0.35 мкм), летом 1998 г. была достигнута частота 450 МГц (технология 0.25 мкм), причем внешняя тактовая частота с 66 МГц повысилась до 100 МГц. Вторичный кэш этого процессора работает на половине частоты ядра. В то же время был выпущен облегченныйPentiumII-Celeron, который либо вообще не имел вторичного кэша, либо имел 128 Кб, размещенные прямо на кристалле ядра. ПлюсомCeleronбыло то, что практически все процессоры разгонялись относительно своего номинала (266 и 300 МГц) в полтора и более раза, но даже при этом их производительность не намного превосходила отPentiumMMX.

1998г. Intel®Celeron® (Covington)

Первый вариант процессора из линейки Celeron®, построенный на ядреDeschutes. Для уменьшения себестоимости процессоры выпускались без кэш-памяти второго уровня и защитного картриджа. Конструктив –SEPP(SingleEdgePinPackage). Отсутствие кэш-памяти второго уровня обуславливало их сравнительно низкую производительность, но и высокую способность к разгону. Кодовое имя:Covington. Тех. характеристики: 7,5 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 266-300 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня отсутствует; процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot1.

1999г. Intel®Celeron® (Mendocino)

Отличается от предыдущего тем, что форм-фактор Slot1 сменился на более дешёвыйSocket370 и увеличилась тактовая частота. Кодовое имя:Mendocino. Тех. характеристики: 19 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 300-533 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); полноскоростной кэш второго уровня (128 Кб); процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSocket370.

1999г. Intel® Pentium® II PE (Dixon)

Последний Pentium®IIпредназначен для применения в портативных компьютерах. Кодовое имя:Dixon. Тех. характеристики: 27,4 млн. транзисторов; технология производства: 0,25-0.18 мкм; тактовая частота: 266-500 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмBGA, мини-картридж,MMC-1 илиMMC-2.

1999г. Intel®Pentium® 3 (Katmai)

На смену процессору Pentium®II(Deschutes) пришёлPentium® 3 на новом ядреKatmai. Добавлен блокSSE(StreamingSIMDExtensions), расширен набор командMMXи усовершенствован механизм потокового доступа к памяти. Кодовое имя:Katmai. Тех. характеристики: 9.5 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 450-600 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100-133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot1.

1999г. Intel® Pentium® 3Xeon™ (Tanner)

Hi-End версия процессора Pentium® 3. Кодовое имя:Tanner. Тех. характеристики: 9.5 млн. транзисторов; технология производства: 0.25 мкм; тактовая частота: 500-550 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб - 2 Мб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot2.

1999г. Intel®Pentium® 3 (Coppermine)

Этот Pentium® 3 изготавливался по 0.18 мкм технологии имеет тактовую частоту до 1200 МГц. Первые попытки выпустить процессор на этом ядре с частотой 1113 Мгц закончились неудачей, т. к. он в предельных режимах работал очень нестабильно, и все процессоры с этой частотой были отозваны - этот инцидент сильно подмочил репутациюIntel®. Кодовое имя:Coppermine. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,18 мкм; тактовая частота: 533-1200 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100-133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot1,FC-PGA370.

1999г. Intel® Celeron® (Coppermine)

Celeron® на ядре Coppermine поддерживает набор инструкций SSE. Начиная с частоты 800 МГЦ этот процессор работает на 100 МГц системой шине. Кодовое имя:Coppermine. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,18 мкм; тактовая частота: 566-1100 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 128 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (66-100 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSocket370.

1999г. Intel®Pentium® 3Xeon™ (Cascades)

Pentium® 3Xeon, изготовленный по 0,18 мкм технологическому процессу. Процессоры с частотой 900 МГц из первых партий перегревались и их поставки были временно приостановлены. Кодовое имя:Cascades. Тех. характеристики: 9.5 млн. транзисторов; технология производства: 0.18 мкм; тактовая частота: 700-900 МГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб - 2 Мб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмSlot2.

2000г. Intel® Pentium® 4 (Willamette, Socket 423)

Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениямIntel®, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семействаP6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт уPentium!!!. Кодовое имя:Willamette. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1.3-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket423.

2000г. Intel®Xeon™ (Foster)

Продолжение линейки Xeon™: серверная версияPentium® 4. Кодовое имя:Foster. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1.4-2 ГГц; кэш-память с отслеживанием исполнения команд; кэш первого уровня: 8 Кб; кэш второго уровня 256 Кб (полноскоростной); микроархитектураIntel®NetBurst™; технология гиперконвейерной обработки; высокопроизводительный блок исполнения команд; потоковыеSIMD-расширения 2 (SSE2); улучшенная технология динамического исполнения команд; блок вычислений с плавающей запятой удвоенной точности; процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket603.

2001г. Intel®Pentium® 3-S(Tualatin)

Дальнейшее повышение тактовой частоты Pentium® 3 потребовало перевода на 0.13 мкм технологический процесс. Кэш второго уровня вновь вернулся к своему изначальному размеру (как уKatmai): 512 Кб и добавилась технологияDataPrefetchLogic, которая повышает производительность предварительно загружая данные, необходимые приложению в кэш. Кодовое имя:Tualatin. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,13 мкм; тактовая частота: 1.13-1.4 ГГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмFC-PGA2 370.

2001г. Intel® Pentium® 3-M (Tualatin)

Мобильная версия Tualatin-а с поддержкой новой версии технологииSpeedStep, призванной снизить расход энергии аккумуляторов ноутбука. Кодовое имя:Tualatin. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,13 мкм; тактовая частота: 700 МГц-1.26 ГГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (133 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмFC-PGA2 370.

2001г. Intel® Pentium® 4 (Willamette, Socket 478)

Этот процессор выполнен по 0.18 мкм процессу. Устанавливается в новый разъём Socket478, т. к. предыдущий форм-факторSocket423 был "переходным" иIntel® в дальнейшем не собирается его поддерживать. Кодовое имя:Willamette. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1,3-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket478.

2001г. Intel®Celeron® (Tualatin)

Новый Celeron® имеет кэш второго уровня размером 256 Кб и работает на 100 МГц системной шине, т. е. превосходит по характеристикам первые моделиPentium® 3 (Coppermine). Кодовое имя:Tualatin. Тех. характеристики: 28.1 млн. транзисторов; технология производства: 0,13 мкм; тактовая частота: 1-1.4 ГГц; кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (100 МГц); адресная шина 64-разрядная; общая разрядность: 32; разъёмFC-PGA2 370.

2001г. Intel®Pentium® 4 (Northwood)

Pentium4 с ядромNorthwoodотличается отWillametteбольшим кэшем второго уровня (512 Кб уNorthwoodпротив 256 Кб уWillamette) и применением нового технологического процесса 0,13 мкм. Начиная с частоты 3,06ГГц добавлена поддержка технологииHyperThreading- эмуляции двух процессоров в одном. Кодовое имя:Northwood. Тех. характеристики: технология производства: 0,13 мкм; тактовая частота: 1,6-3.06ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 512 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400-533 МГц); разъёмSocket478.

2001г. Intel® Xeon™ (Prestonia)

Этот Xeon™ выполнен на ядреPrestonia. Отличается от предыдущего увеличенным до 512 Кб кэшем второго уровня. Кодовое имя:Prestonia. Тех. характеристики: технология производства: 0,13 мкм; тактовая частота: 1,8-2,2ГГц; кэш-память с отслеживанием исполнения команд; кэш первого уровня: 8 Кб; кэш второго уровня 512 Кб полноскоростной); микроархитектураIntel®NetBurst™; технология гиперконвейерной обработки; высокопроизводительный блок исполнения команд; потоковыеSIMD-расширения 2 (SSE2); улучшенная технология динамического исполнения команд; блок вычислений с плавающей запятой удвоенной точности; процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket603.

2002г. Intel®Celeron® (Willamette-128)

Новый Celeron®выполнен на основе ядраWillametteпо 0.18 мкм процессу. Отличается отPentium® 4 на том же ядре вдвое меньшим объёмом кэша второго уровня (128 против 256Kb). Предназначен для установки в разъёмSocket478. Кодовое имя:Willamette-128. Тех. характеристики: технология производства: 0,18 мкм; тактовая частота: 1,6-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 128 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket478.

2002г. Intel® Celeron® (Northwood-128)

Celeron®Northwood-128 отличается отWillamette-128 только тем, что выполнен по 0,13 мкм техпроцессу. Кодовое имя:Willamette-128. Тех. характеристики: технология производства: 0,13 мкм; тактовая частота: 1,6-2 ГГц; кэш первого уровня: 8 Кб; кэш второго уровня 128 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъёмSocket478.

32-битные процессоры: микроархитектура P6/Pentium M

Представлен в марте 2003. Технологический процесс: 0,13 мкм (Banias). КэшL1: 64 КБ

Кэш L2: 1 МБ (встроенный). Базируется на ядреPentiumIII, с инструкциямиSIMDSSE2 и глубоким конвейером. Количество транзисторов: 77 миллионов. Упаковка процессора:Micro-FCPGA,Micro-FCBGA. Сердце мобильной системыIntel«Centrino» .Частота системной шины: 400 МГц (Netburst).

Технологический процесс: 0,13 мкм (Banias-512). Представлен: в марте 2003 .Кэш L1: 64 КБ. Кэш L2: 512 КБ (интегрированный). SSE2 SIMD-инструкции. Нет поддержки технологии SpeedStep, поэтому не является частью "Centrino".Обозначение:Family6model9. Технологический процесс: 0,09 мкм (Dothan-1024). Кэш L1: 64 КБ. Кэш L2: 1 МБ (интегрированный). SSE2 SIMD-инструкции. Нет поддержки технологии SpeedStep, поэтому не является частью "Centrino"

Технологический процесс: 0,065 мкм = 65 нм (Yonah). Представлен: в январе 2006 года. Частота системной шины: 667 МГц. Удвоенное (или одиночное в случае Solo) ядро с разделяемым кэшем L2 размером 2 МБ. SSE3 SIMD-инструкции

Dual-Core Xeon LV

Технологический процесс: 0,065 мкм = 65 нм (Sossaman) . Представлен: в марте 2006

Основан на ядре Yonah, с поддержкой SSE3 SIMD-инструкций. Частота системной шины: 667 МГц. Разделяемый кэш L2 размером 2 МБ

64-битные процессоры: EM64T - Микроархитектура NetBurst

Двухъядерный (Dual-core) микропроцессор. Отсутствует технология Hyper-Threading

Частота системной шины: 800 (4x200) МГц. Smithfield - 90 нм (90 nm) технологический процесс (2,8-3,4 ГГц) . Представлен: 26 мая 2005 года

2,8-3,4 ГГц (номера моделей 820-840). Количество транзисторов: 230 миллионов. Кэш L2: 1 МБx2 (non-shared, 2 МБ всего). . Производительность увеличилась примерно на 60 % по сравнению с одноядерным микропроссором Prescott 2,66 ГГц (533 МГЦ FSB) Pentium D 805 представлен в декабре 2005 года. Presler - 65 нм (65 nm) технологический процесс (2.8-3.6 ГГц) . Представлен: 16 января 2006 года. 2,8-3,6 ГГц (номера моделей 920-960). Количество транзисторов: 376 миллионов. КэшL2: 2 МБx2 (non-shared, 4 МБ всего)

Pentium Extreme Edition

Двухъядерный (Dual-core) микропроцессор. ПоддержкаHyper-Threading. Частота системной шины: 1066 (4x266) МГц. Smithfield - 90 нм (90 nm) технологический процесс (3,2 ГГц) . Варианты:

Pentium 840 EE, 3,20 ГГц (кэш L2 размером 2 x 1 МБ)

Presler - 65 нм (65 nm) технологический процесс (3,46, 3,73 ГГц)

L2 кэш: 2 МБ x 2 (non-shared, 4 МБ всего)

64-битные процессоры: EM64T - Микроархитектура Intel Core

Просматривая хабр, наткнулся на весьма интересную во всех отношения статью, и не смог удержаться, не перетянув ее к себе.
Мне это близко, поскольку я застал и i386, не обошли меня стороной и Cyrix, и AMD K5-K6. Как сейчас помню, как после пар в институте зависал в Tiberian Sun на компьютере кафедры. Помню и Slot A, первые Celeron и Pentium I-IV. Помню, как собрал свой первый компьютер на Athlon XP, как подробно изучал разлочку и разгон процессоров AMD, постепенно проапгредив и разогнав до Barton 3200+ на легендарной матери NF7-S. Тот системник, кстати, жив и здоров - наверное оставлю его для потомков в качестве музейного экспоната. Читая подобные статьи, понимаешь на самом деле как давно это было, но воспоминания и первые восторги живы в памяти и не тускнеют со временем.

Стремление к совершенству – пожалуй, именно так можно описать развитие человечества. Вот взять, к примеру, женскую красоту. Чего только не сделают девушки, чтобы оказаться самой красивой. А в итоге могут превратится в настоящих силиконовых кукол.

То же самое относится и к мужчинам. Причем данная мания проявляется в большей степени не только по отношению к себе любимым. Уже переходя к тематике этого материала, легко заметить, как эволюционировал оверклокинг – мужской вид стремления к идеалу. А вместе с оверклокингом – и энтузиасты, и компании, производящие «железо». Сегодня для мастеров разгона главное – продемонстрировать максимум, сиюминутный успех. Поэтому сейчас в ход идут нестандартные виды охлаждения в виде систем фазового перехода или же применения жидкого азота. Хотя все прекрасно понимают, что комплектующие постоянно работать при столь экстремальных нагрузках не будут – да и дорого это будет, хранить цистерну азота.

А вот раньше оверклокинг существовал исключительно ради выгоды. Ибо человеку хотелось получить больше производительности за меньшие деньги. Начиналось все с процессоров – они были первыми комплектующими, способными к разгону. Позже начались погони за мегагерцами в мире видеокарт и оперативной памяти.

Первые попытки


Началось все с освоения разгона тактового генератора. А именно, управление блоком осуществлялось за счет замыкания определенных FS-контактов. Набор из разных сигналов (высокого или низкого) позволял получать значения логического нуля и единицы. Вследствие чего составлялась таблица с определенными частотами процессора. Уже потом материнские платы начали снабжать джамперами, которые меняли сигнал тактового генератора. Как правило, средний контакт отвечал за номер FS-ноги, а остальные два – за землю и напряжение. Подобным образом и осуществлялся разгон CPU. Поначалу повышение частот не обещало больших дивидендов. Доисторические ядра удавалось раскочегарить на 5-10 лишних мегагерц.

Первым официальным свидетельством разгона на теперь уже легендарном ресурсе hwbot.org стал процессор AMD Am386, выпущенный в далеком 1991 году.

Данный «камень» был призван составить конкуренцию Intel 80386. Хотя слово «конкуренция» – слишком сильно сказано. Выполненный согласно 1000-нанометровому техпроцессу, «триста восемьдесят шестой» являлся полной копией кристалла наследников Гордона Мура. Впрочем, случись подобное заимствование идей в наши дни, Intel своими судебными делами съела бы «микродевайсеров» с потрохами. Как бы там ни было, AMD Am386 обладал 32-битной шиной данных, а также был снабжен 80387 FPU. И это при ресурсе в 275 000 транзисторов! Частота «камня» варьировалась в зависимости от тактового генератора, но не сильно – всего 12-40 МГц. Причем упомянутый ранее кристалл-соперник Intel 80386 работал с максимальной скоростью 33 МГц. Как видишь, вечным «друзьям» мериться причинными местами до сих пор не надоело.

Самым производительным среди процессоров AMD Am386 было устройство AMD Am386DX-40. Из названия видно, что кремниевый девайс функционировал с тактовой частотой 40 МГц. А вот португальскому оверклокеру WoOx3r в свое время удалось разогнать «камень» до 50 МГц!

Пусть сейчас предоставленный результат и звучит смешно, но тогда это был рекорд из рекордов. Кстати, на подобных характеристиках тест Super Pi с паттерном в один миллион знаков после запятой был пройден за какие-то 2 дня 21 час 36 минут и 32.992 секунды. Быстро, правда?


Оба представителя

Более производительными оказались CPU следующего поколения: AMD Am486 и AMD Am5x86. Первое семейство процессоров появилось в 1993 году. На кремниевом «горбу» новинки разместилось 1 185 000 транзисторов, благодаря переходу на 800-нанометровый техпроцесс. Естественно, поднялись и частоты. Если поначалу выходили модели с небольшой скоростью до 40 МГц, то потом тактовая частота «камня» выросла до 120 МГц. Энтузиасты не постеснялись разогнать новые процессоры. Например, оверклокер DrSwizz смог запустить AMD Am486DX-25 на частоте 33 МГц. Эталонный тест Super Pi рассчитал миллион знаков после запятой за 2 часа 4 минуты и 59 секунд (сравните с результатом Am386).

Уже в 1995 году энтузиасты вдоволь наигрались процессором AMD Am5x86-P75.
Так ядро под кодовым именем Х5 удалось разогнать до 162 МГц – более чем в два раза. В результате чешский оверклокер orange преодолел тест Super Pi всего за 36 минут ровно.

Время Intel

Одновременно с выходом чипа AMD Am5x86 появилась марка процессоров Intel Pentium, впоследствии ставшая культовой. Среди оверклокеров очень популярным стал чип серии Pro или P6.

На самом деле под этой маркой прятался кристалл с совершенно другой архитектурой, нежели обычный «пень». Во-первых, за счет применения архитектуры двойной независимой шины были сняты ограничения по пропускной способности памяти. Для чего пришлось разработать специальный слот – Socket 8. Также впервые применялась технология размещения двух чипов.
Один из них и был, собственно говоря, CPU с 5.5 миллионами транзисторов, выполненный согласно 250-нанометровому техпроцессу. А вторая микросхема играла роль кэша второго уровня. С течением времени выпускались модели Pentium Pro с 256, 512 и 1024 Кбайт SRAM-памяти. Работала конструкция за счет 387-контактного SPGA-корпуса при напряжении питания 3.3 вольт. Среди оверклокеров популярной стала модель Intel Pentium Pro c 256 Кбайт кэша второго уровня, функционирующая на частоте 200 МГц. Например, наш соотечественник Veld разогнал P6 до 245 МГц. А вот быстрее всех тест Super Pi прошел опять же россиянин frag_: Intel Pentium Pro при частоте 225 МГц рассчитал миллион знаков за 7 минут 44.700 секунды.

Интересная ситуация. Многие оверклокеры решают поиздеваться над «железом» спустя какое-то время. Ради забавы или в порыве ностальгических чувств. Неважно. Но в 2009 году украинцу RomanLV за счет пары Intel Pentium Pro, работающих на частоте 240 МГц, удалось пройти тест wPrime 32m за 6 минут и 41.190 секунды.

Имя, которое знает каждый ребенок.
Наверняка многие интересовались, почему Intel решила выпустить линейку процессоров Pentium вместо привычных цифровых обозначений (586, 686)? Среди народа даже ходили интересные слухи, мол, культовый процессор «голубых» нарекли в честь некоего советского инженера Пентковского, создавшего серпом и молотом компьютер «Эльбрус», а потом благополучно свалившего за бугор. То бишь к американцам. На самом деле придумать название Pentium для своей продукции подтолкнули никто иные, как AMD и Cyrus.

Из-за плагиата в именах Intel решила зарегистрировать словесную торговую марку (цифры не могли быть зарегистрированной маркой). Так появился хорошо всем знакомый Pentium.

Хотя по логике вещей вслед за Intel 486 должен был появиться Intel 586, Intel 686 и так далее. Собственно говоря, Pentium в переводе с греческого и означает «пятый». Так что в какой-то степени традиция нумерации поколений продолжилась (вспомним сегодняшние Core i7).
Уже потом, когда данное слово ознаменовало суперизвестный бренд, его стали использовать вплоть до сегодняшних дней. К тому же названия наподобие Sexium звучат не так выразительно, хоть и соблазнительно.

И снова AMD

В следующем году после анонса Intel Pentium компания AMD разразилась очередным поколением своих процессоров. На этот раз обошлось без плагиата, и семейство кремниевых удальцов со звучным названием K5 обзавелось своими индивидуальными чертами. По сути этот CPU и есть первый обособленный продукт корпорации. Естественно, «камень» AMD позиционировал себя главным (а каким же еще?) конкурентом Intel Pentium. Именно тогда появилась интересная чехарда с названиями процессоров. Так AMD K5 PR133 с тактовой частотой 100 МГц считался аналогом чипа Intel Pentium, работающего со скоростью 133 МГц (с тех времен и по- шел так называемый PR-рейтинг). Всего же в модельном ряде «зеленых» присутствовали «камни» с сигналом 75, 90, 100 и 116 МГц. Были и комичные ситуации, когда выпускались абсолютно одинаковые чипы AMD K5 PR90 и AMD K5 PR120, действующие на частоте 90 МГц. Кристалл «обрамлялся» в соответствии с 350-нанометровым техпроцессом, что позволило разместить 4.3 миллиона транзисторов. Кэш первого уровня делился на 8 Кбайт для данных и 16 Кбайт для инструкций.

А вот общей памяти второго левела даже не намечалось. Ее распаивали на материнской плате. Уровень потребления энергии пятого поколения процессоров перевалил за 10 психологических ватт. И для их охлаждения (процессоров, ну и ватт тоже) потребовалось применение не только пассивного, но и активного воздушного охлаждения. Тем не менее, это ничуть не отпугнуло оверклокеров. Итак, лучшим среди разгона AMD K5 PR133 стал бразильский паренек RIBEIROCROSS. Ему удалось запустить «пятерочку» на частоте 142.5 МГц и пройти бенчмарк Super Pi 1m за 12 минут и 48.640 секунд. Топовый процессор AMD K5 PR166 (@116 МГц) под пристальным вниманием хорошо нам знакомого ретрооверклокера orange покорил отметку 150.5 МГц. С помощью этого же девайса хорватский экстремал skydec прошел тест Super Pi 32m за 18 часов 52 минуты и 40.392 секунд.

Эволюционируем вместе

Седьмого мая 1997 года Intel анонсировала продолжение линейки процессоров Pentium. Второй «пень» являлся не чем иным, как переработкой ядра P6, о потенциале которого говорилось выше. Модернизация кристалла заключалась в увеличении кэша первого уровня с 16 Кбайт до 32 Кбайт, а также появлении блока SIMD-инструкций MMX. Поэтому Intel Pentium MMX не стоит считать первым процессором с эксклюзивными (в тот период времени) мультимедийными расширениями. Кстати, одновременно с реинкарнацией P6 большую популярность обрела память стандарта SDRAM и интерфейс AGP (Accelerated Graphics Port).

Всего же второй «пенек» просуществовал в пяти ипостасях. Первым исконно считается ядро Klamath. Процессоры на его основе располагали шиной FSB с частотой 66 МГц, а сам CPU функционировал со скоростью 233-300 МГц. При этом внешний кэш второго уровня (512 Кбайт) трудился на уполовиненной частоте ядра. Сама конструкция устройства представляла собой картридж с распаянными на нем элементами. Позже от такого корпуса пришлось отказаться в пользу текстолитовой пластины, очень похожей на сегодняшние процессоры.
Следующее ядро Deschutes по-прежнему располагалось в картридже, устанавливаемом в Slot 1. Отличия от Klamath заключались в переходе на 250-нанометровый техпроцесс. Отсюда потребляемое напряжение процессора снизилось с трех вольт до двух, а частоты увеличились до 450 МГц. Очень популярным стал «камень» Pentium II 350 МГц. Оверклокеру Jonh"у из солнечной Аргентины даже удалось раскочегарить модельку до 601 МГц! Испытание в виде Super Pi 1m с такими характеристиками CPU в среднем преодолевались за 200 секунд.

Имя, сестра, имя!

Среди Intel Pentium II позже появились ядра P6T (OverDrive) и мобильные Tonga/ Dixon. Впрочем, заоблачными тактовыми частотами они не радовали. Но не стал бы оверклокинг столь популярным делом, не появись 15 апреля 1998 года первый процессор семейства Celeron. Эти бюджетки без кэша второго уровня буквально покорили сердца оверклокеров всего мира.
А некоторые ретробенчеры до сих пор ублажают себя разгоном «сельдерея» (так в простонародье называют Celeron из-за очень близкого сходства со словом Celery).

Производительность данного чипа находилась на очень низком уровне. Но вот разгон по абсолютной максимальной частоте не мог не радовать. Тогда же подобные результаты начали называть попкорном. Так словенцу Moonman’у удалось раскачать Intel Celeron 433 МГц (на базе ядра Mendocino) до 780 МГц. Для этого пришлось увеличить скорость шины до 120 МГц. Множитель «камня» держался на уровне х6.5 единиц.

Просто К6

Тем временем AMD отнюдь не бездействовала. В 1997 году корпорацией был представлен процессор К6 (Model 6).
Как обычно, новые процессоры позиционировали себя альтернативой Intel Pentium.
Поэтому названия кристаллов корректировались согласно частотному потенциалу конкурентов.

Ядро после перехода на 350-нанометровый техпроцесс обзавелось 8.8 миллионами транзисторов. А позже вышла вариация Little Foot (или Model 7), обработанная «напильником» до 250 нанометров. Кэш первого уровня составлял 64 Кбайт, поровну поделенные на данные и инструкции. Работал процессор с частотами 166, 200 и 233 МГц. «Лапа», как ее ласково величали, смогла достичь отметки 300 МГц. Почему седьмая модель оказалась невостребованной оверклокерами – загадка. Зато Model 6 отлично поддавалась разгону. Рекорд принадлежит австрийцу Turrican, запустившему 233-мегагерцовый чип на частоте 310 МГц.

Аналогично К6 новое семейство – K6-2 – было призвано составить конкуренцию Intel Pentium II. «Камень» состоял из 9.3 миллиона транзисторов, для чего площадь кристалла пришлось увеличить с 68 до 81 квадратного миллиметра. Поднялось и тепловыделение процессора, достигавшее отметки 28.4 ватта в зависимости от модели. Тем не менее, верный «солдат» Socket 7 не требовал активной системы охлаждения. А уже при помощи обычной 120-миллиметровой вертушки бельгийский ретроовер Massman разогнал AMD K6-2 (Model 8) до 720.5 МГц.
Наш соотечественник, qwerty84, заставил процессор пройти тест Super Pi 1m на частоте 650 МГц за 5 минут и 12.44 секунд.

Позже (16 ноября 1998 года) AMD выпустила ядро Chomper Extended. Правда, частоты подобных «камней» увеличились не сильно. Топовое устройство функционировало со скоростью 550 МГц. Лучший результат разгона принадлежит опять же Turrican’у: 744.6 МГц.

Наконец, эпоху заката линейки K6 ознаменовали процессоры микроархитектуры IA-32, представленные обществу в феврале 1999 года. Ядра Sharptooth и K6-III-P обзавелись полноскоростным кэшем второго уровня, вытравленным прямо на кристалле. Кстати, для 256 Кбайт быстрых «мозгов» чипа пришлось затратить 21.3 миллиона транзисторов, но без модернизации техпроцесса.

Частоты чипа не отличались от шестой, седьмой и восьмой моделей. К сожалению, разгонным потенциалом новые CPU не радовали. Оверклокеру GtaduS"у удалось выжать 575.1 МГц из модели AMD K6-III 450 МГц (Model 9).

На границе тысячелетий

Наверное, было бы не совсем логично, если бы на границе старого и нового времен процессоры Intel и AMD не сделали бы огромнейший скачок вперед. Со стороны первых этим скачком стал процессор Intel Pentium III. Вышедшее 26 февраля 1999 года ядро Katmai поначалу не обладало сверхъестественными характеристиками. Частоты так вообще находились на уровне 450-600 МГц. Одними из немногих отличий модифицированного кристалла Deschutes стали оптимизация работы с памятью да расширенный набор команд SSE.
Позже третий «пенек» обновился в виде чипа Coppermine. Частоты процессора наконец-то достигли гигагерца! Свершилось сие чудо 8 марта 2000 года. Правда, в среде оверклокеров покорение подобного рубежа отпраздновали чуть раньше. А если быть более точным, то еще в 1999 году (официально «камень» был представлен 25 октября), когда процессор Intel Pentium III с частотой 733 МГц за счет разгона покорил заветный рубеж.

На сегодняшний день рекорд принадлежит голландскому энтузиасту _Datura_: парню удалось снять валидацию при 1181.3 МГц по ядру. Примечательно, но для достижения подобного результата оверклокеру пришлось использовать систему фазового перехода (читай – фреонку). Память тестового стенда стандарта SDRAM функционировала на частоте 215 МГц, для чего пришлось водрузить на модуль водоблок.

Как всегда великолепный разгонный потенциал демонстрировали «камни» линейки Celeron. Основанные на все том же ядре Coppermine, процессоры обладали 128 Кбайт 4-канального кэша второго уровня и шиной FSB 66 МГц. В итоге латентность памяти увеличилась в два раза по сравнению с обычным Pentium III.
А вот разгонный потенциал кремниевого девайса не вызывал нареканий. Все благодаря высокому коэффициенту умножения х8. В результате модель с номинальной частотой 800 МГц запустилась при 1406 МГц. При этом выходцу из страны тюльпанов, оверклокеру DDC, не пришлось устанавливать ничего, кроме более мощного вентилятора на стоковый кулер.

Картриджи и иже с ними

По сути, процессор – это кусок кремния с вытравленными на нем транзисторами. Но обычный пользователь за время существования этих чудотворных устройств вряд ли лицезрел голый камень-полупроводник. Первые CPU изготавливались в корпусе DIP (Dual Inline Package). Процессор выглядел как прямоугольник с двумя рядами контактов. Самой популярной и известной «сороконожкой» является Intel 8088.

Позже чипы обзавелись четырьмя рядами контактов. Такой корпус получил логичное название QFP (Quad Flat Package). Обычно число контактов варьировалось от 64 до 304 единиц. Подобным образом работали кристаллы, облаченные в «броню» PLCC (Plastic Leaded Chip Carrier). Только контакты располагались в так называемой «кроватке» куда необходимо было вставить чип. Со временем от пластика решили отказаться в пользу керамических корпусов.

Далее инженеры добрались до матрицы выводов PGA (Pin Grid Array). На базе корпуса со штырьковыми контактами (ножками) были построены практически все версии Intel Pentium, а также Athlon, Duron, Sempron и Opteron. Мобильные «пеньки» распаивались в блоке BGA (Ball Grid Array), где вместо штырьков использовались свинцовые шарики.

Наконец, Intel Pentium II/III, Celeron, Athlon, Itanium и Xeon производились в картриджах. Всего насчитывается 4 спецификации данного типа корпусов: SECC, SECC2, SEPP и MMC.

Вместе с ядром на такой картридж, как правило, распаивали память и кэш второго уровня. В последнее время Intel использует хорошо всем знакомый корпус LGA (Land Grid Array). Это тот же PGA, только вместо штырьков используются контактные площадки, а сами ножки установлены на материнской плате.

Не последнее слово

Летом 1999 года AMD обозначила линейку процессоров Athlon с микроархитектурой K7. Как обычно, кристаллы Argon, Pluto и Orion выпускались вдогонку «камням» Intel. И как обычно, позиционировали себя равнозначной заменой. Только поначалу у седьмого поколения не сложилось с разгоном. Потенциал первых Athlon находился на очень низком уровне. Когда 700-мегагерцовый «пень» легко покорял психологический гигагерц, аналогичный Orion еле-еле преодолевал отметку в 800 МГц.

Об этом свидетельствует результат оверклокера mafler, установленный 10 лет спустя: AMD Athlon 700 МГц запустился при частоте 889.15 МГц.

Больший ажиотаж вызвал выход процессоров на ядре Thunderbird. Модель AMD Athlon 1000 покорила небывалую отметку 2184 МГц! За что стоит сказать спасибо французскому оверклокеру cpulloverclock.

Именно на такой мажорной ноте оверклокерская тортуга встретила новое тысячелетие. Во многом ее успехи и указали, словно компас, направление развития центральных процессоров Intel и AMD. А впереди были двухтысячные. Впереди была интересная и интригующая дорога.

Новое тысячелетие

Индустрия встретила новое тысячелетие с энтузиазмом.
В ноябре 2000 вышел Pentium 4. Работа над процессорами этой линейки началась еще в 1998 году, но, в связи со множеством трудностей, разработка продлилась до конца 2000 года. Новые процессоры создавались на микроархитектуре NetBurst, имевшей принципиальные отличия от микроархитектуре P6, на основе которой строились процессоры Pentium II и Pentium III, поэтому они получили новое название – Pentium 4.

Первые модификации процессоров Pentium 4 были не очень удачными. Они проигрывали в производительности топовым моделям Pentium III и конкурирующим процессорам компании AMD. И цены на эти процессоры были велики. Однако, со временем, когда появились более быстрые модификации процессоров этой линейки, Pentium 4 стал отвоевывать свою нишу на рынке вычислительной техники.

Но Pentium 4 вовсе не был плох и он поддерживал наборы инструкций SSE2 и SSE3. А в комбинации с HyperThreading, Pentium 4 превосходно справлялся как с мультимедийными и контентными задачами, так и с кодами, оптимизированными под новое ядро. А использование графических карт для 3D-графики еще больше улучшало производительность, таким образом, процессор Р4 заложил основу для развития игровых инструментов.

Оверклокеры проявили большой интерес к ядру Northwood, выпущенному в 2002 году. С подходящей системной платой и памятью даже начинающие оверклокеры могли поднять тактовую частоту на 1 ГГц при воздушном охлаждении.

Но чтобы Pentium 4 действительно заблистал, потребовалось поднять тактовую частоту до рекордных цифр. Intel предполагала, что этого удастся добиться с ядром Prescott - первым чипом, изготовленным по 90 нм технологии. Но Prescott дал лишь незначительное повышение производительности, в противовес громким рекламным обещаниям, а в игровых тестах значительно уступал процессорам AMD.
Pentium 4 стал первым процессором который во всех модификациях уже был в рамках понятия Socket. Socket 478 – надолго вошёл в обиход, система картриджей была забыта.

Знаете ли вы, что


разогнанный «Northwood» Pentium 4 был «существом» мало управляемым, так как даже незначительное превышение рабочего напряжения до 1.7 В могло привести к быстрому выходу процессора из строя. Этот феномен стал широко известен под названием Sudden Northwood Death Syndrome (синдром внезапной смерти «Northwood»).

Эра AMD

В это время AMD, с линейкой Athlon XP и новой системой описания тактовой частоты (1800+) вышла на рынок. Часть семейства Athlon, после ревизии XP и добавления инструкций SSE, стала еще одним агрессивным шагом в маркетинге AMD. XP поддерживал eXtreme Performance и прекрасно ладил с Windows XP. Кроме того, AMD вернулась к использованию системы Performance Rating (PR) для маркирования процессоров. Официально, PR от AMD должно было характеризовать производительность процессора XP по отношению к ядру Thunderbird, так что теоретически AMD Athlon XP 1800+ должен был иметь такую же производительность, как и Thunderbird на частоте 1.8 ГГц. Однако, на практике эта аббревиатура ошибочно использовалась гораздо шире, например, в качестве указателя на соответствующий интеловский процессор - во многом из-за совпадения аббревиатур «Pentium Rating» и «Performance Rating».

Самый популярный Socket A Athlon был создан на основе ядра Barton, появившегося в 2003 году и обещавшего огромные возможности разгона. В частности, интерес вызвала первая версия процессора - Barton 2500+, которая поставлялась с разблокированным множителем. При увеличении значения множителя большинство процессоров Barton 2500+ могли легко достигать производительности флагманской модели AMD 3200+.

Конечно же, инженеры AMD не могли позволить себе такую роскошь, как убрать защиту от разгона. Новый Athlon XP/MP на ядре Palomino – был прекрасным примером высококачественной работы, на какую только способен производитель чипов. До этого была возможность соединять дорожки для «превращения» процессора в более мощьную модель. Такой способ был весьма действенен на прошлых Athlon с ядром Thunderbird. Таким образом, рассеялись мечты крутых «разгонщиков», которые еще до покупки процессора строили планы насчет разгона. Но разгонный потанциал был феноминален и без этого!

На оверклокерской сцене Athlon XP самой высокой была частота 2641,78 Мгц, от русского оверклокера michaelnm. Это было заметно выше предыдущего поколения Athlon.
Но по разгону Intel Pentium 4 мог разгоняться аж до 4455 Мгц!

Очередной скачок произошёл опять в рядах AMD. Вершиной успеха AMD стал 64-разрядный процессор Athlon 64, предназначенный для основной массы пользователей. В то время как инженеры Intel пытались создать процессор Р4 на базе NetBurst, AMD занялась производством чипов с более эффективной архитектурой и интегрированным контроллером памяти.

Хотя А64 предложил собственную 64-разрядную основу, он был также полностью совместим с 32-битной кодировкой без какой-либо заметной потери в производительности. Это было очень важно для пользователей Windows, которые все еще жили в 32-разрядном мире.

Intel всё не унималась. Невезучая архитектура NetBurst окончательно сдала свои позиции в последнем бренде Intel Pentium D. Процессоры Pentium D, содержащие два одноядерных процессора, трансформировались впоследствии в многоядерные модули. Не столь элегантный, как двуядерная разработка AMD, Pentium D предлагал приличную многозадачную производительность, хорошие возможности для разгона по сравнительно невысокой цене. Pentium D обеспечил приверженцам Intel уверенную альтернативу AMD.

Продолжая доминировать на рынке настольных ПК, серия процессоров Athlon 64 X2 от AMD содержала два ядра в одном кристалле, совместно использующих интегрированный контроллер памяти. Эта внутренняя структура обмена данными обеспечивала огромное преимущество в производительности по сравнению с интеловской двуядерной конфигурацией, у которой ядра осуществляли коммуникацию через общую шину. В серии X2 были добавлены SSE3 команды.

Intel против AMD

Пробудившись от «спячки», Intel начинает штурмовать процессорный мир со своей новой архитектурой Core 2.

Вместо концентрации на достижении максимальной тактовой частоты, Intel сфокусировался на более высокой производительности его процессорного конвейера. Это означало возврат к более низким тактовым частотам, но с другой стороны, повышало производительность процессоров. Но после того, как обнаружилась несостоятельность Prescott, средства массовой информации с осторожностью отнеслись к обещаниям Intel по поводу производительности Core 2. Но, к глубокому разочарованию AMD, Core 2 полностью соответствовал заявленным возможностям.

Первый Core 2 Duo буквально взорвал рынок. Несмотря на дебют с невысокими частотами 1.86 ГГц и 2.13 ГГц (Е6300 и Е6400 соответственно), производительность, а также агрессивная ценовая политика сделали Core 2 желанным и популярным.

Позднее Core 2 был переведен на 45 нм технологию изготовления. Так появилась версия Penryn, в которой 820 млн транзисторов было упаковано в четырехядерный процессор, работающий с частотой, достигающей 3.2 ГГц. Минус был в температурах работы процессора.

AMD передав пальму первенства в производительности интеловской архитектуре Core 2, тем не менее, надеялась осуществить рывок на рынке с будущим процессором Barcelona, который был впоследствии переименован в Phenom. Но ранние версии Phenom содержали баги и часто давали сбои в работе. А в затылок ему уже дышала интеловская архитектура Nehalem.

Нельзя сказать, чтобы Phenom был такой уж плохой архитектурой – у него, несомненно, имелись и собственные достоинства: несколько SIMD инструкций, включая MMX, Enhanced 3DNow!, SSE, SSE2, SSE3 и SSE4a, 4-ядерный процессор и неплохая производительность. Но все это несравнимо уступало уровню последних процессоров Intel, к тому же, AMD проиграл Intel в ценовой политике.

Процессор Core i7, вышедший в 2008 году еще больше укрепил беспокойство AMD, которая все еще надеялась побороться за создание архитектуры, способной конкурировать с Core 2. Тем временем Core i7 (ранее известный под именем Nehalem) остался вне конкуренции.

А Intel тем временем окончательно отошел от традиционной шины в пользу QuickPath Interconnect, которая являлась аналогом HyperTransport от AMD. Это двухточечное межкомпонентное соединение (point-to-point interconnect) позволяет намного быстрее осуществлять связь между процессором и различными подсистемами. Правда, из-за этого оверклокерам пришлось «повышать квалификацию», в том числе осваивать несколько новых терминов, чтобы научиться грамотно осуществлять разгон.

По началу это были сложные для разгона процессоры, а также Intel впервые начала блокировать разгон из «коробки». После этих процессоров начали появляться специальные модификации для оверклокеров – серии с пометками (K - для оверклокинга с разблокированным множителями), остальные же были уже урезаны.

Многие считают, что Phenom II - это то, чем должен был стать оригинальный Phenom. Вместе с утроенным объемом кэш-памяти третьего уровня (6 МБ вместо 2 МБ), поддержкой DDR3 и удалением «холодных багов», которые отравляли жизнь оверклокерам, Phenom II закрыл брешь в производительности с интеловской линейкой Core 2. Но у AMD по-прежнему оставалась проблема: Intel уже осуществил следующий шаг, а AMD пока нечего было предложить пользователям в качестве конкурента Core i7.

Будучи не в состоянии конкурировать с Intel в производительности, AMD пришлось снизить цены на свои процессоры значительно больше, чем того хотелось бы. Тогда как Athlon 64 X2 имели тенденцию к высоким ценам, Phenom II X4 940 имел розничную цену всего $215 – ощутимо ниже $1000, которую обычно просили за флагманские процессоры.

Intel: ЗА и ПРОТИВ

С момента появления Corei7 началась новая эпоха, количество оверклокеров и групп после пика первых процессоров на Bloomfield начал падать. А Intel активно стал продвигать идею встроенного видеоядра в процессор. Блокированная частота на всех версиях кроме K серий не прибавляла популярности к оверклокингу процессоров, в итоге главные частотные рекорды тех лет завоевал AMD PHENOM II X2.

Но энтузиасты всё равно остались, всё также используется азот, но с появление i7 это совсем другая эпоха, заслуживающая отдельной статьи.



Рекомендуем почитать

Наверх